EXPERIMENTAL SIGNATURES OF PRE-HYDRODYNAMIC EVOLUTION Or, the importance of conformal symmetry breaking

Matthew Luzum

Based on: EXTEME Collaboration; Phys.Rev.C 103 (2021) 054906; article in preparation

University of São Paulo

From initial gluons to hydrodynamics October 25, 2022

2022-10-25 1/19

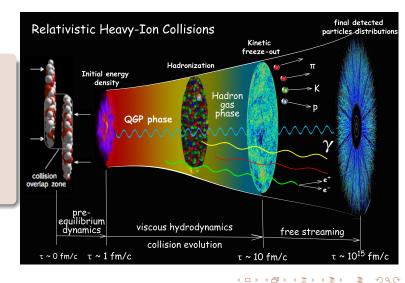
Ma C

- **1** The pre-hydrodynamic stage
- **2** SIMULATION SETUP AND RESULTS
- **3** ROLE OF CONFORMAL SYMMETRY
- **4** FURTHER QUANTIFICATION: SYSTEM SIZE AND DURATION
- **5** SUMMARY / CONCLUSIONS

na (r

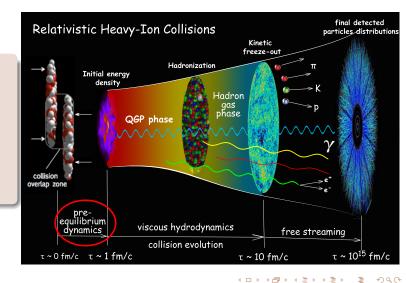
<ロ> <四> <四> <四</p>

OUTLINE


1 The pre-hydrodynamic stage

- **2** SIMULATION SETUP AND RESULTS
- **3** ROLE OF CONFORMAL SYMMETRY
- **4** Further quantification: system size and duration
- **5** SUMMARY / CONCLUSIONS

Ma C


TIME LINE OF HEAVY-ION COLLISION

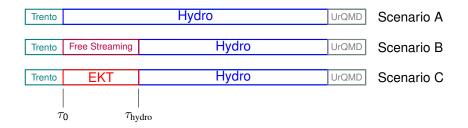
- Incoming nuclei
- Initial scattering
- Pre-equilibrium ("hydrodynamization")
- Relativistic Fluid
 - Quark-Gluon Plasma
 - Hadrons
- Hadronic scattering

TIME LINE OF HEAVY-ION COLLISION

- Incoming nuclei
- Initial scattering
- Pre-equilibrium ("hydrodynamization")
- Relativistic Fluid
 - Quark-Gluon Plasma
 - Hadrons
- Hadronic scattering

PRE-HYDRODYNAMIC SIGNATURES

- Effects of initial scattering / hydro evolution on observables is well studied
- What about pre-equilibrium?
- What can we learn about first ~1 fm/c from data?
- First test: vary pre-equilibrium dynamics and see whether/how observables change.

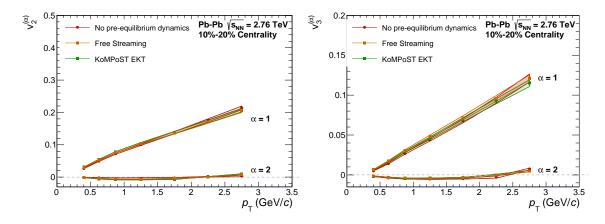

• • • • • • • • • • • •

OUTLINE

- **1** The pre-hydrodynamic stage
- **2** SIMULATION SETUP AND RESULTS
- **3** ROLE OF CONFORMAL SYMMETRY
- **4** FURTHER QUANTIFICATION: SYSTEM SIZE AND DURATION
- **5** SUMMARY / CONCLUSIONS

Ma C

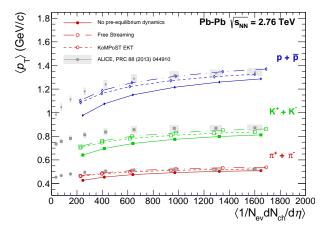
SCENARIOS



- Start with energy density from Trento
- Model evolution between $\tau_0 = 0.2$ fm and $\tau_{hydro} = 1.2$ fm with 3 types of dynamics
 - Viscous hydrodynamics
 - Free streaming (via KøMPøST)
 - QCD Effective Kinetic Theory (via KøMPøST)
- Evolve from τ_{hydro} with hydrodynamics + hadron cascade

(日) (同) (日) (日)

SAC

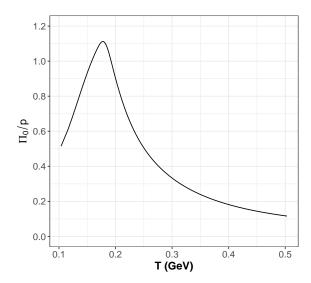

RESULTS

- Most observables insensitive to details of pre-hydro evolution
- E.g., principle components of v_n in p_T .

• • • • • • • • • • •

RESULTS

- Main effect: $\langle p_T \rangle$.
- $\bullet\,$ EKT and free streaming larger than to hydro, with EKT $\sim\,$ FS
- Why? What do EKT and free streaming have in common?

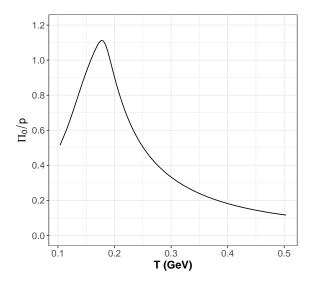

OUTLINE

- **1** The pre-hydrodynamic stage
- **2** SIMULATION SETUP AND RESULTS
- **3** ROLE OF CONFORMAL SYMMETRY
- **4** Further quantification: system size and duration
- **5** SUMMARY / CONCLUSIONS

ma Cr

CONFORMAL SYMMETRY

- Many calculations and models of initial stages assume conformal symmetry
 - Free-streaming
 - EKT (KøMPøST)
 - CGC / Classical Yang-Mills
- Good approximation at asymptotically high energy
- Conformal $\implies T^{\mu}_{\mu} = 0 \implies P = \frac{e}{3}$ (independent of proximity to equilibrium)
- Actual QCD: equilibrium p(e) < ^e/₃. Expanding system: expect P = Π + p(e) with Π < 0.
- Conformal hydro initial conditions: anomalously large pressure. Π_0 fixed by symmetry rather than local conditions/dynamical history: $\Pi_0 = \frac{e}{3} - p(e)$
- Is this important?

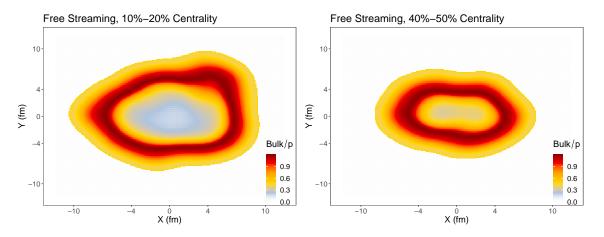


・ロト ・同ト ・ヨト ・ヨト

Ma C

CONFORMAL SYMMETRY

- Many calculations and models of initial stages assume conformal symmetry
 - Free-streaming
 - EKT (KøMPøST)
 - CGC / Classical Yang-Mills
- Good approximation at asymptotically high energy
- Conformal $\implies T^{\mu}_{\mu} = 0 \implies P = \frac{e}{3}$ (independent of proximity to equilibrium)
- Actual QCD: equilibrium p(e) < ^e/₃. Expanding system: expect P = Π + p(e) with Π < 0.
- Conformal hydro initial conditions: anomalously large pressure. Π_0 fixed by symmetry rather than local conditions/dynamical history: $\Pi_0 = \frac{e}{3} - p(e)$
- Is this important?

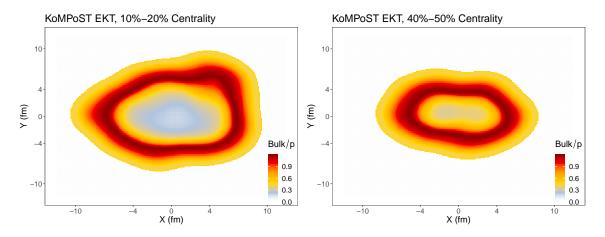


・ロト ・同ト ・ヨト ・ヨト

Ma C

ROLE OF CONFORMAL SYMMETRY

SIZE OF CONFORMAL ARTIFACT

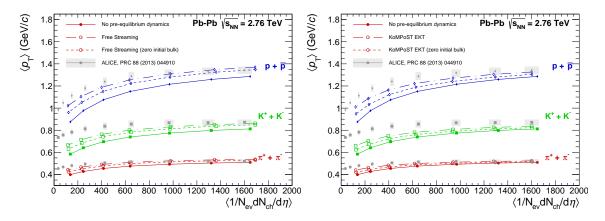

- Large Π in significant part of system
- Independent of dynamics

・ロ・・日・・日・・日・ 日・ シック

2022-10-25

ROLE OF CONFORMAL SYMMETRY

SIZE OF CONFORMAL ARTIFACT

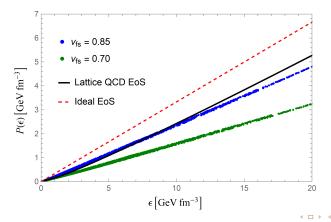


- Large Π in significant part of system
- Independent of dynamics

・ロ・・日・・日・・日・ 日・

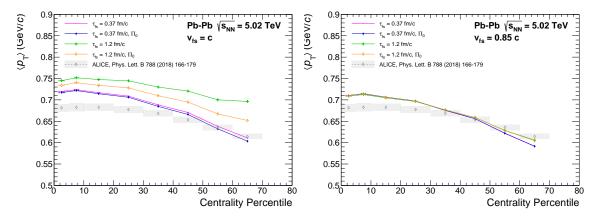
2022-10-25

EFFECT OF CONFORMAL ARTIFACT


- Crude estimate of effect: set $\Pi = 0$ at start of hydro
- Non-negligible fraction of effect comes from unphysical artifact
- Masks potential signatures of hydrodynamization dynamics
- Biases results of precision analysis (e.g., Bayesian estimation QGP properties)

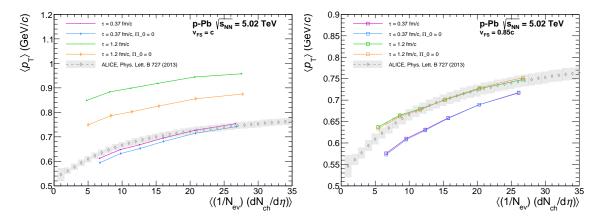
OUTLINE

- **1** The pre-hydrodynamic stage
- **2** SIMULATION SETUP AND RESULTS
- **3** ROLE OF CONFORMAL SYMMETRY
- **4** FURTHER QUANTIFICATION: SYSTEM SIZE AND DURATION
- **5** SUMMARY / CONCLUSIONS


FREE STREAMING WITH VARIABLE VELOCITY

- To study in more detail, use idea from G. Nijs et al. (PRL. 126 (2021) 20, 202301; PRC 103 (2021) 5, 054909)
- At $\tau = 0$, energy density from Trento
- Assume non-interacting particles with initial (isotropic) transverse velocity v, streaming for time $\tau_{\rm fs}$.
- For *v* < *c*, pressure is closer to expected QCD value

na (r


EFFECT OF STREAMING TIME AND SYSTEM SIZE

- Smaller effect with smaller τ_{fs} (larger average energy density)
- Almost no artifact (and little τ_{fs} dependence) with $v_{fs} = 0.85c$.

< 口 > < 同

EFFECT OF STREAMING TIME AND SYSTEM SIZE

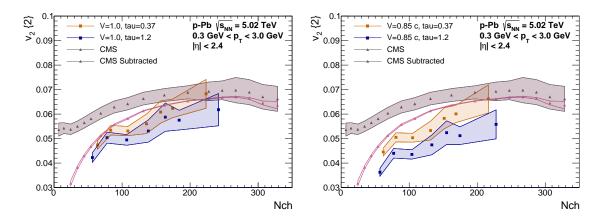
- Larger effect in small systems
- Artifact very small, but significant τ_{fs} dependence with $v_{fs} = 0.85c$.

Ma C

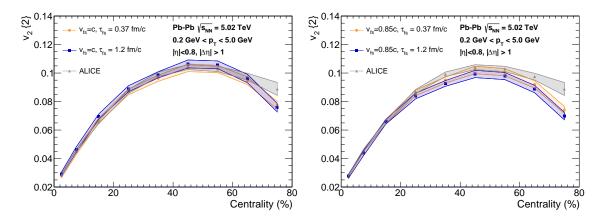
OUTLINE

- **1** The pre-hydrodynamic stage
- **2** SIMULATION SETUP AND RESULTS
- **3** ROLE OF CONFORMAL SYMMETRY
- **4** FURTHER QUANTIFICATION: SYSTEM SIZE AND DURATION
- **5** SUMMARY / CONCLUSIONS

CONCLUSIONS


- Signatures of pre-hydrodynamic stage can be dominated by artifacts from assumption of conformal symmetry
- Worse for smaller systems and for later hydro start times
- To probe details of pre-hydro dynamics (and to avoid bias in parameter extraction), will require models with broken conformal symmetry, realistic equation of state.

• • • • • • • • • • • •


3 2022-10-25

(日)

INTEGRATED V_2 PPB

INTEGRATED V_2 <u>PBPB</u>

3 2022-10-25

(日)