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I. INTRODUCTION

The phenomenon of di�raction is familiar to us from
many areas of physics and is generally understood to arise
from the constructive or destructive interference of waves.
One such example, a plane wave impinging on a single
slit is shown in Fig. 1. In the strong interactions, di�rac-
tive events have long been interpreted as resulting from
scattering of sub-atomic wave packets via the exchange of
an object called the Pomeron (named after the Russian
physicist Isaac Pomeranchuk) that carries the quantum
numbers of the vacuum. Indeed, much of the strong in-
teraction phenomena of multi-particle production can be
interpreted in terms of these Pomeron exchanges.

FIG. 1:

In the modern strong interaction theory of Quan-
tum ChromoDynamics (QCD), the simplest model of
Pomeron exchange is that of a colorless combination
of two gluons, each of which individually carries color
charge. In general, di�ractive events probe the com-
plex structure of the QCD vacuum that contains color-
less gluon and quark condensates. Because the QCD vac-
uum is non–perturbative and because much of previously
studied strong interaction phenomenology dealt with soft
processes, a quantitative understanding of di�raction in
QCD remains elusive.

Significant progress can be achieved throught the study
of hard di�ractive events at collider energies. These al-
low one to study hadron final states with invariant masses
much larger that the fundamental QCD momentum scale
of � 200 MeV. By the uncertainity principle of quantum
mechanics, these events therefore provide considerable
insight into the short distance structure of the QCD vac-
uum.

A QCD diagram of a di�ractive event is shown in
Fig. 2. It can be visualized in the proton rest frame as
the electron emitting a photon with virtuality Q2 and
energy �, that subsequently splits into a quark–anti-
quark+gluon dipole; other wave packet dipole configura-
tions are also feasible. These dipoles interact coherently
with the hadron target via a colorless exchange. The
figure depicts this as a colorless gluon ladder, which as
discussed previously, is a simple model of Pomeron ex-
change.

Because the spread in rapidity between the dipole and
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The nucleus as a collection of nucleons
Independent scattering approximations:
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Into the heavy nucleus
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Hotspot model for incoherent ep-scattering
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Also: large scale (small |t| ) saturation scale fluctuations. Affects small , one more parameter.| t |
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 with a Gaussian distribution of width ⃗b i Bqc
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Incoherent Scattering in ep
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For bSat this is not the case. 
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Eventhough coherent events dominate, the large  tails have a significant effect on the cross sections!

Subnucleon structure becomes important for 

| t |
| t | > 0.2 GeV2

A-A UPC at the LHC & RHIC
TT: SciPost Phys.Proc. 8 (2022) 148




Larger |t| ?
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Appears to be two slopes in the data:

One for 

Another for 

0.5 ≤ | t | ≤ 2 GeV2

| t | > 2 GeV2

Arjun Kumar, TT,  Eur.Phys.J.C 82 (2022) 9, 837, arXiv: 2106.12855



Larger |t| ?
Appears to be two slopes in the data:


One for 

Another for 

0.5 ≤ | t | ≤ 2 GeV2

| t | > 2 GeV2

Hotspots within hotspots!
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Hotspots within Hotspots
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Even larger |t| Hotspots withing hotspots within hotspots
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Even larger |t| Hotspots withing hotspots within hotspots
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Into the heavy nucleus
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Into the heavy nucleus
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Shortcomings of this approach

Hotspot model is non-perturbative. Should not be extended further than 

I lieu of a perturbative mechanism for substructure at large  we put it in by hand


Introduced many parameters to describe a few data points. 


But: It has given us insights into the how the substructure should look in the Good-
Walker mechanism to describe incoherent diffraction in ep at large . 

| t | ≳ 1 GeV2

| t |

| t |
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Towards a model for hotspot evolution
We consider a “DGLAP parton shower-like” approach based on resolution, where a hotspot may 

split into two as the resolution increases.

dP
dt

=
α

| t | ( t0
t )

α

Two offspring hotspots  created at distance ,  

with widths 


Conditions for resolution:


Probe resolution:     Geometry: 


Generate offspring  from parent . 

Reject if not resolved.

i, j dij = | ⃗b i − ⃗b j |

Bi, j =
1

| t |

dij >
2

| ⃗Δ |
dij > 2 Bi, j

⃗b i, j Tparent( ⃗b i, j)

Probability of a hotspot created at  splitting at t0 t > t0

Tp( ⃗b ) =
1
Nq

Nq

∑
i=1

Tq( | ⃗b − ⃗b i | )

Tq( ⃗b ) =
1

2πBq
e− b2

2Bq

Initial State at :t = t0

26

Inital State Parameters: 

 with   

Evolution parameter: , 
Bq, Bqc, Nq Bq + Bqc ≈ 4 GeV−2

α t0



0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
]2|t| [GeV

1

10

210

]2
/d

t  
[n

b/
G

eV
σd

W = 75 GeV

 bNonSat   
 = 1.9 q = 1.3, Bqc = 1, Bq = 1.6, Nα 
 = 1.2 q = 2.8, Bqc = 2, Bq = 0.7, Nα 
 = 0.8 q = 3.1, Bqc = 3, Bq = 0.2, Nα 

 H1 Coherent  

 + p ψ J/→* + p γ

0 5 10 15 20 25
]2|t| [GeV

3−10

2−10

1−10

1

10

]2
/d

t  
[n

b/
G

eV
σd

W = 100 GeV

 bNonSat   
Hotspot Model

 = 1.9 q = 1.3, Bqc = 1, Bq = 1.6, Nα 
 = 1.2 q = 2.8, Bqc = 2, Bq = 0.7, Nα 
 = 0.8 q = 3.1, Bqc = 3, Bq = 0.2, Nα 

H1 50 < W < 150 GeV 

ZEUS 30 < W < 160 GeV   

 photoproduction ψIncoherent J/

0 1 2 3 4 5 6
]2|t| [GeV

1−10

1

10

210

]2
/d

t  
[n

b/
G

eV
σd

W = 75 GeV

 bNonSat   
Hotspot Model

 = 1.9 q = 1.3, Bqc = 1, Bq = 1.6, Nα 
 = 1.2 q = 2.8, Bqc = 2, Bq = 0.7, Nα 
 = 0.8 q = 3.1, Bqc = 3, Bq = 0.2, Nα 

H1  Incoherent  

 + X ψ J/→* + p γ

Tp( ⃗b ) =
1
N q

Nq

∑
i=1

Tq( | ⃗b − ⃗b i | )

Tq( ⃗b ) =
1

2πBq
e− b2

2Bq

Initial State:

dP
dt

=
α

| t | ( t0
t )

α

27

Hotspot Evolution



0 2 4 6 8 10 12 14 16 18 20 22
]2|t| [GeV

1

10

210

310

>
hs

 <
 N  bNonSat   

 = 1.9 q = 1.3, Bqc = 1, Bq = 1.6, Nα 

 = 1.2 q = 2.8, Bqc = 2, Bq = 0.7, Nα 

 = 0.8 q = 3.1, Bqc = 3, Bq = 0.2, Nα 

 

0 2 4 6 8 10 12 14 16 18 20 22
]2|t| [GeV

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

>
hs

 <
 B  bNonSat   

 = 1.9 q = 1.3, Bqc = 1, Bq = 1.6, Nα 

 = 1.2 q = 2.8, Bqc = 2, Bq = 0.7, Nα 

 = 0.8 q = 3.1, Bqc = 3, Bq = 0.2, Nα 

 

Hotspot Model

AK-TT

AK-TT

Hotspot Model

28

⟨B
hs

⟩(G
eV

−
2 )

Towards a model for hotspot evolution



0 2 4 6 8 10 12 14 16 18 20 22
]2|t| [GeV

1

10

210

310

>
hs

 <
 N  bNonSat   

 = 1.9 q = 1.3, Bqc = 1, Bq = 1.6, Nα 

 = 1.2 q = 2.8, Bqc = 2, Bq = 0.7, Nα 

 = 0.8 q = 3.1, Bqc = 3, Bq = 0.2, Nα 

 

0 2 4 6 8 10 12 14 16 18 20 22
]2|t| [GeV

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

>
hs

 <
 B  bNonSat   

 = 1.9 q = 1.3, Bqc = 1, Bq = 1.6, Nα 

 = 1.2 q = 2.8, Bqc = 2, Bq = 0.7, Nα 

 = 0.8 q = 3.1, Bqc = 3, Bq = 0.2, Nα 

 

Hotspot Model

AK-TT

AK-TT

Hotspot Model

29

⟨B
hs

⟩(G
eV

−
2 )

Towards a model for hotspot evolution
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Inital distribution -dependencexIP
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Conclusions and Outlook
I have shown how to implement nuclear and nucleon substructures in Sartre. 

These are encoded in the gluon thickness profile  and manifest as the Fourier 
transform of the t-spectrum.


We have seen that we can understand the full t-spectrum for  in the 
Good-Walker picture, by extending the hotspot model


However, in doing so we extend the hotspot model beyond its 
applicability and introduce many parameters. 


We can regain the description of the full t-spectrum  
with a hotspot evolution model


Want to extend this approach to  
W-dependence as well.


Highly interesting to study the  
W- and t- spectra with big level arms  

and resolution in future  
experiments such as the EIC.
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| t | < 30 GeV2
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Laplacian hotspots
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