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Event Classification

B Suppose data sample with two types of events: H,, H,

We have found discriminating input variables x,, X, ...

What decision boundary should we use to select events of type H; ?

Rectangular cuts? A linear boundary? A nonlinear one?

B How can we decide this in an optimal way ? - Let the machine learn it !
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Multivariate Event Classification

B All multivariate classifiers have in common to condense (correlated)
multi-variable input information in a single scalar output variable

It is a R"—>R regression problem; classification is in fact a discretised regression

y(Hy) = 0, y(H,) > 1

[ /v output for method: MLP THMVA
E i I -
35 i Background |

P "
N
o o2 04 o8 o8 1
MLP
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Event Classification in High-Energy Physics (HEP)

E Most HEP analyses require discrimination of signal from background:

Event level (Higgs searches, ...)

Cone level (Tau-vs-jet reconstruction, ...)

Track level (particle identification, ...)

Lifetime and flavour tagging (b-tagging, ...)
Parameter estimation (CP violation in B system, ...)
etc.

B The multivariate input information used for this has various sources

Kinematic variables (masses, momenta, decay angles, ...)

Event properties (jet/lepton multiplicity, sum of charges, ...)

Event shape (sphericity, Fox-Wolfram moments, ...)

Detector response (silicon hits, dE/dx, Cherenkov angle, shower profiles, muon hits, ...)
etc.

B Traditionally few powerful input variables were combined; new methods
allow to use up to 100 and more variables w/o loss of classification power
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Multivariate Classification Algorithms

1 A large variety of multivariate classifiers (MVAs) exists

Rectangular cuts (optimisation often “by hand”)
Projective likelihood (up to 2D)
Linear discriminants (y2 estimators, Fisher, ...)

Traditional

Nonlinear discriminants (Neural nets, ...)

Prior decorrelation of input variables (input to cuts and likelihood)
Function discriminants
Multidimensional likelihood (k-nearest neighbor methods)
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Decision trees with boosting and bagging, Random forests
Rule-based learning machines

Support vector machines

Bayesian neural nets, and more general Committee classifiers
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Multivariate Classification Algorithms

1 How to dissipate (often diffuse) skepticism against the use of MVAs

I

SERQIOCEMNY Certainly, cuts are transparent, so
« if cuts are competitive (rarely the case) > use them
* in presence of correlations, cuts loose transparency
* “we should stop calling MVAs black boxes and understand how they behave”
. h

| P ! . .

,;"'What if the™. Not good, but not necessarily a huge problem:
tram CEE | . performance on real data will be worse than training results

SISERUCREE, M . | i the training efficiencies are used in data analysis - bias

=

incorreC de@ -« however: bad training does not create a bias !

.  optimized cuts are not in general less vulnerable to systematics (on the contrary )
how can There is no principle difference in systematics evaluation between

one evalgate? single variables and MVAs
systematics * « need control sample for MVA output (not necessarily for each input variable)

i i o
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What is TMVA

B The various classifiers have very different properties

Ideally, all should be tested for a given problem

Systematically choose the best performing and simplest classifier
Comparisons between classifiers improves the understanding and takes away mysticism

B TMVA — Toolkit for multivariate data analysis

Framework for parallel training, testing, evaluation and application of MV classifiers
Training events can have weights
A large number of linear, nonlinear, likelihood and rule-based classifiers implemented
The classifiers rank the input variables
The input variables can be decorrelated or projected upon their principal components
Training results and full configuration are written to weight files

» Application to data classification using a Reader or standalone C++ classes

= . .

= s

i

' TMVA
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TMVA Development and Distribution

E TMVA is a sourceforge (SF) package for world-wide access
|

Home page ................... http://tmva.sf.net/

SF project page ............. http://sf.net/projects/tmva ﬂ
ViewCVS ...l http://tmva.cvs.sf.net/tmva/TMVA/ 3
Mailing list ..................... http://sf.net/mail/?group _id=152074 <
Tutorial TWiKi ................ https://twiki.cern.ch/twiki/bin/view/TMVA/\WebHome >

B Active project - fast response time on feature requests

Currently 6 main developers, and 27 registered contributors at SF
>1200 downloads since March 2006 (not accounting cvs checkouts and ROOT users)

E Written in C++, relying on core ROOT functionality

Full examples distributed with TMVA, including analysis macros and GUI
Scripts are provided for TMVA use in ROOT macro, as C++ executable or with python

B Integrated and distributed with ROOT since ROOT v5.11/03
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T he

TMVA Classifiers

» Currently implemented classifiers :

LPNHE Seminar, June 20, 2007

Rectangular cut optimisation

Projective and multidimensional likelihood estimator
k-Nearest Neighbor algorithm

Fisher and H-Matrix discriminants

Function discriminant

Artificial neural networks (3 different multilayer perceptrons)
Boosted/bagged decision trees with automatic node pruning
RuleFit

Support Vector Machine
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Data Preprocessing: Decorrelation

E Commonly realised for all methods in TMVA (centrally in DataSet class)

BERemoval of linear correlations by rotating input variables

» Determine square-root C' of covariance matrix C, i.e., C = C'C’

®» Transform original (x) into decorrelated variable space (x’) by: x’ = C'~'x

B Various ways to choose basis for decorrelation (also implemented PCA)
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Rectangular Cut Optimisation

E Simplest method: cut in rectangular variable volume

Xeut (ievent) = {0’1} = ﬂ (Xv (ievent) = |:Xv,min’ Xv,max])

ve{variables}

B Technical challenge: how to find optimal cuts ?

MINUIT fails due to non-unique solution space
TMVA uses: Monte Carlo sampling, Genetic Algorithm, Simulated Annealing

Huge speed improvement of volume search by sorting events in binary tree

B Cuts usually benefit from prior decorrelation of cut variables
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Projective Likelihood Estimator (PDE Approach)

4

X2

E Much liked in HEP: probability density estimators for
each input variable combined in likelihood estimator

Likelihood ratio PDFs discriminating variables
for event i, H son ( )) PDE introduces fuzzy logic
Py t
’/./ vanables even
yL (Ievent) =
Species: signal,
Ue{e;ecies}(ke vl;a[bles pk ( ( event))} baCkground types

v\/

B Ignores correlations between input variables

Optimal approach if correlations are zero (or linear - decorrelation)
Otherwise: significant performance loss
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PDE Approach: Estimating PDF Kernels

B Technical challenge: how to estimate the PDF shapes

» 3 ways: @ricfitting (@@ametri@

event counting

Difficult to automate Easy to automate, can create Automatic, unbiased,
for arbitrary PDFs artefacts/suppress information  but suboptimal
B We have Chqsep FO Implement T o data (gl T
nonparametric fitting in TMVA 600 Estimated PDF (norm. signal) | 3
original E
500 distribution .
- is Gaussian .

Binned shape interpolation using spline '
functions (orders: 1, 2, 3, 5) 400

Unbinned kernel density estimation 300;

(KDE) with Gaussian smearing -

» TMVA performs automatic validation of

goodness-of-fit toot
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Multidimensional PDE Approach

B Use a single PDF per event class (sig, bkg), which spans N, . dimensions

PDE Range-Search: count number of signal and background events in Carli-Koblitz, NIM
“vicinity” of test event > preset or adaptive volume defines “vicinity” AS01, 576 (2003)

The signal estimator is then given by (simplified,

A Ypoers (ievent ,V) =0.86
full formula accounts for event weights and training population) Xo
PDE-RS ratio chosen #signal events in V
foreventi,,,  volume test
/ / \ event
prERS (l t V) — nS (Ievent ’V)
event’? H -
nS (Ievent’v ) + nB (Ievent’v )
>
#background events in V X,

B Improve Yppers €Stimate within V by using various N, -D kernel estimators

B Enhance speed of event counting in volume by binary tree search

LPNHE Seminar, June 20, 2007
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Multidimensional PDE Approach

B Use a single PDF per event class (sig, bkg), which spans N

var dimensions

PDE Range-Search: count number of signal and background events in Carli-Koblitz, NIM

“vicinity” of test event - preset or adaptive volume defines “vicinity”

A501, 576 (2003)

EE@W classifier: k-Nearest Neighbor — implemented by R. Ospanov (Texas U.):

Better than searching within a volume (fixed or floating), count adjacent
reference events till statistically significant number reached

®» Method intrinsically adaptive
=» Very fast search with kd-tree event sorting

O \ Evelit”

#background events in V

/ | >

) D \ ©VEiiL’ ) |

B Improve Yppers €Stimate within V by using various N, -D kernel estimators

B Enhance speed of event counting in volume by binary tree search
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Fisher’s Linear Discriminant Analysis (LDA)

B Well known, simple and elegant classifier x|

LDA determines axis in the input variable hyperspace such that a
projection of events onto this axis pushes signal and background
as far away from each other as possible

B Classifier response couldn’t be simpler:
_—— "Fisher coefficients”

. . /
yFi (Ievent) - I:0 + Z Xk (Ievent)° I:k

ke{variables}

Compute Fisher coefficients from signal and background covariance matrices
» Fisher requires distinct sample means between signal and background

=» Optimal classifier for linearly correlated Gaussian-distributed variables
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Fisher’s Linear Discriminant Analysis (LDA)

B Well known, simple and elegant classifier

LDA determines axis in the input variable hyperspace such that a
projection of events onto this axis pushes signal and background

nc far awav frnm aarh nthar ae nnccihla

Ny,
>

NeW classifier: Function discriminant analysis (FDA)

Fit any user-defined function of input variables requiring that signal

events return -1 and background -0

=» Parameter fitting: Genetics Alg., MINUIT, MC and combinations
®» Easy reproduction of Fisher result, but can add nonlinearities

®» Very transparent discriminator

Compute Fisher coefficients from signal and background covariance matrices

» Fisher requires distinct sample means between signal and background

=» Optimal classifier for linearly correlated Gaussian-distributed variables
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Nonlinear Analysis: Artificial Neural Networks

N

X3

B Achieve nonlinear classifier response by “activating’
output nodes using nonlinear weights

B Call nodes “neurons” and arrange them in series:

S 1 input layer k hidden layers 1 ouput layer
= p A N —~
o 20 Wit @ @
3 Wi, < o, 4 2 output classes
() - Fa (signal and background)
o - - S S0
o L] = .:." = g “",'
q; N,r discriminating @ ‘ ‘ Y
© input variables < —_—> S > (k+1)
E p WIJ « X1’2 output .
S . i R Weierstrass theorem: can
= ) ) approximate any continuous
O functions to arbitrary precision
g \_ @ Fro > ’ T with a single hidden layer and
N P Nl
S ‘—(Z)—’ ~ - (“Activation” function) an infinite number of neurons
1 k-1
Xi1. (k) () (K) .y (k=) , -\
§ e = Al wg Z;Wii X with: - A(X) = (1+e X) Three different multilayer per-
i=
L ceptrons available in TMVA

Adjust weights (=training) using “back-propagation”
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Decision Trees

1 Sequential application of cuts splits the data into
nodes, where the final nodes (leafs) classify an
event as signal or background

.
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Decision Trees

1 Sequential application of cuts splits the data into

nodes, where the final nodes (leafs) classify an
event as signal or background

xi >cl
" . " /
B Growing a decision tree: (\ /)
, N\
Start with Root node (x> c2] [xj < c2]
Split training sample according to (' B ) E’;\
t on best variable at this nod '
cut on best variable at this node . Z

Splitting criterion: e.g., maximum
“Gini-index”: purity x (1— purity)

Continue splitting until min. number
of events or max. purity reached

Classify leaf node according to majority of events, or give
weight; unknown test events are classified accordingly

Xi<cl
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Decision Trees

Decision tree -
after pruning |

I Bottom-up “pruning” of a decision tree

m Remove statistically insignificant nodes to reduce tree overtraining - automatic in TMVA
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Boosted Decision Trees (BDT)

E Data mining with decision trees is popular in science (so far mostly outside of HEP)
=» Advantages:
Easy interpretation — can always be represented in 2D tree
Independent of monotonous variable transformations, immune against outliers
Weak variables are ignored (and don’t (much) deteriorate performance)
®» Shortcomings:
Instability: small changes in training sample can dramatically alter the tree structure

Sensitivity to overtraining (= requires pruning)

B Boosted decision trees: combine forest of decision trees, with differently
weighted events in each tree (trees can also be weighted), by majority vote

e.g., “AdaBoost”;: incorrectly classified events receive larger weight in next decision tree
“Bagging” (instead of boosting): random event weights, resampling with replacement

Boosting or bagging are means to create set of “basis functions”: the final classifier is
linear combination (expansion) of these functions = improves stability !
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Predictive Learning via Rule Ensembles (RuleFit)

B Following RuleFit approach by Friedman-Popescu

Friedman-Popescu, Tech Rep,
Stat. Dpt, Stanford U., 2003

B Model is linear combination of rules, where a rule is a sequence of cuts

RuleFit classifier

yRF(i):

rules (cut sequence
- r,=1if all cuts
satisfied, =0 otherwise)

k=1

(§)+Zbk

normalised
discriminating
event variables

Xk
)

Sum of rules

Y

Linear Fisher term

B The problem to solve is

Create rule ensemble: use forest of decision trees

Fit coefficients a,,,, b,: gradient direct regularization minimising Risk (Friedman et al.)

B Pruning removes topologically equal rules” (same variables in cut sequence)

One of the elementary cellular automaton rules (Wolfram 1983, 2002). It specifies the next color in a cell, depending
on.its color-and its immediate neighbors. Its rule outcomes are encoded in the binary representation 30=00011110,.

MVA
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Support Vector Machine (SVM)

B Find hyperplane that best separates signal X e o

(@)
from background support s .
vectors

Best separation: maximum distance (margin)
between closest events (support) to hyperplane

Linear decision boundary

If data non-separable add misclassification cost
parameter to minimisation function

Separable data
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Support Vector Machine (SVM)

B Find hyperplane that best separates signal shXs
from background ks ’
Best separation: maximum distance (margin) % ,
between closest events (support) to hyperplane g
T a
Linear decision boundary a
- 1o [ J
If data non-separable add misclassification cost é
parameter to minimisation function ¢

B Non-linear cases:

Transform variables into higher dimensional space where again a linear boundary
(hyperplane) can separate the data

Explicit transformation form not required: use Kernel Functions to approximate scalar
products between transformed vectors in the higher dimensional space

Choose Kernel and fit the hyperplane using the linear techniques developed above

» Available Kernels: Gaussian, Polynomial, Sigmoid
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Using TMVA

A typical TMVA analysis consists of two main steps:

1. Training phase: training, testing and evaluation of classifiers using data samples with
known signal and background composition

Application phase: using selected trained classifiers to classify unknown data samples

» lllustration of these steps with toy data samples
G Wil G W B I
LDMM 2. Exoltamant 3. Astonlshmant 4.Erthusicem

&. Disllluslcnment

Gl %E:F‘Q s@@‘é@ ) =32

7. Fright 10. Frustration

- TMVA tutorial
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Code Flow for Training and Application Phases

User Training User Application
Script Script
create ROOT create
Target File —— TMVA::Reader |
: T uses AP
—— TMVA::Factory | exeiis Add Variables
' ................... -
APl . (AddVarabies Add Variables
execute
i g— »>
g Add Variables - APl Book MVA
] execute weight file to read
E g p ................... » ) VR
§ execute API Training and g_ weight file to read
e Test Trees E
o 9 | begin event loop
g AP| g >
o Book MVA ° el
axacute kType, Options event loop
.. ................... » TR update event
kType, Options APl
execute Compute MVA
gxecute o] APl Train MVAs o — >
write weight files
= =
Test MVAsS
es >
end event loop
Saecute API Evaluate MVAs
Y Y Y Y

- TMVA tutorial
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Code Flow for Training and Application Phases

User Training
Script

User Application
Script

LPNHE Seminar, June 20, 2007
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A Simple Example for Training

void TMVAnalysis()

{
TFile* outputFile = TFile::Open( "TMVA.root", "RECREATE" ),

TMVA::Factory *factory = new TMVA::Factory( "MVAnalysis", outputFile,"!V"); <+ create Factory

TFile *input = TFile::Open("tmva_example.root");

factory->AddSignalTree ((TTree®)input->Get("TreeS"), 1.0); P R— give training/test trees
factory->AddBackgroundTree ( (TTree*)input->Get("TreeB"), 1.0);

factory->AddVariable("varl+var2", 'F");

factory->AddVariable("varl-var2", 'F"); . . .
factory->AddVariable("var3", 'F"); <+— register input variables

factory->AddVariable("var4", 'F');

factory->PrepareTrainingAndTestTree("", "NSigTrain=3000:NBkgTrain=3000:SplitMode=Random:!V" );

factory->BookMethod( TMVA:: Types::kLikelihood, "Likelihood", <«Select MVA
"1V:ITransformOutput:Spline=2:NSmooth=5:NAvEvtPerBin=50" ); / methods

factory->BookMethod( TMVA::Types::kMLP, "MLP", "IV:NCycles=200:HiddenLayers=N+1,N: TestRate=5" );

factory->TrainAllMethods();

factory->TestAllMethods(); <+— {rain, test and evaluate
factory->EvaluateAllMethods();

outputFile->Close();
delete factory;

} > TMVA tutorial
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A Simple Example for an Application

void TMVApplication()

{

TMVA::Reader *reader = new TMVA::Reader("!Color");

Float_t var1, var2, var3, var4;
reader->AddVariable( "varl+var2", &varl);
reader->AddVariable( "varl-var2", &var2);
reader->AddVariable( "var3", &var3);
reader->AddVariable( "var4", &var4);

<+— create Reader

<+— register the variables

reader->BookMVA( "MLP classifier", "weights/MVAnalysis_MLP.weights.txt"); = <= po0Kk classifier(s)

TFile *input = TFile::Open("tmva_example.root");
TTree* theTree = (TTree*)input->Get("TreeS");

/... set branch addresses for user TTree
for (Long64 _t ievt=3000; ievt<theTree->GetEntries();ievt++) {
theTree->GetEntry(ievt);

varl = userVarl + userVar2,;
var2 = userVarl - userVar2,;
var3 = userVara3;
vard = userVar4;

Double_t out = reader->EvaluateMVA( "MLP classifier" );

}

/I do something with it ...
¥

delete reader;
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<+— compute input variables

<+— calculate classifier output
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A Toy Example (idealized)

B Use data set with 4 linearly correlated Gaussian distributed variables:

Enesar oomelation coafflolenis in %

100
80
60
40
var2 2 0
0
-20
-40
-60
var0 -80
' -100

£aoofl_JSighal |
Backgroun

vari

varp vary erg arg

Rank : Variable : Separation

1:var3 : 3.834e+02
2 :var2 : 3.062e+02
3 :var1 :1.097e+02
4 : var0Q : 5.818e+01
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Preprocessing the Input Variables

B Decorrelation of variables before training is useful for this example

| war3 varaua verd jaignal) | |
T
.,

| warz varsiss vard (aignar)_t 1
T
. ;

| #art warsus warl [aignsl)_MaTranatorm |
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4 8 1 3 3 4
I} NoTransiorm|
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Preprocessing the Input Variables

B Decorrelation of variables before training is useful for this example

Note that in cases with non-Gaussian distributions and/or nonlinear correlations
decorrelation may do more harm than any good
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Validating the Classifier Training =

B Projective likelihood PDFs, MLP training, BDTs, ... =

[emsminm ] |t mignad raieing |Lmet Pacaground trateing
L S POV il vt et T R T - PR A A
o ——— Estmated FOF (rom. basir) ——— Estmated POF rom. signdl) ——— Extmatod POF (rom. bodr.
[ - - -~
- - - -
- - - -
- - - -
- - - -
et Pre] el
lllllll
warz ar2 backgeound training a3 signal g s
It - el dhubu (gl -
F (s el BOE ——— Foirrmtend PIOF . sapad)

I - -

-~ -~
- -

L L
- . - -
- - - "
- " - -

........ =+ & &

MLP Convergence Tesl I
!uﬂl_ LSS RS AR |
L

! average no. of nodes before/after pruning: 4193 / 968
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Testing the Classifiers

B Classifier output distributions for independent test sample:

[ MVA output for method: Likelihood | TMVA [ MVA output for method: PDERS | TMVA | MvA output for method: Fisher

TMVA
§ [gsgoa [T T T 1 § M3Tsigna T[T T T 1 % [@Sgra [T T T T 7
E 12 221 Background - E 3 273 Background B E o.5 1224 Background =
E 04 3
sl B 2 ]
03F 3
6l 1.5 ] r 1
o2 3
4 - ]
2 - 0.5 a oif -
TS B IS A A N .
1] 0a 1 ] [']

o 0a [T ag o 0a 04 [T ae 1 -+ 4 2 1 [ 1 2 ]
Lialhood PDERS Ashar
[ MVA output for method: MLP | TMVA [ MVA output for method: BDT | TMVA  LMVA output for method: RuleFit | TMVA
E S Eignd [T T T T T g §2_5D5fghél ....................... — Eﬂ'gﬂ'ﬁg'ﬁél""""'"'"""""""""""':
T 3.5 2] Background E E P21 Background N ;E 0.8 FZ71 Background =
E F B N ¥ b E 3
S E c r i 1 8 orf 3
Z 3 - =z 1 = E
B 06— =
25— — E =
= E 05 =
2 E E E
F 04— —
.E 02F E
051 0.1 f— —f
0 Y i
qa 82 [T ] [ I s 1 -2 -15 =T T ] ] L 1] 1 15 2 a8
MLP RuleFit

LPNHE Seminar, June 20, 2007 A. Hoecker: Machine Learning with MVA



Testing the Classifiers

Classifier output distributions for independent test sample:

[ MVA output for method: LikelihoodD |

® sfEJSignal - T T T T T T T T T T .
E HZ71 Background
5
3 ]
2 ;.
. B
o K4 GS / g
0 (1] oA 1
LEmihaodD
[ MVA output for method: MLP | TMVA
E e N L B B =
T—g a5 _@ Background 3
S E E
= 3 -
25— é
2f E
150
o=
051
" o2 Y] 1
MLP

[ MVA output for method: PDERS |

[ MvA output for method: Fisher

TMVA TMVA
E’ 1:' Sgndl [T T T T T E E S [T T T T T
E g 224 Background ] E 05 224 Background =
S 2sf s 1
H oar- E
2 C ]
03[ =
1.5 — [ ]
' E o2 3
05 —f oI =
[y Al o= g el

[} 0a 04 08 ae 1 -4 -a =2 T [} 1 2 a
PDERS FAshar
[ MVA output for method: BDT | TMVA  LMVA output for method: RuleFit | TMVA
Ez_sfl:Inghail ....................... = B""ﬂ'sfgﬁar"“'"'"'"""""""""'"":
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02F E
01fF —;
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4 45 4 48 ©° 05 1 15 2 28
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Evaluating the Classifiers

B There is no unique way to express the performance of a classifier
—> several benchmark quantities computed by TMVA

Signal eff. at various background effs. (= 1— rejection) when cutting on classifier output

The Separation:

1j(95(y)—.\75(y))2d
2° Yo(y)+Ye(y)

y
“Rarity” implemented (background flat): R(y)= [ y(y")dy’ ﬂ

Other quantities ... see Users Guide
| TMVA Rarity for classifier: Likelihood |
3 EySigRal T
E 10 Z] Background ]
5 [
= -
8
- £
- )
6 E
C :
Y= 2
: 13
0 01 02 03 04 05 06 07 08 09 1
Signal rarity
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Evaluating the Classifiers

B There is no unique way to express the performance of a classifier
—> several benchmark quantities computed by TMVA

Signal eff. at various background effs. (= 1— rejection) when cutting on classifier output

The Separation:

1j(95(y)_-‘73(y))2d
2° Yo(y)+Ye(y)

y
“Rarity” implemented (background flat): R(y)= [ y(y")dy’ ﬂ

Other quantities ... see Users Guide

| TMVA Rarity for classifier: Fisher |

u rr17JgnrrorypnrTd T LB LI LB L LB I
3 TSGR I I I I | I
s {22 Background
E 50—
E C
o L
= -
20 —
= 2
C s
15 — g
- 2
10 - S
- o
N s
- o)
5 )
— =z
N 2

0 01 02 03 04 05 06 07 08 09 1
Signal rarity
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Evaluating the Classifiers

B There is no unique way to express the performance of a classifier
—> several benchmark quantities computed by TMVA

Signal eff. at various background effs. (= 1— rejection) when cutting on classifier output

1I(95(y)—.\75(y))2d
2° Ys(y)+Ys(y)

y
“Rarity” implemented (background flat): R(y)= [ y(y")dy’

The Separation:

Other quantities ... see Users Guide

B Remark on overtraining

Occurs when classifier training has too few degrees of freedom because the classifier
has too many adjustable parameters for too few training events

» Sensitivity to overtraining depends on classifier: e.g., Fisher weak, BDT strong
» Compare performance between training and test sample to detect overtraining

®» Actively counteract overtraining: e.g., smooth likelihood PDFs, prune decision trees, ...
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Evaluating the Classifiers (taken from TMVA output...)

Evaluation results ranked by best signal efficiency and purity (area)

Methods:

Fisher

MLP
LikelihoodD
PDERS
RuleFit
HMatrix

BDT

CutsGA
Likelihood

Fisher

MLP
LikelihoodD
PDERS
RuleFit
HMatrix

BDT

CutsGA
Likelithood

.268(03)
.266(03)
.259(03)
.223(03)
.196(03)
.058(01)
.154(02)
-109(02)
.086(02)

@B=0.10

-653(03)
.656(03)
-649(03)
.628(03)
.607(03)
.622(03)
.594(04)
-000(00)
.387(03)

@B=0.30

0.873(02)
0.873(02)
0.871(02)
0.861(02)
0.845(02)
0.868(02)
0.838(03)
0.717(03)
0.677(03)

Signal efficiency at bkg eff. (error):
@B=0.01

Area

ration:

Signifi-
cance:




Evaluating the Classifiers with a single piot...)

B Smooth background rejection versus signal efficiency curve:

(from cut on classifier output)

Background rejection versus Signal efficiency TMVA

1 S o o e IIIIIIIIIIII|IIII|IIII rrrrpreinrid

0.9
MVA Method
e NG
I e L D I R N\ NS
——ilikelihoodD | RNUT\L
————. LikelihoodPCA. ;..
PDERS | 0 NN\
O i 11 1<) T NSNS NNURRNE SRS SRS T S W S
———HMatix A\
— CutsGA :
T kelihood:

0.2 IlllilllIIIIIIIIIIIIIIIIiIIII|IIIIIIIIIIIIIIiII
0 01 02 03 04 05 06 07 08 09 1

Signal efficlency

0.8

0.7

Background rejection

0.6

0.5

0.4

0.3

Note: Nearly All Realistic Use Cases are Much More Difficult Than This One
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More Toy Exampl

LPNHE Seminar, June 20, 2007 A. Hoecker: Machine Learning with MVA



More Toys: Linear-, Cross-, Circular Correlations

B lllustrate the behaviour of linear and nonlinear classifiers

Linear correlations Linear correlations Circular correlations

(same for signal and background) (opposite for signal and background) (same for signal and background)
Toap T signal R A T signal T14f - Signal
& 3 ~_Background | = 6; - Background >1.2; - Background |

2; S . 4}. . R F . o ]

3 i

né o '

|

4L ! _u..an.‘.\...|...|...\.‘.|‘.‘|m\.

4 3 -2 1 ] 08-06-04-0.2 -0 0.2 0.4 06 08

:
:
i
il
i

SERNERS

T T T T T T T

Ial

-sxx IT

SENNRERT
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I wvarl versus varl (signal)_NoTransform I varl versus varQ (background)_McTransform
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2 T 3
1t 1
B How does linear o
: I E E
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affect strongly kO E R
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varQ vard
I wvarl versus varl (signal)_NoTransform | |var| versus var0 (background)_NcoTransform |
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| wvarl versus varl (signal)_NoTransform | |var| versus var0 (background)_NoTransform |
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I varl versus var0 (signal)_DecorrTransform I varl versus vard (background)_DecosnrTransfarm
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Weight Variables by Classifier Output

B How well do the classifier resolve the various correlation patterns ?

Linear correlations
(same for signal and background)

Cross-linear correlations
(opposite for signal and background)

Circular correlations
(same for signal and background)

Signal and background distributions weighted by Likelihood output

Signal and background distributions weighted by Likelihood output |

| Signal and background distributions weighted by Likelihood output

AT TTTT [ TT T T T[T T T T T[T LT T

vari

varl

Likelihood

- il T
E 1-4;_I|\II|IH|)II_\‘ |-|||-|7|7|\.\7|7|||‘
>

TTT[TTT[TTIT[TTTR

12F
1
0.8/ 7%
06 -
0.4f
0.2F
of
-0.2f
0.4
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0.8
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Weight Variables by Classifier Output

B How well do the classifier resolve the various correlation patterns ?

Linear correlations
(same for signal and background)

Cross-linear correlations
(opposite for signal and background)

Circular correlations
(same for signal and background)

Signal and background distributions weighted by LikelihoodD output |

‘ Signal and background distributions weighted by LikelihoodD output |

| Signal and background distributions weighted by LikelihcodD output
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Weight Variables by Classifier Output

B How well do the classifier resolve the various correlation patterns ?

Linear correlations
(same for signal and background)

Cross-linear correlations
(opposite for signal and background)

Circular correlations
(same for signal and background)

Signal and background distributions weighted by PDERS output |

‘ Signal and background distributions weighted by PDERS output |

| Signal and background distributions weighted by PDERS output

vari
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Weight Variables by Classifier Output

B How well do the classifier resolve the various correlation patterns ?

Linear correlations
(same for signal and background)

Cross-linear correlations
(opposite for signal and background)

Circular correlations
(same for signal and background)

Signal and background distributions weighted by Fisher output |

Signal and background distributions weighted by Fisher output |

| Signal and background distributions weighted by Fisher output

vari
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Weight Variables by Classifier Output

B How well do the classifier resolve the various correlation patterns ?

Linear correlations
(same for signal and background)

Cross-linear correlations
(opposite for signal and background)

Circular correlations
(same for signal and background)

Signal and background distributions weighted by MLP output |

Signal and background distributions weighted by MLP output |

Signal and background distributions weighted by MLP output

F SRR IR R R R AR R
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Weight Variables by Classifier Output

B How well do the classifier resolve the various correlation patterns ?

Linear correlations Cross-linear correlations Circular correlations
(same for signal and background) (opposite for signal and background) (same for signal and background)

Signal and background distributions weighted by BDT output | Signal and background distributions weighted by BDT output | Signal and background distributions weighted by BDT output
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Final Classifier Performance

B Background rejection versus signal efficiency curve:

Background rejection versus Signal efficiency TMVA
1

0.9
0.8
0.7

0.8 R
0.5 —— _é__leeI|hood,_.______________§ __________________ _________________ _________________ \ ____________ =

Circular
Example

Background rejection

0.4 ................. ........................................................... ................. ................. .............. . ‘_‘ ........
03 = ................. PDERS .................. ................. ................. ............... .....
0.2 | | : :

04 E——HN __________________ S T N

||||i||||i||||i||||i||||i||||i||||i||||i||||i||||
% 01 02 02 04 05 06 07 08 08 1

Signal efficlency
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Final Classifier Performance

B Background rejection versus signal efficiency curve:

Background rejection versus Signal efficiency TMVA
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. S Circular

09 AN Crouar
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Final Classifier Performance

B Background rejection versus signal efficiency curve:

Background rejection versus Signal efficiency TMVA
1

0.9
0.8
0.7
0.6
0.5 —
04—
0.3 —

Circular
Example

Background rejection

0.2 —

¢ 01 02 03 04 05 06 07 08 08 1
Signal efficlency
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The “Schachbrett” Toy

vari

lovv v by v v by v b v v v by w oy

—

)

Signal and background distributions weighted by SVM_Gauss output |

3|IIII!i-:IIII|IIII

var2
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-1

-2

L=
IIII|IIII|IIII|IIII|IIII|IIII

I-IIIIII°I|IIII|
L

LPNHE Seminar, June 20, 2007

B Performance achieved without parameter tuning:
PDERS and BDT best “out of the box” classifiers

B After specific tuning, also SVM und MLP perform well

Theoretical maximum

Background rejection versus Signal efficiency

Background rejection
1

0.3 —

——— Rulefit

- HMatrix
Fish;er

TMVA
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Summary of the Classifiers and their Properties

Classifiers

Criteria Likeli- PDERS

hood / k-NN H-Matrix Fisher MLP BDT RuleFit SVM

no / linear
correlations

nonlinear
correlations

Training
Response

Overtraining
Robust

-N€ssS | Weak input
variables

B GRS GRDI G E®

Curse of
dimensionali

Clarity © © 6 © © 6 & 6 6

The properties of the Function discriminant (FDA) depend on the chosen function
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Copyrights & Credits

B TMVA is open source software

B Use & redistribution of source permitted according to terms in BSD license

B Several similar data mining efforts with rising importance'ih most fields of
science and industry 3

B Important for HEP:

Parallelised MVA training and evaluation pioneered by Cornelius package (BABAR)
Also frequently used: StatPatternRecognition package by |. Narsky

Many implementations of individual classifiers exist

Acknowledgments: The fast development of TMVA would not have been possible without the contribution and feedback from
many developers and users to whom we are indebted. We thank in particular the CERN Summer students Matt Jachowski (Stan-
ford) for the implementation of TMVA's new MLP neural network, and Yair Mahalalel (Tel Aviv) for a significant improvement of
PDERS, the Krakow student Andrzej Zemla and his supervisor Marcin Wolter for programming a powerful Support Vector
Machine, as well as Rustem Ospanov for the development of a fast k-NN algorithm. We are grateful to Doug Applegate, Kregg
Arms, René Brun and the ROOT team, Tancredi Carli, Zhiyi Liu, Elzbieta Richter-Was, Vincent Tisserand and Alexei Volk for
helpful conversations.
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Treatment of Systematic Uncertainties

B Assume strongest variable “var4” suffers from systematic uncertainty

[ TMVA Input Variable: vari+var2 | [ TMVA Input Variable: vari-var2 |

— T ! “DSIQ‘H&I """"""""""""""" _i

Background
04

M A I A A A A A BN A AN A
WO ficm T8.B (R0, DAY.SRRT, 0%
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Treatment of Systematic Uncertainties

B Assume strongest variable “var4” suffers from systematic uncertainty

[ TMVA Input Variable: vari+var2 | [ TMVA Input Variable: vari-var2 |

! egff JSigna’ T[T ]

Background

g g ol 1o g Tl
WO ficm T8.B (R0, DAY.SRRT, 0%
:||||I||||I||||I||||I|||
WO Tiom TRE (R0, DA% 00, 0%

“Calibration uncertainty”

may shift the central value

> and hence worsen the
discrimination power of “var4”
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WD Sl TH.IEK (8.0, DAY .E, BTN
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Treatment of Systematic Uncertainties

E Assume strongest variable “var4” suffers from systematic uncertainty

» (at least) Two ways to deal with it:

1. Ignore the systematic in the training, and evaluate systematic error on classifier output

— Drawbacks:

“var4” appears stronger in training than it might be - suboptimal performance
Classifier response will strongly depend on “var4”

2. Train with shifted (= weakened) “var4”, and evaluate systematic error on classifier output

—  Cures previous drawbacks

®» If classifier output distributions can be validated with data control samples, the second
drawback is mitigated, but not the first one (the performance loss) !
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Treatment of Systematic Uncertainties

Classifier output distributions for signal only

MVA_Fisher
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Treatment of Systematic Uncertainties
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Classifier output distributions for signal only

% Reference T TT 17T TT 17T TT 17T TT 17T LB T 113

"31000 Systematic shift
800—

600— =

400— —

200— —

oo b b b by b b b b s Ly 1

1

0 01 02 03 04 05 06 07 08 09

Likelihood output

Reference
—— Systematic shift

Events

400

300

200

100

0.2

.D\III|IIII|IIII|IIIIlllll‘\\lllllll

'e:\III|IIII|IIII|IIIIlllll‘\\ll

L
0.4
BDT output

9

| MVA_LikelihoodD |

Reference
Systematic shift

Events

350

300

250

200

150

100

0.7 08 09
LikelihoodD output

0.6

6

LPNHE Seminar, June 20, 2007

A. Hoecker: Machine Learning with

MVA




Stability with Respect to Irrelevant Variables

E Toy example with 2 discriminating and 4 non-discriminating variables ?

MVA

ing with

A. Hoecker: Machine Learn
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Stability with Respect to Irrelevant Variables

E Toy example with 2 discriminating and 4 non-discriminating variables ?

Background rejection versus Signal efficiency TMVA
1

B P e
... variables in classifiers '
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Stability with Respect to Irrelevant Variables

E Toy example with 2 discriminating and 4 non-discriminating variables ?

Background rejection versus Signal efficiency TMVA
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