Critical phenomena for dually weighted graphs and spanning forests via matrix models

Fedor Levkovich-Maslyuk
Institut de Physique Théorique, CEA Saclay

based on
[JHEP 01 (2022) 190, arXiv:2110.10104] with V. Kazakov
[to appear] with A. Gorsky, V. Kazakov, V. Mishnyakov

PART 1

Dually weighted graphs

Dually weighted graphs (DWG) partition function

$$
Z_{N}\left(t, t^{*}\right)=\sum_{G} N^{2-2 g_{G}} \prod_{v_{q}^{*}, v_{q} \in G} t_{q}^{\# v_{q}} t_{q}^{* \# v_{q}^{*}}
$$

- counting of graphs, polyhedra, tilings
- 2d quantum gravity

Dual weights control

Our focus:
close to flat space
continuum limit gives sum over surfaces
local curvature (R^{\wedge} 2 coupling)

Lattice model of AdS_{2} ?

DWG matrix model

Matrix models provide a useful description for 2d gravity
Matrix integral \longrightarrow sum over graphs $\underset{\rightarrow}{\longrightarrow}$ sum over 2d surfaces

$$
\text { large } \mathrm{N} \text {, continuum limit }
$$

We study a refined version of usual 1-matrix model

$$
Z_{N}\left(t, t^{*}\right)=\int \mathcal{D} M \exp N \operatorname{tr}\left(-\frac{1}{2} M^{2}+\sum_{q=1}^{Q+1} \frac{1}{q} t_{q}(A M)^{q}\right)
$$

$$
\begin{aligned}
& \text { n-vertex } \rightarrow t_{n} \\
& \text { n-face } \rightarrow t_{n}^{*}
\end{aligned}
$$

Dually weighted graphs (DWG)

$t_{n}^{*}=\frac{1}{N} \operatorname{tr} A^{n}$

Dual couplings \longrightarrow better control the geometry of graphs / surfaces

DWG matrix model

$$
Z_{N}\left(t, t^{*}\right)=\int \mathcal{D} M \exp N \operatorname{tr}\left(-\frac{1}{2} M^{2}+\sum_{q=1}^{Q+1} \frac{1}{q} t_{q}(A M)^{q}\right)
$$

Goal: compute observables like $\left\langle\operatorname{Tr} M^{n}\right\rangle$ and $\left\langle\operatorname{Tr}(A M)^{n}\right\rangle$, explore continuum limit

Recent motivation - Jackiw-Teitelboim (JT) gravity
Gravity theory in AdS_{2}, fascinating dualities with matrix models as well as $\mathrm{AdS}_{2} / \mathrm{CFT}_{1}$

Speculative hope - study it using DWG

Solving the matrix model

DWG Matrix Model and sum over Young tableaux

$$
Z_{N}\left(t, t^{*}\right)=\int\left(d^{N^{2}} M\right) \exp \left(-\frac{1}{2} \operatorname{tr} M^{2}+\sum_{q=1}^{Q+1} \frac{1}{q} t_{q} \operatorname{tr}(A M)^{q}\right)
$$

Cannot reduce to eigenvalues like usual MM, instead use characters

What remains is a Gaussian integral of character

DWG Matrix Model and sum over Young tableaux

Result for partition function:

$$
Z_{N}\left(t, t^{*}\right)=c(N) \sum_{\left\{h^{e}, h^{o}\right\}} \frac{\prod_{i}\left(h_{i}^{e}-1\right)!!h_{i}^{o}!!}{\prod_{i, j}\left(h_{i}^{e}-h_{j}^{o}\right)} \chi_{\{h\}}[t] \chi_{\{h\}}\left[t^{*}\right]
$$

Large Young tableaux dominate at large N
Saddle point gives a single Young tableau

$$
\begin{aligned}
& h_{i} \sim N \\
& \chi_{\{h\}} \sim e^{N^{2}(\ldots)}
\end{aligned}
$$

Algebraic curve of DWG

At large N we parameterize the dominating Young tableau by some continuous shape

$$
H(h)=\frac{1}{N} \sum_{k=1}^{N} \frac{1}{h-h_{k} / N} \quad H(h)=\int_{0}^{a} \frac{\rho(s) d s}{h-s}
$$

It can be found from a nontrivial Riemann-Hilbert problem

$$
h e^{-H(h)}=\frac{(-1)^{Q-1}}{t_{Q}} \prod_{q=1}^{Q} g_{q}(h)
$$

Product over Q sheets of Riemann surface of $g(h)$

$$
h=\sum_{q=1}^{Q+1} t_{q} g^{q}+\sum_{k=0}^{\infty}\left\langle\frac{\operatorname{tr}}{N}(M A)^{k}\right\rangle g^{-k}
$$

This gives (in principle) solution of the model

Special case: quadrangulations

Disc Quadrangulations

Particular case: counting quadrangulations of sphere and disc

Here we impose :

$$
t_{q}^{*}=\lambda \delta_{q, 4}
$$

Overall curvature must be balanced (sphere topology)

Special choice of weights makes the model tractable:

$$
t_{2}=\lambda \beta^{2}, \quad t_{2 n}=\lambda
$$

Kazakov, Staudacher, Wynter '96
negative curvature

Graph combinatorics gives
$Z \propto \sum_{G \uparrow} \lambda^{F} \beta^{2\left(\# v_{2}-4\right)}$
λ controls area $\quad \beta$ controls curvature

Z was computed by [Kazakov, Staudacher, Wynter 96] Corresponds to sphere topology

We will compute two resolvents, i.e. disc partition functions

Type $1 \quad \mathcal{W}(g)=\left\langle\frac{\operatorname{tr}}{N} \frac{1}{g-M A}\right\rangle$
Type $2 \quad W(g)=\left\langle\frac{\mathrm{tr}}{N} \frac{1}{g-M}\right\rangle$

Disc topology, two types of boundary

$$
W(g)=\sum_{n \geq 0} \frac{1}{g^{n+1}} \frac{1}{N}\left\langle\operatorname{tr} M^{n}\right\rangle
$$

$$
\mathrm{n}=\text { length }
$$

of boundary

Saddle point equation

We have a 2-cut problem

$$
h-1=\frac{\lambda}{\beta^{2}}\left(\left(\beta^{2}-1\right) g^{2}+\frac{g^{2}}{1-\beta^{2} g^{2}}\right)+\mathcal{O}(1 / g)
$$

Elliptic Riemann surface of $2 F+H+\log h$
Saddle point equation: $\quad 2 F+H H+\log h=0, \quad h \in[b, a]$
From algebraic curve: $\quad 2 F+H+\ln h=\log \left[\lambda\left(\beta^{2}-1\right)\right], \quad h \in[d, c]$

Solved by elliptic integrals

$$
H(h)+2 F(h)=\log \frac{(h-c)^{2}}{h(h-b)}+r(h)\left[\oint_{C_{H}} \frac{d h}{2 \pi i} \frac{\log \frac{(s-b)}{(s-c)^{2}}}{(h-s) r(s)}+\oint_{C_{F}} \frac{d h}{2 \pi i} \frac{\log \frac{\lambda\left(\beta^{2}-1\right)(s-b)}{(s-c)^{2}}}{(h-s) r(s)}\right]
$$

$$
r(x)=\sqrt{(a-x)(x-b)(x-c)(x-d)}
$$

Solution of Riemann-Hilbert problem

We get density in terms of theta-functions
Kazakov, Staudacher, Wynter '96

$$
\rho(h)=\frac{u}{K}-\frac{i}{\pi} \ln \left[\frac{\theta_{4}\left(\frac{\pi}{2 K}(u-i v), q\right)}{\theta_{4}\left(\frac{\pi}{2 K}(u+i v), q\right)}\right]
$$

$$
u=\mathrm{sn}^{-1} \sqrt{\frac{(a-h)(b-d)}{(h-d)(a-b)}}
$$

Then we find $\mathrm{H}(\mathrm{h})$ etc

$$
H(h)=\int_{b}^{a} \frac{\rho(s) d s}{h-s}
$$

(already not a standard special function)

Parameters are fixed from consistency requirements (e.g. asymptotics)

$$
\begin{array}{ll}
\operatorname{sn}^{2}\left(v, m^{\prime}\right)=\sqrt{\frac{a-c}{a-d}} & m=\frac{(a-b)(c-d)}{(a-c)(b-d)} \\
v=-K^{\prime}-\frac{K}{\pi} \log \left(\lambda\left(1-\beta^{2}\right)\right) & \ldots
\end{array}
$$

Asymptotics of Large Area \& Boundary

Search for universal regimes when the details of discretization do not matter

Quadrangulations become continuous 2d geometries

Asymptotics of Large Area \& Boundary

$$
Z \propto \sum_{G} \lambda^{F} \beta^{2\left(\# v_{2}-4\right)}
$$

Critical regime: density has zero slope at endpoint Gives $\lambda_{c}(\beta)$

$$
\lambda \simeq q=e^{-\pi \tau} \quad \tau \rightarrow 0
$$

Parametrise via $x=\frac{\sqrt{2}(1-\lambda)}{\pi \beta \uparrow}$
$V=\frac{1}{\sqrt{2}}\left(x-\sqrt{x^{2}-1}\right) \quad$ finite ratio

Three key regimes:

- All orders in τ (exp precision)
- Flattening: 1st order in $\tau, V=$ finite Small curvature, various n-vertices
- Almost flat: 1 st order in τ with $V \rightarrow 0$ Small curvature, only 2 - and 4 - vertices

Solution in exp. approximation

$\mathcal{O}\left(e^{-\frac{\pi}{\tau}}\right), \quad \tau \rightarrow 0 \quad$ We need to compute $H(h)=\int_{b}^{a} \frac{\rho(s) d s}{h-s}$
Density simplifies $\rho=-\frac{i}{\pi} \log \left[-\frac{\theta_{1}\left(\frac{\pi}{2 K}\left(u-i\left(v+K^{\prime}\right)\right), q\right)}{\theta_{1}\left(\frac{\pi}{2 K}\left(u+i\left(v+K^{\prime}\right), q\right)\right.}\right] \simeq \frac{4 \tau}{\pi^{2}} u(v+\pi / 2)-\frac{i}{\pi} \log \left(\frac{\cosh (u-i v)}{\cosh (u+i v)}\right)$
We get integrals of the kind $\int_{0}^{\infty} d w\left(\frac{\sinh w}{\cosh w+\sinh u}+\ldots\right) \log \frac{\cosh (w+i v)}{\cosh (w+i v)} \longrightarrow \begin{gathered}\text { Lots of } \\ \text { polylogs }\end{gathered}$

Long calculation gives result $h=b+e^{\tau\left(4 v^{2} / \pi-\pi\right)} \frac{\sin ^{2}(2 v)}{\sin ^{2}(v)-\sin ^{2}(r)}, g^{4}=\frac{1}{h-b} e^{-\frac{i}{\pi} F(r)}$
in parametric form
where

$$
\begin{aligned}
F= & -\frac{i}{\pi} \tau(2 v+\pi)\left(-2 r^{2}-2 \pi r+2 v^{2}+\pi^{2}\right)-\left(2(r-v)(r-3 v)-2 \pi r+\frac{5 \pi^{2}}{6}\right) \\
& +i(2 v-2 r-\pi) \log \left(1-e^{2 i(r-v)}\right)+i(2(r+v)+\pi) \log \left(1-e^{2 i(r+v)}\right)-\frac{i}{6 \pi} 2 \pi \log \left(1+e^{2 i v}\right) \\
& +\mathrm{Li}_{2}\left(e^{-2 i(r-v)}\right)+\mathrm{Li}_{2}\left(e^{2 i(r+v)}\right)+2 \mathrm{Li}_{2}\left(1-e^{2 i v}\right)+2 \mathrm{Li}_{2}\left(1+e^{2 i v}\right)
\end{aligned}
$$

[thanks to Omer Gurdogan for help with polylogs]

Parameters from couplings:

$$
\tau=-\frac{\log \left[\lambda\left(1-\beta^{2}\right)\right]}{2 v+\pi} \quad v=V \beta
$$

$$
\lambda \simeq\left(\lambda\left(1-\beta^{2}\right)\right)^{1-\frac{2 v}{\pi}}\left[\left(1-\log \left[\lambda\left(1-\beta^{2}\right)\right]\left(\frac{2 v}{\pi}+1\right)\right) \sin (2 v)+\pi\left(\frac{2 v}{\pi}+1\right) \cos (2 v)\right]
$$

Solution in exp. approximation

$$
\begin{aligned}
h & =b+e^{\tau\left(4 v^{2} / \pi-\pi\right)} \frac{\sin ^{2}(2 v)}{\sin ^{2}(v)-\sin ^{2}(r)} \\
g^{4} & =\frac{1}{h-b} e^{-\frac{i}{\pi} F(r)}
\end{aligned} \quad h=\sum_{q=1}^{Q+1} t_{q} g^{q}+\sum_{k=0}^{\infty}\left\langle\frac{\operatorname{tr}}{N}(M A)^{k}\right\rangle g^{-k}
$$

A rich phase structure to be explored
Describes large 2d surfaces with strong fluctuations of curvature

We can compare $\left\langle\operatorname{Tr} M^{2}\right\rangle$ with exact result [Kazakov, Staudacher, Wynter 96]

$$
\begin{aligned}
\left\langle\operatorname{Tr} M^{2}\right\rangle=\frac{\xi^{2}}{4 \lambda}\left[\frac{K k^{\prime 2} \mathrm{sn}^{2}}{8 \pi \mathrm{cn} \mathrm{dn}}\right. & \left(1-k^{\prime 2} \mathrm{sn}^{4}\right)-\frac{k^{\prime 2} \mathrm{sn}^{2}}{4}-\frac{1}{2 \pi}\left(K \Xi-\frac{\pi}{2}\right)\left(\mathrm{dn}^{2}+k^{\prime 2} \mathrm{cn}^{2}\right) \\
& \left.+\frac{3 \Upsilon \Phi}{8 \pi \mathrm{sn}^{2}}-\frac{\Phi^{2}}{2 \pi^{2} \mathrm{sn}^{2}}-\frac{K \Upsilon}{4 \pi \mathrm{sn}}\left(1-\mathrm{dn}^{2}\right)+\frac{\Phi \Xi}{2 \pi \mathrm{sn}}+\frac{\Omega \Phi}{\pi \mathrm{sn}}-\frac{\Omega^{2}}{2}\right]
\end{aligned}
$$

Expand our solution to 5th order in tau, find pefect match!

$$
\left\langle T T M^{2}\right\rangle=1-\frac{85^{5} V^{3}\left(6 V^{2}-5\right)}{15 \pi}+\ldots
$$

'Flattening' regime - type 1 resolvent

To get "flattening" limit we expand to leading order in τ

$$
\beta \sim v \sim(1-\lambda) \sim \tau \rightarrow 0
$$

Curvature is suppressed, Young tableau almost empty

Resolvent = disc partition function:

$$
\mathcal{W}(g)=\frac{1}{g}+\frac{1}{g^{3}}\left\langle\frac{\operatorname{tr}}{N}(A M)^{2}\right\rangle+\frac{1}{g^{5}}\left\langle\frac{\operatorname{tr}}{N}(A M)^{4}\right\rangle+\frac{1}{g^{7}}\left\langle\frac{\operatorname{tr}}{N}(A M)^{6}\right\rangle+\ldots
$$

We get

$$
\begin{aligned}
& \text { Kazakov, FLM } \quad \frac{\mathcal{W}}{\beta^{3}}=\frac{\left(\frac{4 V^{3}}{\pi}+\frac{2 V}{\pi}\right) \arcsin (y)^{2}}{y^{2}}+\left(\frac{4 V^{3}+2 V}{y^{2}}+\frac{16 V^{3} \sqrt{1-y^{2}}}{\pi y^{3}}\right) \arcsin (y) \\
& +\frac{8 V^{3}\left(\sqrt{1-y^{2}}-1\right)}{y^{3}}+\frac{4 V^{3}}{3 \pi}-\frac{16 V^{3}}{\pi y^{2}}-\frac{2 V}{y}-\frac{2 V}{\pi} \quad \text { where } y=\frac{2 \beta V}{g^{2}}
\end{aligned}
$$

Interpolates between pure 2d QG and almost flat case

2d QG from flattening solution

In 2d QG limit we have small bulk and boundary cosmological constants
$1^{\text {st }}$ resolvent: $\quad \Lambda=2 \sqrt{2} \frac{\lambda_{c}-\lambda}{\pi \beta} \rightarrow 0, \quad \eta=1-\frac{\sqrt{2} \beta}{g^{2}} \rightarrow 0 \quad$ with $\quad z=\frac{\sqrt{\Lambda}}{\eta}=$ fixed
We get the standard disc partition function for pure gravity

$$
\frac{\mathcal{W}}{\beta^{3}}=\frac{-28-18 \pi+9 \pi^{2}}{3 \sqrt{2} \pi}+\frac{\sqrt{2}\left(-12-7 \pi+3 \pi^{2}\right) \eta}{\pi}-\frac{8}{3} \underbrace{\eta^{3 / 2}(z-2) \sqrt{z+1}}_{\text {non-universal terms }}+O\left(\eta^{2}\right)
$$

2nd resolvent: $\quad \frac{1}{\beta}\left[W-\frac{L}{2 D}\right]=$ regular terms $+\zeta^{3 / 2}(z-2) \sqrt{z+1} \frac{4 \sqrt{2} D^{3}}{3\left(2 D^{2}-1\right)} \quad$ Get the same universal part

Almost flat regime

Only 2- and 4-vertices

$$
\beta \rightarrow 0, V \rightarrow 0
$$

$1^{\text {st }}$ resolvent: $\frac{\mathcal{W}}{\beta^{3}}=\frac{2 V}{\pi y^{2}}\left[(\arcsin y)^{2}-y^{2}+\pi(\arcsin y-y)\right]$

$$
y=\frac{t_{2}}{2 \pi \tau g}
$$

Describes trees

2nd resolvent: $W(P)=\frac{2 \xi}{T}+\tau \frac{T \xi}{\pi\left(T^{2}-4 \xi^{2}\right)}\left(T^{2}+\frac{8 \pi^{2}}{T^{2}} \xi^{2}-\frac{\arcsin ^{2} \xi}{\xi^{2}}\right)$ Kazakov, FLM

$$
\begin{aligned}
\xi & =\frac{T\left(P-\sqrt{P^{2}-4}\right)}{4} \\
T & =\frac{t_{2}}{\tau} \rightarrow \text { fixed }
\end{aligned}
$$

Near criticality we find again a tree-like behavior :

$$
W(g)-\frac{g-\sqrt{g^{2}-4}}{2} \simeq t \frac{\pi^{2}-4}{4 \pi}+t \sqrt{2} \sqrt{1-\xi}+\ldots
$$

$$
\begin{aligned}
T & \sim g \rightarrow \infty \\
\xi & =\frac{T}{2 g}=\frac{t}{2 g \tau} \rightarrow \text { fixed }
\end{aligned}
$$

Interpretation: $\beta \neq 0$ controls local curvature fluctuations
Produces R^{2} term in QG action

$$
S_{\mathrm{QG}}=\int_{\mathcal{M}} \sqrt{g}\left(\tilde{\Lambda}+\frac{\log N}{2 \pi} R+\frac{1}{\tilde{\beta}} R^{2}\right) \quad+\text { boundary terms }
$$

- Curvature strongly fluctuates at distance $\tilde{\Lambda}^{1 / 2} \gg \tilde{\beta} \longrightarrow Q G$ regime
- Curvature is suppressed at distance $\tilde{\Lambda}^{1 / 2} \ll \tilde{\beta} \longrightarrow$ "almost flat" regime

Our solution interpolates between the two regimes

We see no phase transition, in agreement with expectations from [Kazakov, Staudacher, Wynter '96]

Part 1 - summary \& prospects

We count the number of dually weighted graphs, topology of sphere, disc (\& more?) Compute 2 disc partition functions, observe universality in 2d QG regime

Future:

- Explore our exponential solution and its phase structure
- General spectral curve of DWG, integrability/tau function
- Jackiw-Teitelboim gravity? May need more involved observables / develop character methods

PART 2

Critical phenomena in the forest

Forests on random graphs

Key properties of a graph are encoded in its Laplacian matrix $\Delta=D-A$
Matrix tree theorem: $\operatorname{det}^{\prime} \Delta=\#$ of spanning trees

Generalization: matrix forest theorem [Chelnokov, Kelmanis] [David, Duplantier]

$$
\operatorname{det}\left(\Delta+M^{2}\right)=\sum_{F=\left(F_{1} \ldots F_{l}\right) \in G} M^{2 l} \prod_{i=1}^{l}\left|F_{i}\right|
$$

We study the partition function:
$Z=\sum_{\text {graphs } G} \lambda^{|G|} \operatorname{det}\left(\Delta+M^{2}\right)=\sum_{F=\left(F_{1} \ldots F_{l}\right) \in G} \lambda^{|G|} M^{2 l} \prod_{i=1}^{l}\left|F_{i}\right|$

Sum over random regular graphs (RRG) with triple vertices
We count weighted rooted spanning forests

Related work:
[Caracciolo, Jacobsen, Saleur, Sokal 04]
[Caracciolo, Sportiello 09]
[Bondesan, Caracciolo, Sportiello 16]

$$
Z=\sum_{\text {graphs } G} \lambda^{|G|} \operatorname{det}\left(\Delta+M^{2}\right)
$$

Many reformulations!

- Counting rooted forests
- Massive spinless fermions interacting with 2d gravity
- Hermitian 1-matrix model with nontrivial potential
- Related to $\mathrm{O}(\mathrm{n})$ / loop model [Kostov, Staudacher]

Parisi-Sourlas reformulation via fermions

$$
Z=\sum_{G} N^{2-2 g} \lambda^{|G|} \int \prod_{i \in G} d^{2} \theta_{i} \prod_{<i j>\in G} e^{-\left(\bar{\theta}_{i}-\bar{\theta}_{j}\right)\left(\theta_{i}-\theta_{j}\right)} \prod_{i \in G} e^{-\frac{q}{2} M^{2} \bar{\theta}_{i} \theta_{i}}
$$

Massive spinless fermions on random graphs
To get sum over graphs we introduce NxN supermatrix $\Phi(\theta)=\phi+\bar{\theta} \psi+\theta \bar{\psi}+\bar{\theta} \theta \epsilon$

$$
Z=\int d^{N^{2}} \phi d^{2 N^{2}} \psi d^{2 N^{2}} \epsilon e^{N S(\Phi)} \quad S(\Phi)=\operatorname{tr} \int d^{2} \theta\left(-\frac{1}{2} \Phi^{2}(\theta)-\frac{1}{2} \partial_{\theta} \Phi(\theta) \partial_{\bar{\theta}} \Phi(\theta)+\frac{\lambda}{3} e^{-\frac{3}{2} M^{2} \bar{\theta} \theta}[\Phi(\theta)]^{3}\right)
$$

Feynman graphs give our partition function!

Notice that for unrooted trees one finds massive fermions + 4-fermion interaction Instead we have rooted trees and no interaction
[Bondesan, Caracciolo, Sportiello 16]

The matrix model

Next we integrate out the fermions and get an Hermitian 1-matrix model $Z=\int d^{N 2} X e^{N S_{X}}$

$$
S_{X}=\operatorname{tr}\left[-\frac{1}{2} X^{2}+\frac{\lambda M^{2}}{2}\left(\frac{1-\sqrt{1-4 \lambda X}}{2 \lambda}\right)^{3}\right]
$$

generating function for trees i.e. Catalan numbers

Potential:

two extrema + wall

Matrix model - combinatoric derivation

picture from
[Bondesan, Cracciolo, Sportiello 16]

Another way to derive the same matrix model

Extension of [Bondesan, Caracciolo, Sportiello 16] who found the potential for unrooted trees:

$$
\begin{aligned}
\tilde{V}(z) & =\frac{1}{12 z^{2}}\left(-6 z^{2}+(1-4 z)^{3 / 2}+6 z-1\right) \\
& =\sum_{n=1}^{\infty} \tilde{c}_{n} z^{n+2}, \quad \text { where } \tilde{c}_{n}=\frac{(2 n)!}{n!(n+2)!} .
\end{aligned}
$$

For our rooted trees we find:

$$
V=\frac{\lambda}{3}\left(\frac{1-\sqrt{1-4 \lambda X}}{2 \lambda}\right)^{3}=\lambda \partial_{\lambda}\left(X^{2} \tilde{V}(\lambda X)\right)
$$

i.e. the same potential as from fermion realization !

Solution of the model

One-cut solution: $\quad G(x)=\int_{b}^{a} \frac{\rho(y) d y}{x-y}$

Solved in elliptic functions

$$
\begin{aligned}
& G(x)=\frac{9}{4 \pi} \sqrt{c} M^{2} \sqrt{x-a} \sqrt{x-b}\left(\frac{2(x-2 c) \Pi\left(\left.\frac{a-b}{x-b} \right\rvert\, m\right)}{\sqrt{c-b}(x-b)}-\frac{2 K(m)}{\sqrt{c-b}}\right) \\
& +\frac{1}{2}\left(-\sqrt{x-a} \sqrt{x-b}+9 c M^{2}+x\right)
\end{aligned}
$$

$$
c=\frac{1}{4 \lambda} \quad B^{2}=c-b, m=\frac{a-b}{c-b}
$$

Consistency with asymptotics fixes endpoints

$$
\begin{aligned}
& \pi B^{3}(m-2)-18 B^{2} \sqrt{c} M^{2} E+2 \pi B c\left(9 M^{2}+1\right)-18 c^{3 / 2} M^{2} K=0 \\
& 3 \pi B^{4} m^{2}-36 B^{3} \sqrt{c} M^{2}((m-2) E-2(m-1) K)+108 B c^{3 / 2} M^{2}((m-2) K+2 E)-48 \pi=0
\end{aligned}
$$

Merging of solutions \qquad critical curve

$$
9 \sqrt{c} M^{2} E(m)\left(c-B^{2}(m-1)\right)+(m-1)\left(\pi B^{3} m+9 \sqrt{c} M^{2}\left(B^{2}+c\right) K(m)\right)=0
$$

Critical curve

Limiting regimes

$M \rightarrow \infty$: Heavy fermions decouple

$$
\lambda_{e f f}=M^{2} \lambda
$$

We reproduce pure gravity $(\mathrm{C}=0)$ prediction $\quad\left(\lambda_{\text {eff }}\right)_{\text {crit }}^{2}=\frac{1}{12 \sqrt{3}} \quad \begin{aligned} & \text { [Brezin, Itzyckson, Parisi, Zuber 78] } \\ & \text { [Kazakov, Migdal, Kostov 85] }\end{aligned}$
$M \rightarrow 0: \quad$ Only 1 tree in the forest \quad Resolvent becomes Gaussian $\quad G(x) \sim \sqrt{x^{2}-4}$

$$
\left.\left.\operatorname{det}^{\prime}(\Delta) \sim \frac{d}{d M^{2}} \operatorname{det}\left(\Delta+M^{2}\right)\right|_{M=0} \sim \frac{d}{d M^{2}} Z\right|_{M=0}=\left\langle\phi^{3}(x)\right\rangle \sim \int \sqrt{x^{2}-4}(1-\sqrt{1-4 \lambda x})^{3}
$$

When branch points collide we reproduce the ($\mathrm{C}=-2$) behavior $\lambda_{\text {crit }}=1 / 8$
[David; Kazakov, Kostov, Migdal]

Our model interpolates between these regimes ! Interesting double scaling limits to be explored

Future

- Links with Kesten - McKay resolvent
- Nonperturbative effects, i.e. instantons
- Multicut solutions
- Generalization to Dirac (spinful) fermions
- RRG as model for Hilbert space, ergodicity and many-body localization (MBL)

Characters at large N

$$
H(h)=\frac{1}{N} \sum_{k=1}^{N} \frac{1}{h-h_{k} / N} \quad H(h)=\int_{0}^{a} \frac{\rho(s) d s}{h-s}
$$

We use the identity for Schur polynomials

$$
t_{L}=\sum_{k=1}^{N} \frac{\chi_{\left\{h+L \delta_{k}\right\}}[t]}{\chi_{\{h\}}[t]}=\sum_{k=1}^{N} \frac{\operatorname{dim}\left(h+L \delta_{k}\right)}{\operatorname{dim}(h)} e^{\log \frac{\chi_{\left\{h+L \delta_{k}\right\}}-\log \frac{\chi_{\{h\}}}{\operatorname{dim}\left(h+L \delta_{k}\right)}}{\operatorname{dim}(h)}}=\sum_{k=1}^{N} \prod_{j(\neq k)}\left(1+\frac{L}{h_{j}-h_{k}}\right) e^{L F\left(h_{k}\right)}
$$

where $\quad F\left(h_{k}\right)=\partial_{h_{k}} \log \frac{\chi_{\{h\}}}{\operatorname{dim}(h)}$

So we get $t_{L}=\oint_{C_{H}} \frac{d h}{2 \pi i}[g(h)]^{-L}=\oint \frac{d g}{2 \pi i} g^{-L-1} h(g)$

$$
g(h)=e^{-H(h)-F(h)}
$$

Similarly $\left\langle\operatorname{tr}(M A)^{L}\right\rangle=\oint_{C_{H}} \frac{d g}{2 \pi i} g^{L-1} h(g)$

Some motivation

- Matrix models offer another way to understand nonperturbative physics, complementary to AdS/CFT integrability
- Potential links to JT gravity in AdS and its dual matrix model/topological recursion
- New integrability structures to be uncovered

'Flattening' regime - type 2 resolvent

$$
W(g)=\frac{1}{g}+\frac{1}{g^{3}}\left\langle\frac{\operatorname{tr}}{N} M^{2}\right\rangle+\frac{1}{g^{5}}\left\langle\frac{\operatorname{tr}}{N} M^{4}\right\rangle+\frac{1}{g^{7}}\left\langle\frac{\operatorname{tr}}{N} M^{6}\right\rangle+\ldots
$$

$$
\beta \sim v \sim(1-\lambda) \sim \tau \rightarrow 0
$$

We get from inversion formula

$$
\begin{aligned}
& \frac{W(g)-\frac{L}{2 D}}{\beta}= \\
&=\frac{16 D^{3}}{L^{2}\left(4 D^{2}-L^{2}\right)}\left[L^{2} \frac{\sin ^{-1}(\xi)^{2}-\xi^{2}}{4 \pi \xi}+\frac{\xi^{3}+12 \sqrt{1-\xi^{2}} \sin ^{-1}(\xi)-12 \xi+3 \xi \sin ^{-1}(\xi)^{2}}{6 \pi}\right] \quad \text { Kazakov, FLM } \\
& \xi=\frac{1}{\sqrt{2}}\left(x-\sqrt{x^{2}-1}\right) L, \quad L=D\left(g-\sqrt{g^{2}-4}\right) \\
& \text { sums up boundary "trees" }
\end{aligned}
$$

Highly similar to previous resolvent though not exactly equal
Related by a simple but formal replacement (meaning to be understood)

Asymptotics of large area \& boundary

$$
Z \propto \sum_{G} \lambda^{F} \beta^{2\left(\# v_{2}-4\right)}
$$

Simplest case : only 4 2-vertices -- Dedekind function

$$
\sim \sum=\frac{1}{8} \frac{\partial^{2}}{\partial q^{2}} \log \left[\prod_{n=1}^{\infty}\left(1-q^{2 n}\right)\right]
$$

Large area: elliptic modulus $=1 \quad \lambda=q \rightarrow 1$
What happens when we add other vertices?

