A phase transition in blockweighted random maps Journée cartes à l'IPhT 24 juin 2022

Zéphyr Salvy
William Fleurat

LIGM, Université Gustave Eiffel

Planar maps

Planar map $\mathfrak{m}=$ embedding on the sphere of a connected planar graph, considered up to homeomorphisms

Map = graph + cyclic order on
neighbours

- Rooted planar map = map endowed with a marked oriented edge (represented by an arrow);
- Size $|\mathfrak{m}|=$ number of edges;
- Corner (does not exist for graphs !) = space between an oriented edge and the next one for the trigonometric order.

Universality results for planar maps

- Enumeration: $\kappa \rho^{-n} n^{-5 / 2}$
[Tutte 1963, Drmota, Not, Yu 2020];
- Distance between vertices: $n^{1 / 4}$ [Chassaing, Schaeffer 2004];
- Scaling limit: Brownian sphere for quadrangulations [Miermont 2013],
 triangulations \& 2q-angulations [Le Gall 2013];
- Universality:
- Same enumeration;
- Same scaling limit, e.g. for for simple quadrangulations [Addario-Berry Albenque 2017], arbitrary maps [Bettinelli, Jacob Miermont 2014].

Universality results for planar trees

- Enumeration: $\kappa \rho^{-n} n^{-3 / 2}$;
- Distance between vertices: $n^{1 / 2}$
[Flajolet, Odlyzko 1982];
- Scaling limit: Brownian tree [Aldous 1993,
 Le Gall 2006];
- Universality:
- Same enumeration,
- Same scaling limit, even for some classes of maps; e.g. outerplanar maps [Caraceni 2016], maps with a boundary of size >> $n^{1 / 2}$ [Bettinelli 2015].

Brownian tree \mathscr{T}_{e}
Models with (very) constrained boundaries

Motivation

Interpolating model?

2-connectivity

Cut vertex: vertex that when removed deconnects the map
2-connected: no cut vertex (=to be able to disconnect, at least two vertices must be removed)
Block = maximal (for inclusion) 2-connected submap

2-connectivity

Cut vertex: vertex that when removed deconnects the map
2-connected: no cut vertex (=to be able to disconnect, at least two vertices must be removed)
Block = maximal (for inclusion) 2-connected submap

Motivation

Condensation phenomenon: a large block concentrates a Only small blocks. macroscopic part of the mass [Banderier, Flajolet, Schaeffer, Soria 2001; Jonsson, Stefánsson 2011].

Outline of the talk

A phase transition in block-weighted random maps

I. Approach
II. Largest blocks
III. Similar model: quadrangulations
IV. Scaling limits
V. Perspectives

I. Approach

Model

Goal: parameter that affects the typical number of blocks.

$$
\text { We choose: } \mathbb{P}_{n, u}(\mathfrak{m})=\frac{u^{\# b l o c k s(\mathfrak{m})}}{Z_{n, u}} \text { where } \begin{aligned}
& u>0, \\
& \mathscr{M}_{n}=\{\text { maps of size } n\}, \\
& \mathfrak{m} \in \mathscr{M}_{n^{\prime}} \\
& Z_{n, u}=\text { normalisation. }
\end{aligned}
$$

Inspired by [Bonzom 2016].

- $u=1$: uniform distribution on maps of size n ;
- $u \rightarrow 0$: minimising the number of blocks (=2-connected maps);
- $u \rightarrow \infty$: maximising the number of blocks (= trees!).

$$
\text { Given } u \text {, asymptotic behaviour when } n \rightarrow \infty \text { ? }
$$

Results

For $M_{n} \hookrightarrow \mathbb{P}_{n, u}$	$u<9 / 5$	$u=9 / 5$	$u>9 / 5$
Enumeration			
Size of			
-the largest			
block			
the second			
one			
Scaling limit of M_{n}			

Decomposition of a map into blocks

Inspiration from [Tutte 1963]

$$
M(z, u)=\sum_{\mathfrak{m} \in, \mathfrak{M}} z^{|\mathfrak{m}|} u^{\# b l o c k s(\mathfrak{m})}
$$

Decomposition of a map into blocks

Inspiration from [Tutte 1963]

$$
M(z, u)=\sum_{\mathfrak{m} \in \mathscr{M}} z^{|\mathfrak{m}|} u^{\# b l o c k s(\mathfrak{m})}
$$

Decomposition of a map into blocks

Inspiration from [Tutte 1963]

$$
M(z, u)=\sum_{\mathfrak{m} \in, \mathfrak{M}} z^{|\mathfrak{m}|} u^{\# b l o c k s(\mathfrak{m})}
$$

Decomposition of a map into blocks

Inspiration from [Tutte 1963]

$$
M(z, u)=\sum_{\mathfrak{m} \in, \mathfrak{M}} z^{|\mathfrak{m}|} u^{\# b l o c k s(\mathfrak{m})}
$$

Decomposition of a map into blocks

Inspiration from [Tutte 1963]

$$
M(z, u)=\sum_{\mathfrak{m} \in \mathscr{M}} z^{|\mathfrak{m}|} u^{\# b l o c k s(\mathfrak{m})}
$$

Decomposition of a map into blocks

Inspiration from [Tutte 1963]

$$
M(z, u)=\sum_{\mathfrak{m} \in \mathscr{M}} z^{|\mathfrak{m}|} u^{\# b l o c k s(\mathfrak{m})}
$$

Decomposition of a map into blocks

Inspiration from [Tutte 1963]

$$
M(z, u)=\sum_{\mathfrak{m} \in \mathscr{M}} z^{|\mathfrak{m}|} u^{\# b l o c k s(\mathfrak{m})}
$$

Decomposition of a map into blocks

Inspiration from [Tutte 1963]

$$
M(z, u)=\sum_{\mathfrak{m} \in \mathscr{M}} z^{|\mathfrak{m}|} u^{\# b l o c k s(\mathfrak{m})}
$$

Decomposition of a map into blocks

Inspiration from [Tutte 1963]

$$
M(z, u)=\sum_{\mathfrak{m} \in \mathscr{M}} z^{|\mathfrak{m}|} u^{\# b l o c k s(\mathfrak{m})}
$$

Decomposition of a map into blocks

Inspiration from [Tutte 1963]

$$
M(z, u)=\sum_{\mathfrak{m} \in \mathscr{M}} z^{|\mathfrak{m}|} u^{\# b l o c k s(\mathfrak{m})}
$$

Decomposition of a map into blocks

Inspiration from [Tutte 1963]

$$
M(z, u)=\sum_{\mathfrak{m} \in \mathscr{M}} z^{|\mathfrak{m}|} u^{\# b l o c k s(\mathfrak{m})}
$$

Decomposition of a map into blocks

Inspiration from [Tutte 1963]

$$
M(z, u)=\sum_{\mathfrak{m} \in \mathscr{M}} z^{|\mathfrak{m}|} u^{\# b l o c k s(\mathfrak{m})}
$$

Decomposition of a map into blocks

Inspiration from [Tutte 1963]

$$
M(z, u)=\sum_{\mathfrak{m} \in \mathscr{M}} z^{|\mathfrak{m}|} u^{\# b l o c k s(\mathfrak{m})}
$$

GS of 2-connected maps
With a weight u on blocks: $M(z, u)=u B\left(z M^{2}(z, u)\right)+1-u$

Decomposition of a map into blocks

Inspiration from [Tutte 1963]

$$
M(z, u)=\sum_{\mathfrak{m} \in \mathscr{M}} z^{|\mathfrak{m}|} u^{\# b l o c k s(\mathfrak{m})}
$$

\Rightarrow Underlying block tree structure, made explicit by [Addario-Berry 2019]. GS of 2-connected maps
With a weight u on blocks: $M(z, u)=u B\left(z M^{2}(z, u)\right)+1-u$

Decomposition of a map into blocks

Inspiration from [Tutte 1963]

$$
M(z, u)=\sum_{\mathfrak{m} \in \mathscr{M}} z^{|\mathfrak{m}|} u^{\# b l o c k s(\mathfrak{m})}
$$

\Rightarrow Underlying block tree structure, made explicit by [Addario-Berry 2019]. GS of 2-connected maps
With a weight u on blocks: $M(z, u)=u B\left(z M^{2}(z, u)\right)+1-u$

Decomposition of a map into blocks

Inspiration from [Tutte 1963]

$$
M(z, u)=\sum_{\mathfrak{m} \in \mathscr{M}} z^{|\mathfrak{m}|} u^{\# b l o c k s(\mathfrak{m})}
$$

\Rightarrow Underlying block tree structure, made explicit by [Addario-Berry 2019]. GS of 2-connected maps
With a weight u on blocks: $M(z, u)=u B\left(z M^{2}(z, u)\right)+1-u$

Decomposition of a map into blocks

Inspiration from [Tutte 1963]

$$
M(z, u)=\sum_{\mathfrak{m} \in \mathscr{M}} z^{|\mathfrak{m}|} u^{\# b l o c k s(\mathfrak{m})}
$$

\Rightarrow Underlying block tree structure, made explicit by [Addario-Berry 2019]. GS of 2-connected maps
With a weight u on blocks: $M(z, u)=u B\left(z M^{2}(z, u)\right)+1-u$

Decomposition of a map into blocks

Inspiration from [Tutte 1963]

$$
M(z, u)=\sum_{\mathfrak{m} \in \mathscr{M}} z^{|\mathfrak{m}|} u^{\# b l o c k s(\mathfrak{m})}
$$

\Rightarrow Underlying block tree structure, made explicit by [Addario-Berry 2019]. GS of 2-connected maps
With a weight u on blocks: $M(z, u)=u B\left(z M^{2}(z, u)\right)+1-u$

Decomposition of a map into blocks

Inspiration from [Tutte 1963]

$$
M(z, u)=\sum_{\mathfrak{m} \in \mathscr{M}} z^{|\mathfrak{m}|} u^{\# b l o c k s(\mathfrak{m})}
$$

\Rightarrow Underlying block tree structure, made explicit by [Addario-Berry 2019]. GS of 2-connected maps
With a weight u on blocks: $M(z, u)=u B\left(z M^{2}(z, u)\right)+1-u$

Decomposition of a map into blocks

Inspiration from [Tutte 1963]

$$
M(z, u)=\sum_{\mathfrak{m} \in \mathscr{M}} z^{|\mathfrak{m}|} u^{\# b l o c k s(\mathfrak{m})}
$$

\Rightarrow Underlying block tree structure, made explicit by [Addario-Berry 2019]. GS of 2-connected maps
With a weight u on blocks: $M(z, u)=u B\left(z M^{2}(z, u)\right)+1-u$

Decomposition of a map into blocks

Inspiration from [Tutte 1963]

$$
M(z, u)=\sum_{\mathfrak{m} \in \mathscr{M}} z^{|\mathfrak{m}|} u^{\# b l o c k s(\mathfrak{m})}
$$

\Rightarrow Underlying block tree structure, made explicit by [Addario-Berry 2019]. GS of 2-connected maps
With a weight u on blocks: $M(z, u)=u B\left(z M^{2}(z, u)\right)+1-u$

Decomposition of a map into blocks

Inspiration from [Tutte 1963]

$$
M(z, u)=\sum_{\mathfrak{m} \in \mathscr{M}} z^{|\mathfrak{m}|} u^{\# b l o c k s(\mathfrak{m})}
$$

\Rightarrow Underlying block tree structure, made explicit by [Addario-Berry 2019]. GS of 2-connected maps
With a weight u on blocks: $M(z, u)=u B\left(z M^{2}(z, u)\right)+1-u$

Decomposition of a map into blocks

Inspiration from [Tutte 1963]

$$
M(z, u)=\sum_{\mathfrak{m} \in \mathscr{M}} z^{|\mathfrak{m}|} u^{\# b l o c k s(\mathfrak{m})}
$$

\Rightarrow Underlying block tree structure, made explicit by [Addario-Berry 2019]. GS of 2-connected maps
With a weight u on blocks: $M(z, u)=u B\left(z M^{2}(z, u)\right)+1-u$

Decomposition of a map into blocks

Inspiration from [Tutte 1963]

$$
M(z, u)=\sum_{\mathfrak{m} \in \mathscr{M}} z^{|\mathfrak{m}|} u^{\# b l o c k s(\mathfrak{m})}
$$

\Rightarrow Underlying block tree structure, made explicit by [Addario-Berry 2019]. GS of 2-connected maps
With a weight u on blocks: $M(z, u)=u B\left(z M^{2}(z, u)\right)+1-u$

Decomposition of a map into blocks

Inspiration from [Tutte 1963]

$$
M(z, u)=\sum_{\mathfrak{m} \in \mathscr{M}} z^{|\mathfrak{m}|} u^{\# b l o c k s(\mathfrak{m})}
$$

GS of 2-connected maps
With a weight u on blocks: $M(z, u)=u B\left(z M^{2}(z, u)\right)+1-u$

Decomposition of a map into blocks

Inspiration from [Tutte 1963]

$$
M(z, u)=\sum_{\mathfrak{m} \in \mathscr{M}} z^{|\mathfrak{m}|} u^{\# b l o c k s(\mathfrak{m})}
$$

GS of 2-connected maps
With a weight u on blocks: $M(z, u)=u B\left(z M^{2}(z, u)\right)+1-u$

Decomposition of a map into blocks

Inspiration from [Tutte 1963]

$$
M(z, u)=\sum_{\mathfrak{m} \in \mathscr{M}} z^{|\mathfrak{m}|} u^{\# b l o c k s(\mathfrak{m})}
$$

GS of 2-connected maps
With a weight u on blocks: $M(z, u)=u B\left(z M^{2}(z, u)\right)+1-u$

Decomposition of a map into blocks

Inspiration from [Tutte 1963]

$$
M(z, u)=\sum_{\mathfrak{m} \in \mathscr{M}} z^{|\mathfrak{m}|} u^{\# b l o c k s(\mathfrak{m})}
$$

GS of 2-connected maps
With a weight u on blocks: $M(z, u)=u B\left(z M^{2}(z, u)\right)+1-u$

Decomposition of a map into blocks

Inspiration from [Tutte 1963]

$$
M(z, u)=\sum_{\mathfrak{m} \in \mathscr{M}} z^{|\mathfrak{m}|} u^{\# b l o c k s(\mathfrak{m})}
$$

With a weight u on blocks: $M(z, u)=u B\left(z M^{2}(z, u)\right)+1-u$

Decomposition of a map into blocks

Inspiration from [Tutte 1963]

$$
M(z, u)=\sum_{\mathfrak{m} \in \mathscr{M}} z^{|\mathfrak{m}|} u^{\# b l o c k s(\mathfrak{m})}
$$

With a weight u on blocks: $M(z, u)=u B\left(z M^{2}(z, u)\right)+1-u$

Decomposition of a map into blocks

Inspiration from [Tutte 1963]

$$
M(z, u)=\sum_{\mathfrak{m} \in \mathscr{M}} z^{|\mathfrak{m}|} u^{\# b l o c k s(\mathfrak{m})}
$$

With a weight u on blocks: $M(z, u)=u B\left(z M^{2}(z, u)\right)+1-u$

Decomposition of a map into blocks

Inspiration from [Tutte 1963]

$$
M(z, u)=\sum_{\mathfrak{m} \in \mathscr{M}} z^{|\mathfrak{m}|} u^{\# b l o c k s(\mathfrak{m})}
$$

With a weight u on blocks: $M(z, u)=u B\left(z M^{2}(z, u)\right)+1-u$

Decomposition of a map into blocks

Inspiration from [Tutte 1963]

$$
M(z, u)=\sum_{\mathfrak{m} \in \mathscr{M}} z^{|\mathfrak{m}|} u^{\# b l o c k s(\mathfrak{m})}
$$

With a weight u on blocks: $M(z, u)=u B\left(z M^{2}(z, u)\right)+1-u$

Decomposition of a map into blocks

Inspiration from [Tutte 1963]

$$
M(z, u)=\sum_{\mathfrak{m} \in \mathscr{M}} z^{|\mathfrak{m}|} u^{\# b l o c k s(\mathfrak{m})}
$$

With a weight u on blocks: $M(z, u)=u B\left(z M^{2}(z, u)\right)+1-u$

Results

$\left.\begin{array}{c|c|c|c}\text { For } M_{n} \hookrightarrow \mathbb{P}_{n, u} & u<9 / 5 & u=9 / 5 & u>9 / 5 \\ \hline \text { Enumeration } & \rho(u)^{-n} n^{-5 / 2} & \rho(u)^{-n} n^{-5 / 3} & \rho(u)^{-n} n^{-3 / 2} \\ \hline \text { Biomom2006 }\end{array}\right)$

Decomposition of a map into blocks: properties

- Internal node (with k children) of $T_{\mathfrak{m}} \leftrightarrow$ block of \mathfrak{m} of size $k / 2$;
- \mathfrak{m} is entirely determined by $T_{\mathfrak{m}}$ and $\left(\mathfrak{b}_{v}, v \in T_{\mathfrak{m}}\right)$ where \mathfrak{b}_{v} is the block of \mathfrak{m} represented by v in $T_{\mathfrak{m}}$.
$T_{M_{n}}$ gives the block sizes of a random map M_{n}.

Galton-Watson trees for map blocks

μ-Galton-Watson tree : random tree where the number of children of each node is given by μ independently, with $\mu=$ probability law on \mathbb{N}.
=> Choice of y ?

$$
u>0
$$

$$
y \in(0,4 / 27]
$$

Galton-Watson trees for map blocks

μ-Galton-Watson tree : random tree where the number of children of each node is given by μ independently, with $\mu=$ probability law on \mathbb{N}.

Theorem
If $M_{n} \hookrightarrow \mathbb{P}_{n, u^{\prime}}$ then $T_{M_{n}}$ has the law of a Galton-Watson tree of reproduction law $\mu^{y, u}$ conditioned to be of size $2 n$, with

$$
\mu^{y, u}(\{2 k\})=\frac{B_{k} y^{k} u^{\mathbf{1}_{k \neq 0}}}{u B(y)+1-u} .
$$

=> Choice of y ?

Phase transition

When is $\mu^{y, u}$ critical? $(=\mathbb{E}(\mu)=1$?)

$$
\begin{aligned}
& \mathbb{E}\left(\mu^{y, u}\right)=1 \Leftrightarrow u=\frac{1}{2 y B^{\prime}(y)-B(y)+1} \\
& +\infty) \text { when } y \text { covers }\left(0, \rho_{B}=4 / 27\right] .
\end{aligned}
$$

Theorem

- If $u<9 / 5$, then $\mathbb{E}\left(\mu^{y, u}\right)<1$. The mean is maximal for $y=4 / 27$ and then $\mu^{y, u}(2 k) \sim c_{u} k^{-5 / 2}$;
- If $u=9 / 5$ and $y=4 / 27$, then $\mathbb{E}\left(\mu^{y, u}\right)=1$ and $\mu^{y, u}(2 k) \sim c_{u} k^{-5 / 2}$;
- If $u>9 / 5$ and y is well chosen, then $\mathbb{E}\left(\mu^{y, u}\right)=1$ and $\mu^{y, u}(2 k) \sim c_{u} \pi_{u}^{k} k^{-5 / 2}$.

Phase transition

II. Largest blocks

Properties of $T_{M_{n}}$

$$
u<9 / 5 \quad u=9 / 5 \quad u>9 / 5
$$

$\mu^{y(u), u}(\{2 k\})$	$\sim c_{u} k^{-5 / 2}$	$\sim c_{u} \pi_{u}^{k} k^{-5 / 2}$
Variance	∞	$<\infty$
Galton- Watson tree	subcritical	critical

Tool: [Janson 2012] = extensive study of the degrees in GaltonWatson trees

Properties on trees give properties of maps.

Size $L_{n, k}$ of the k-th largest block

For $M_{n} \hookrightarrow \mathbb{P}_{n, u}$
$u<9 / 5$
$u=9 / 5$
$u>9 / 5$

Rough intuition

$$
u<9 / 5 \quad u=9 / 5 \quad u>9 / 5
$$

$\mu^{y(u), u}(\{2 k\})$
GaltonWatson tree
$\sim c_{u} k^{-5 / 2}$
$\sim c_{u} \pi_{u}^{k} k^{-5 / 2}$
critical

Dichotomy between situations:

- Subcritical: condensation, cf [Jonsson Stefánsson 2011];
- Supercritical: behaves as maximum of independent variables.

Results

III. Similar model: quadrangulations

Quadrangulations

Def: map with all faces of degree 4.

Simple quadrangulation $=$ no multiple edges.
Size $|\mathfrak{q}|=$ number of faces.

$$
|V(\mathfrak{q})|=|\mathfrak{q}|+2,|E(\mathfrak{q})|=2|\mathfrak{q}| .
$$

Construction of a quadrangulation from a simple core

Construction of a quadrangulation from a simple core

Construction of a quadrangulation from a simple core

Block tree for a quadrangulation

With a weight u on blocks: $Q(z, u)=u S\left(z Q^{2}(z, u)\right)+1-u$
Remember: $M(z, u)=u B\left(z M^{2}(z, u)\right)+1-u$

Tutte's bijection

Map

Quadrangulation

[Tutte 1963]

Tutte's bijection for 2-connected maps

Cut vertex => multiple edge
2-connected maps <=> simple quadrangulations

Block trees under Tutte's bijection

29/47

Implications on results

$$
\text { We choose: } \mathbb{P}_{n, u}(\mathfrak{q})=\frac{u^{\# b l o c k s(\mathfrak{q})}}{Z_{n, u}} \text { where }
$$

$u>0$,
$\mathbb{Q}_{n}=\{$ quadrangulations of size $n\}$,
$\mathfrak{q} \in \mathbb{Q}_{n}$,
$Z_{n, u}=$ normalisation.

Results on the size of (2-connected) blocks can be transferred immediately for quadrangulations and their simple blocks.

Results

For $M_{n} \hookrightarrow \mathbb{P}_{n, u}$	$u<9 / 5$	$u=9 / 5$	$u>9 / 5$
Enumeration	$\rho(u)^{-n} n^{-5 / 2}$	$\rho(u)^{-n} n^{-5 / 3}$	$\rho(u)^{-n} n^{-3 / 2}$
Size of - the largest block - the second one	$\sim\left(1-\mathbb{E}\left(\mu^{427, u}\right)\right) n$	$\Theta\left(n^{2 / 3}\right)$	
Scaling limit of M_{n}			

IV. Scaling limits

Scaling limits

Convergence of the whole object considered as a metric space (with the graph distance), after renormalisation.

$M_{n} \hookrightarrow \mathbb{P}_{n, u}$
What is the limit of the sequence of metric spaces $\left(\left(M_{n}, d / n^{?}\right)\right)_{n \in \mathbb{N}}$?
(Convergence for Gromov-Hausdorff metric)

Scaling limits of Galton-Watson trees

Scaling limits of Galton-Watson trees

Theorem For $M_{n} \hookrightarrow \mathbb{P}_{n, u^{\prime}}$

- If $u>9 / 5, \frac{c_{3}(u)}{n^{1 / 2}} T_{M_{n}} \rightarrow \mathscr{T}_{e}$.
- If $u=9 / 5, \frac{c_{2}}{n^{2 / 3}} T_{M_{n}} \rightarrow \mathscr{T}_{3 / 2}$.

Proof

- Scaling limit of critical Galton-Watson trees with finite variance [Aldous 1993, Le Gall 2006];
- Scaling limit of critical Galton-Watson with infinite variance and nice tails [Duquesne 2003].

Scaling limit of supercritical and critical maps

Theorem For $M_{n} \hookrightarrow \mathbb{P}_{n, u^{\prime}}$

- If $u>9 / 5$,

$$
\frac{C_{3}(u)}{n^{1 / 2}} M_{n} \rightarrow \mathscr{T}_{e} .
$$

- If $u=9 / 5$,

$$
\frac{C_{2}}{n^{2 / 3}} M_{n} \rightarrow \mathscr{T}_{3 / 2}
$$

[Stufler 2020]

Supercritical and critical cases (1)

Difficult part = show that distances in \mathfrak{m} behave like distances in $T_{\mathfrak{m}}$. We show

$$
\forall e_{1}, e_{2} \in \vec{E}\left(M_{n}\right), d_{M_{n}}\left(e_{1}, e_{2}\right) \simeq \kappa d_{T_{M_{n}}}\left(e_{1}, e_{2}\right)
$$

Supercritical and critical cases (2)

Let $\kappa=\mathbb{E}$ ("diameter" bipointed block). By a "law of large numbers"-type argument

$$
d_{M_{n}}\left(e_{1}, e_{2}\right) \simeq \kappa d_{T_{M_{n}}}\left(e_{1}, e_{2}\right)
$$

Scaling limits of subcritical maps

Theorem If $u<9 / 5$, for $M_{n} \hookrightarrow \mathbb{P}_{n, u}$ a quadrangulation,

$$
\frac{C_{1}(u)}{n^{1 / 4}} M_{n} \rightarrow \delta_{e} .
$$

Moreover, M_{n} and its simple core converge jointly to the same Brownian sphere.

We expect the same scaling limits for maps but the scaling limit of 2-connected maps is not yet proved.

See [Addario-Berry, Wen 2019] for a similar result and method

Subcritical case (1)

Diameters of decorations $=o\left(n^{1 / 4}\right)$.

Diameter of a decoration \leq number of blocks \times max diameter of blocks

$$
\leq \operatorname{diam}\left(T_{M_{n}}\right) \times\left(O\left(n^{2 / 3}\right)\right)^{1 / 4+\delta}=\operatorname{diam}\left(T_{M_{n}}\right) \times O\left(n^{1 / 6+\delta}\right)
$$

$$
\left.\begin{array}{|c}
T_{M_{n}} \text { is a subcritical } \\
\text { Galton-Watson tree }
\end{array}\right\}=O\left(n^{1 / 6+2 \delta}\right)=o\left(n^{1 / 4}\right) .
$$

[Chapuy Fusy Giménez Noy 2015]

Subcritical case (2)

Scaling limit of uniform $\sim\left(\right.$ rescaled by $n^{1 / 4}$)

- 2-connected maps = brownian sphere (assumed);
- Simple quadrangulations = Brownian sphere [Addario-Berry Albenque 2017].

Results

For $M_{n} \hookrightarrow \mathbb{P}_{n, u}$	$u<9 / 5$	$u=9 / 5$	$u>9 / 5$
	$\rho(u)^{-n} n^{-5 / 2}$	$\rho(u)^{-n} n^{-5 / 3}$	$\rho(u)^{-n} n^{-3 / 2}$
Size of - the larges block the second one	$\begin{gathered} \sim\left(1-\mathbb{E}\left(\mu^{427, u}\right)\right) n \\ \Theta\left(n^{2 / 3}\right) \\ \text { [susuler } 20200 \end{gathered}$	$\Theta\left(n^{2 / 3}\right)$	
Scaling limit of M_{n}		$\begin{aligned} & \frac{C_{2}}{n^{1 / 3}} M_{n} \rightarrow \mathscr{J}_{3 / 2} \\ & \\ & \text { Naty } \end{aligned}$	

V. Perspectives

Extension to other models

[Banderier, Flajolet, Schaeffer, Soria 2001]:
Table 3. Composition schemas, of the form $\mathcal{M}=\mathcal{C} \circ \mathcal{H}+\mathcal{D}$, except the last one where $\mathcal{M}=(1+\mathcal{M}) \times(\mathcal{C} \circ \mathcal{H})$.

maps, $M(z)$	cores, $C(z)$	submaps, $H(z)$	coreless, $D(z)$
all, $M_{1}(z)$	bridgeless, $M_{2}(z)$	$z /(1-z(1+M))^{2}$	$z(1+M)^{2}$
loopless $M_{2}(z)$	or loopless	simple $M_{3}(z)$	$z(1+M)$
all, $M_{1}(z)$	nonsep., $M_{4}(z)$	$z(1+M)^{2}$	-
nonsep. $M_{4}(z)-z$	nonsep. simple $M_{5}(z)$	$z(1+M)$	-
nonsep. $M_{4}(z) / z-2$	3-connected $M_{6}(z)$	M	-
bipartite, $B_{1}(z)$	bip. simple, $B_{2}(z)$	$z(1+M)$	$z+2 M^{2} /(1+M)$
bipartite, $B_{1}(z)$	bip. bridgeless, $B_{3}(z)$	$z /(1-z(1+M))^{2}$	$z(1+M)^{2}$
bipartite, $B_{1}(z)$	bip. nonsep., $B_{4}(z)$	$z(1+M)^{2}$	-
bip. nonsep., $B_{4}(z)$	bip. ns. smpl, $B_{5}(z)$	$z(1+M)$	-
singular tri., $T_{1}(z)$	triang., $z+z T_{2}(z)$	$z(1+M)^{3}$	-
triangulations, $T_{2}(z)$	irreducible tri., $T_{3}(z)$	$z(1+M)^{2}$	-

Critical window?

Phase transition very sharp => what if $u=9 / 5 \pm \varepsilon(n)$?

- Block size results still hold if $u_{n}=9 / 5-\varepsilon(n), \varepsilon^{3} n \rightarrow \infty$;
- For $u_{n}=9 / 5+\varepsilon(n)$, conjecture $L_{n, 1} \sim 2.7648 \varepsilon^{-2} \ln \left(\varepsilon^{3} n\right)$ when $\varepsilon^{3} n \rightarrow \infty$ (analogous to [Bollobás 1984]'s result for Erdős-Rényi graphs!);
- Results exist for scaling limits in ER graphs [Addario-Berry, Broutin, Goldschmidt 2010], open question in our case.

Perspectives

$$
\text { For } M_{n} \hookrightarrow \mathbb{P}_{n, u} u<9 / 5 \quad \begin{array}{cc}
u_{n}=9 / 5-\varepsilon(n) \\
\varepsilon^{3} n \rightarrow \infty & u=9 / 5
\end{array} \begin{gathered}
u_{n}=9 / 5+\varepsilon(n) \\
\varepsilon^{3} n \rightarrow \infty
\end{gathered} \quad u>9 / 5
$$

$L_{n, 1}$	$\sim\left(1-\mathbb{E}\left(\mu^{4 / 27, u}\right)\right) n$			
$L_{n, 2}$	$\Theta\left(n^{2 / 3}\right)$			
Scaling limit of M_{n}	$\begin{gathered} \varepsilon(n)=n^{-\alpha} \\ \hline \frac{C_{1}(u)}{n^{1 / 4}} M_{n} \rightarrow \mathcal{\delta}_{e} \frac{C_{4}}{n^{(1-\alpha) / 4}} M_{n} \rightarrow \delta_{e} \end{gathered}$ Admitting the convergence of 2 -connected maps towards the brownian map	$\frac{C_{2}}{n^{1 / 3}} M_{n} \rightarrow \mathscr{T}_{3 / 2}$	stable tree?	$\frac{C_{3}(u)}{n^{1 / 2}} M_{n} \rightarrow \mathscr{T}_{e}$

Thank you!

