
Lecture notes on the Liouville quantum gravity
metric

Ewain Gwynne

Lecture notes for a mini course given at the Mini-school on Universality in Mathemat-
ical Physics, Lyon, Sept. 26-30, 2022.

Plan for the lectures:

� Definition of and motivation for Liouville quantum gravity: random fractal sur-
faces.

� Definition of the LQG metric.

� Techniques for proving things about the metric.

� Open problems.

� No prior background on LQG necessary to define and study the metric, or to
understand the lectures.

Main references:

� Introductory articles on LQG [Gwy20b,She22].

� Book in progress on LQG [BP].

� Survey article on LQG metric [DDG21].

� Original papers on the construction of the LQGmetric [DDDF20,GM20b,DFG+20,
GM20a,GM21b].

� I have a list of exercises on LQG and related topics which I can provide on request
(probably too difficult if you have just followed this mini course).
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1 Discrete motivation

� What is the most natural way of choosing a random curve in R2?

� Not obvious since the space of all curves is infinite-dimensional.

� Solution: consider random walk on Z2, take an appropriate limit, get Brownian
motion.

Figure 1: Left. One possible representation of a planar map. Other representations
of the same planar map can be obtained by applying an orientation-preserving home-
omorphism from R

2 to R2. Right. Simulation of a large uniform triangulation which
has been drawn in R3 in such a way that the embedding is, in a certain sense, as close
as possible to preserving graph distances, made by J. Bettinelli. This can be viewed
as a visual representation of the LQG metric space for γ =

√
8/3.

� What is the most natural way of choosing a random surface (2d Riemannian
manifold)?

� Answer is provided by the theory of LQG.

� Could try discrete approximations: random planar maps.

� A planar map is a graph embedded in the plane, viewed modulo orientation-
preserving homeomorphisms.

� Discrete surface: give each face the Riemannian metric of a polygon with unit
side length, identify the polygons along the edges in a length-preserving way.

� Random planar maps.
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– Uniform: look at all possible planar maps with n edges, choose one so that
each possibility is assigned equal probability. Can also consider triangula-
tions, quadrangulations, etc.

– Decorated: consider a pair (M,T ), where M is a planar map with n edges
and T is a spanning tree. Choose one uniformly at random. The marginal
law of M is not uniform, but rather weighted by number of spanning trees.
Similarly, can consider other decorations (Ising model, various special ori-
entations, etc.).

� How to take a scaling limit of random planar maps?

� A planar map has ameasure (counting measure) and ametric (graph distance).

� Gromov-Hausdorff-Prokhorov topology: natural topology on the space of
compact metric measure spaces.

� Embed the map in some canonical way (Riemann uniformization, circle packing,
Tutte embedding, etc.), then take a limit of measure and metric on the plane.

� Hence, we want our limiting objects to be defined as random metric measure
spaces parametrized by (subsets of) the plane.

� Convergence only proven for uniform random planar maps (Le Gall, Miermont,
Miller-Sheffield, Holden-Sun). Still open for weighted models.

2 Definition of LQG via the Gaussian free field

� We want to define a “random Riemannian metric” on the plane which describes
the scaling limit of random planar maps.

� Isothermal coordinates: in local coordinates, metric takes the form

ef (dx2 + dy2)

for some function f : C→ R.

� Area measure µf = ef dx dy

� Length of a path P : lenf (P ) =
∫ 1

0
ef(P (t))/2|P ′(t)| dt.

� Distance: Df (z, w) = infP :z→w lenf (P ).

� Need to make a random choice of f .

� David-Distler-Kawai (DDK) ansatz: f should be a version of the planar Gaussian
free field (GFF).
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Definition 1. The whole-plane Gaussian free field (GFF) is the centered Gaus-
sian random function with covariance function

Cov(h(z), h(w)) = GC(z, w) := log
max{|z|, 1}max{|w|, 1}

|z − w|
.

� Not defined pointwise, but makes sense as a generalized function (distribution).

� For “sufficiently nice” functions ϕ : C → R, the integral
∫
C
h(z)ϕ(z) d2z is cen-

tered Gaussian with

Var

∫
C

h(z)ϕ(z) d2z =

∫
C×C

ϕ(z)ϕ(w)G(z, w) d2z d2w.

� Similarly, we can define circle average Cr(z) = average of h over ∂Br(z).

� Scale / translation invariance modulo additive constant: for any z ∈ C and r > 0,

h(r ·+z)− Cr(z)
d
= h.

Definition 2. For γ ∈ (0, 2], the γ-Liouville quantum gravity surface described
by h is the random Riemannian manifold parametrized by U with Riemannian metric
tensor

eγh(dx2 + dy2).

� Doesn’t make literal sense.

� Expected to describe scaling limits of random planar maps.

– γ =
√
8/3: uniform.

– γ =
√
2: spanning tree decorated.

– γ =
√
3: critical Ising decorated.

– γ = 2: discrete GFF decorated.

� Remark: strictly speaking, the scaling limits of random planar maps are de-
scribed not by eγh (dx2+dy2) but by eγh̃ (dx2+dy2), where h̃ is a special variant of
the Gaussian free field corresponding to the so-called quantum sphere [DKRV16,

DMS21]. However, h and h̃ have the same local behavior, in the sense of local
absolute continuity. So, most geometric features of LQG are the same with h
instead of h̃.
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3 Motivation

String theory (Polyakov, 1980’s):

� A string is a path in Rn which evolves in time.

� Two parameters: parametrization of string + time.

� Traces out a “surface” in Rn (allowed to have self-intersections).

� To analyze this, Polyakov wanted to develop a notion of “sums over surfaces”
analogous to Feynman path integral (which can be thought of as a “sum over
paths”).

� Need a notion of “random surfaces weighted by the number of possible embed-
dings into Rn”.

� Polyakov argued that this should correspond to LQG with

n = 25− 6

(
2

γ
+

γ

2

)2

.

� n is typically called the “matter central charge” and is denoted by cM.

� For γ ∈ (0, 2], we have cM ∈ (−∞, 1]: “embedding into space of dimension ≤ 1”.

� To get embedding into Rn for n ≥ 2, need a complex value of γ with |γ| = 2.

� We are just starting to understand LQG in this case (more on this later).

Conformal field theory:

� LQG is closely related to Liouville conformal field theory.

� Simplest example of a CFT with non-rational spectrum.

� Studied rigorously by Kupiainen-Rhodes-Vargas, et. al. [Var17,KRV20,DKRV16].

� Source of exact formulas for objects related to LQG.

Relationships to other random objects:

� Schramm-Loewner evolution: quantum zipper [She16], mating of trees [DMS21];
see [GHS19] for a survey of this work and its applications.

� Random planar maps (rigorously): convergence for γ =
√

8/3, to be discussed
later; other values of γ via “peanosphere convergence”.
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� Random fractals: dimension / exponent computations via the KPZ formula [KPZ88,
DS11,RV11,GHM20]. For example, this was used by Duplantier-Kwon [DK88]
to predict the Brownian intersection exponents before they were rigorously com-
puted by Lawler-Schramm-Werner [LSW01a,LSW01b].

� Random matrix theory: LQG measure describes limit of characteristic polyno-
mial for various random matrix models (see, e.g., [Web15,BF22]).

� Random permutations: limits of various random permutations can be expressed
in terms of LQG, e.g. [Bor21,BHSY22,BGS22].

4 LQG area measure

� We want to define area measure and metric associated with LQG.

� Let {hε}ε>0 be a family of continuous functions which approximate h, define
objects with hε instead of h, take a limit as ε → 0.

� For concreteness, let pt(z) :=
1

2πt
e−|z|2/2t and define

h∗
ε(z) := (h ∗ pε2/2)(z) =

∫
C

h(w)pε2/2(z − w) d2w.

� Varh∗
ε(z) ∼ log ε−1.

� h∗
ε → h as ε → 0.

Theorem 3 (Kahane [Kah85], Duplantier-Sheffield [DS11], et. al.). The random mea-
sures εγ

2/2eγh
∗
ε(z) d2z a.s. converge weakly to a limiting measure µh, called the LQG

area measure.

� µh(open) > 0, µh(point) = 0, mutually singular with respect to Lebesgue mea-
sure.

� Should be scaling limit of counting measure on embedded random planar maps.

� LQG coordinate change: [DS11] suppose ϕ : V → U is a conformal map.
Then ϕ∗µh̃ = µh, where

h̃ = h ◦ ϕ+Q log |ϕ′|, Q =
2

γ
+

γ

2
.

� “Two different parametrizations of the same LQG surface”.

6



Figure 2: Left. Simulation of an LQG metric ball for γ = 1.75. Colors indicate the
distance to the center point and the black curves are geodesics from the center point
to other points in the ball. Right. Simulation of a supercritical LQG metric ball for
ξ = 2. Both simulations were made by A. Bou-Rabee.

5 LQG metric

� We want to use a similar procedure to construct the LQG metric.

� Let ξ > 0 to be chosen later (depending on γ).

� For ε > 0, let

Dε
h(z, w) = inf

P :z→w

∫ 1

0

eξh
∗
ε(P (t))|P ′(t)| dt,

where the infimum is over piecewise C1 paths from z to w.

� We want to take a limit of Dε
h as ε → 0 to get the LQG metric.

� What should ξ be?

� Scaling areas by C ⇔ adding 1
γ
logC to h ⇔ scaling distances by Cξ/γ.

� γ/ξ should be the “dimension” of LQG.

� ∃ dγ > 2 such that for random planar maps in the γ-LQG universality class,
#Br(typical vertex) ≈ rdγ when r is large [DZZ19,DG18].
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� dγ is the “dimension” of the random planar map.

� Not known explicitly except that d√
8/3

= 4 (comes from results for uniform

random planar maps).

� Watabiki [Wat93] prediction:

dWat
γ = 1 +

γ2

4
+

1

4

√
(4 + γ2)2 + 16γ2,

disproven in [DG19], but from numerical simulations is “close” to the actual value
of dγ [AB14,BB19].

� Alternative guess due to Ding-Gwynne [DG18]:

dDG
γ = 2 +

γ2

2
+

γ√
6
.

Not disproven rigorously, but believed to be false (see, e.g., [DGS21]).

� We want γ/ξ = dγ, i.e.,

ξ =
γ

dγ
.

� A posteriori, can show that dγ is the Hausdorff dimension of the LQG metric
space [GP19b].

� Note: relationship between ξ and γ is not known explicitly.

� How to scale Dε
h to get a non-trivial limit?

� For ε > 0, let

aε = aε(ξ) = median of Dε
h-distance across [0, 1]2.

Proposition 4 (Ding-Gwynne [DG18]). For ξ = γ/dγ, we have aε = ε1−ξQ+o(1) as
ε → 0, where Q = 2/γ + γ/2.

Theorem 5 (Ding-Dubédat-Dunlap-Falconet [DDDF20]). The random metrics {a−1
ε Dε

h}ε>0

are tight with respect to the topology of uniform convergence on compact subsets of
C×C. Every subsequential limit is a random metric on C (not a pseudometric) which
induces the same topology as the Euclidean metric.

Theorem 6 (Gwynne-Miller [GM21b]). The subsequential limit is uniquely character-
ized by a list of axioms, and one has a−1

ε Dε
h → Dh in probability as ε → 0.

� The limiting object is defined to be the Liouville quantum gravity metric.
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� Convergence is much harder than for the measure since the minimizing path
depends on ε.

� Proofs of tightness and uniqueness are quite involved, but use only basic properties
of the GFF : nothing about LQG measure, relationship to SLE, relationship to
random planar maps, exact formulas, special LQG surfaces, etc.

� Euclidean topology, but very different geometry.

� Hausdorff dimension dγ > 2 [GP19b].

� ∃ LQG geodesic (length-minimizing path) between any two points (take limit of
Dε

h-geodesic).

� Confluence of geodesics [GM20a].

� Metric ball boundary is fractal, infinitely many connected components [Gwy20a,
GPS22].

� LQG coordinate change: [GM21a] Let ϕ : U → V be a conformal map. Then
a.s.

Dh̃(z, w) = Dh|V (ϕ(z), ϕ(w)), ∀z, w ∈ U where h̃ = h◦ϕ+Q log |ϕ′|, Q =
2

γ
+
γ

2
.

� Same coordinate change rule as for µh.

6 Miller-Sheffield construction and convergence of

uniform random planar maps

� Miller-Sheffield [MS20,MS21a,MS21b]: Earlier construction of the LQG metric
for γ =

√
8/3.

� Use a process called quantum Loewner evolution to build a candidate for
LQG metric balls.

� Show that there is a unique metric with these metric balls.

� Relies on special symmetries for γ =
√

8/3, does not generalize to other values
of γ.

Theorem 7 (Le Gall [Le 13], Miermont [Mie13]). Let Mn be a uniform quadrangu-
lation with n edges, µn = counting measure on vertices, Dn = graph distance. Then
(Mn, n

−1/4Dn, n−1µn) converges in law to a random metric measure space called the
Brownian map, w.r.t. the Gromov-Hausdorff-Prokhorov topology.
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� Also works for other uniform-type random planar maps, e.g., triangulations, un-
constrained face degree [BJM14].

Theorem 8 (Miller-Sheffield [MS21a]). For a special variant of the GFF called the
quantum sphere, the

√
8/3-LQG metric measure space constructed via quantum

Loewner evolution is isometric to the Brownian map.

Theorem 9 (Gwynne-Miller [GM21b]). The Miller-Sheffield
√

8/3-LQG metric coin-

cides the the limit of a−1
ε Dε

h for γ =
√

8/3.

� Hence, uniform random planar maps converge to
√

8/3-LQG in the Gromov-
Hausdorff-Prokhorov topology.

� Building on this, Holden and Sun showed that one also has convergence under
the so-called Cardy embedding [HS19].

� We don’t know how to see that γ =
√
8/3 is special directly from the properties

of a−1
ε Dε

h. Connection to uniform random planar maps has to go through Miller-
Sheffield construction.

� Random planar map convergence is still conjectural for γ ̸=
√

8/3.

7 The supercritical case

� The quantity ξ = γ/dγ is increasing in γ [DG18].

� So, γ/dγ ≤ 2/d2 ≈ 0.41.

� What happens when ξ > 2/d2?

� Can still define the approximating metrics Dε
h and the normalizing factors aε.

Theorem 10 (Ding-Gwynne [DG20, DG21c]). For all ξ > 0, the random metrics
a−1
ε Dε

h converge in probability with respect to the topology on lower semicontinuous
functions C×C→ R ∪ {∞} (weaker than local uniform topology).

� We say that z ∈ C is a singular point if

Dh(z, w) = ∞, ∀w ̸= z.

� For each fixed z ∈ C, a.s. z is not a singular point (singular points have zero
Lebesgue measure).

� A.s., for any two non-singular points z, w, we have Dh(z, w) < ∞ (typical points
lie at finite distance).
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� For ξ > 2/d2, the set of singular points is uncountable and Euclidean dense.

� Non-Euclidean topology.

� Metric balls have positive Lebesgue measure but empty Euclidean interior.

� For α > 0, an thick point of h is a point z such that lim supε→0 hε(z)/ log ε
−1 ≥

α.

� Singular points are (almost) the same as Q-thick points [Pfe21].

� In the critical case γ = 2, ξ = 2/d2, there are no singular points and the metric
induces the Euclidean topology [DG21b].

� For ξ > 2/d2, the metric Dh satisfies the LQG coordinate change rule with
Q ∈ (0, 2).

� If we choose γ = γ(ξ) so that Q = 2/γ + γ/2, then γ ∈ C with |γ| = 2.

� Central charge cM = 25− 6Q2 ∈ (1, 25). Note that positive integer values of cM
are important in Polyakov’s “evolving strings” story.

� cM ∈ (1, 25) is much more mysterious than cM ≤ 1 (i.e., γ ∈ (0, 2]), lots of open
questions about this phase of LQG. See Figure 3.

Level of
under-
standing

Other
stuff

Other
stuff

Metric Metric

cM ≤ 1 cM ∈ (1, 25)

Figure 3: Visual representation of our level of understanding of different aspects of
LQG. “Other stuff” includes the LQG measure, connections to random planar maps,
connections to SLE, connections to conformal field theory, etc.
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8 Axiomatic definition

� Suppose we are given a random metric on the plane, coupled with the GFF.
What properties would it need to satisfy for us to say that it is the LQG metric?

� Let us formalize the problem. Let h 7→ Dh be a measurable function

{generalized functions on C} → {metrics on C}.

� We require that whenever h is a GFF or a GFF plus a (possibly random) con-
tinuous function, the following is true.

1. Euclidean topology. Same topology as Euclidean metric.

2. Length metric. Dh(z, w) is the infimum of the Dh-lengths of paths from
z to w.

3. Locality. For U ⊂ C, define the internal metric by

Dh(z, w;U) = inf{Dh-length of P : P is a path in U from z to w}.

Then Dh(z, w;U) is a measurable function of h|U .
4. Weyl scaling. Almost surely, for each continuous function f : C→ R,

Dh+f (z, w) = inf
P :z→w

∫ Dh(z,w)

0

eξf(P (t)) dt,

where the infimum is over paths parametrized by Dh-length.

5. LQG coordinate change. Let a ∈ C \ {0}, b ∈ C. Almost surely,

Dh(a·+b)+Q log |a|

(
z − b

a
,
w − b

a

)
= Dh(z, w), ∀z, w ∈ C.

� At first glance, there seems to be a two-parameter family (ξ and Q), but one can
show that in fact ξ and Q must be related by ξ = γ/dγ, Q = 2/γ + γ/2 (rough
comparison to Dε

h).

Theorem 11 (Gwynne-Miller [GM21b]). Let D and D̃ be two metrics satisfying the

above axioms. There is a deterministic constant C > 0 such that a.s. Dh = D̃h

whenever h is a GFF or a GFF plus a continuous function.

� Does this imply the uniqueness of the subsequential limit of a−1
ε Dε

h?

� Euclidean topology proven by DDDF, length metric, locality, Weyl scaling easy
to check.
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� LQG coordinate change is a problem since if we scale space by C, we replace Dε
h

by DCε
h .

� This might give us a different subsequence.

� To get around this, we prove a stronger characterization theorem with LQG coor-
dinate change replaced by tightness across scales. Roughly speaking, this con-
dition says that we can get up-to-constants comparisons betweenDh(a·)+Q log |a|(z/a, w/a)
and Dh(z, w) with high probability.

� Most of the proofs are only slightly harder when we replace LQG coordinate
change by tightness across scales.

� Once tightness is proven, every proof about the LQG metric uses only the axioms
(we don’t need to go back to the definition of a−1

ε Dε
h).

� Existence of the metric can be taken as a black box.

9 Adding a bump function

� The following Cameron-Martin type lemma is one of the most useful tools for
studying the LQG metric (see, e.g., [BP, Proposition 1.29]).

Lemma 12. Let h be the whole-plane GFF and let f : C→ R be a compactly supported
function whose Dirichlet energy (f, f)∇ =

∫
C
|∇f(z)|2 d2z is finite. Then the laws of

h+ f and h are mutually absolutely continuous, and the Radon-Nikodym derivative of
the law of h+ f with respect to the law of h is

exp
(
(h, f)∇ − (f, f)2∇

)
.

� If we want to show that Dh does something with positive probability, we just
need to find a suitable bump function f such that Dh+f has the desired behavior
with positive probability.

Lemma 13. Fix z, w ∈ C and let U ⊂ C be a deterministic open set which contains a
path from z to w. With positive probability, every Dh-geodesic from z to w is contained
in U .

Proof. Choose a deterministic smooth bump function f which is supported on a com-
pact subset of U and which is equal to 1 on a neighborhood of a path in U from z to
w. By Weyl scaling, if C is large then with high probability there is a path from z to
w which is contained supp f and whose Dh−Cf -length is much smaller than the Dh−Cf -
distance from supp f to ∂U . Thus every Dh−Cf -geodesic from z to w is contained in
U . By absolute continuity, it holds with positive probability that every Dh-geodesic
from z to w is contained in U .
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10 Independence of the GFF across disjoint con-

centric annuli

� One of the most important tools for studying the LQG metric is the following
lemma.

Lemma 14. Let h be a whole-plane GFF. For k ∈ N, let Ek be an event which is
determined by the restriction of h to the annulus B2−k(0) \ B2−k−1(0), viewed modulo
additive constant.

1. For each p ∈ (0, 1), there exists q = q(p) ∈ (0, 1) such that if P[Ek] ≥ p for each
k, then for each K ∈ N,

P[Ek occurs for at least one k ∈ {1, . . . , K}] ≥ 1− qK . (10.1)

2. For each q ∈ (0, 1), there exists p = p(q) ∈ (0, 1) such that if P[Ek] ≥ p for each
k, then for each K ∈ N, (10.1) holds.

� Show that h|B
2−k (0)\B2−k−1 (0) are approximately independent, apply concentration

for binomial(q,K) distribution.

� Idea originally due to Miller-Qian [MQ20], formulated precisely by Gwynne-
Miller [GM20b].

� Various improvements are possible.

– Replace B2−k(0) \ B2−k−1(0) by disjoint concentric annuli with uniformly
bounded aspect ratios.

– If q is close enough to 1, then Ek has to occur for “most” k ∈ {1, . . . , K}.

Lemma 15. For each γ ∈ (0, 2), there exists α = α(γ) > 0 and c = c(γ) > 0 such that
the following is true. For each z ∈ C and each ε > 0, the probability that there is a
Dh-geodesic between two points in C \Bε1/2(z) which enters Bε(z) is at most cεα.

Roughly speaking, Lemma 15 says that “most” points in C are not hit by Dh-
geodesics except at their endpoints. Lemma 15 immediately implies that the Hausdorff
dimension of the union of all of the LQG geodesics w.r.t. the Euclidean metric is strictly
less than 2. See [GP19b] for an explicit upper bound for the Hausdorff dimension of a
single LQG geodesic. Similar (but more complicated) ideas to the ones in the proof of
Lemma 15 are used in the proof of confluence of geodesics in [GM20a,DG21a].

Definition 16. For a Euclidean annulus A ⊂ C, we define Dh(across A) to be the
Dh-distance between the inner and outer boundaries of A. We define Dh(around A)
to be the infimum of the Dh-lengths of paths in A which separate the inner and outer
boundaries of A.

14



Both Dh(across A) and Dh(around A) are determined by the internal metric of Dh

on A, so by locality these quantities are a.s. determined by h|A.
For z ∈ C and r > 0, let

Er(z) := {Dh(around B3r(z) \B2r(z)) < Dh(across B2r(z) \Br(z))}. (10.2)

As noted above, Er(z) is a.s. determined by h|B3r(z)\Br(z). In fact, adding a constant
to h results in scaling Dh-distances by a constant (Weyl scaling), so adding a constant
to h does not affect whether Er(z) occurs. Hence Er(z) is a.s. determined by (h −
h4r(z))|B3r(z)\Br(z).

Lemma 17. There exists α = α(γ) > 0 and c = c(γ) > 0 such that for each z ∈ C
and each ε > 0,

P

[
∃r ∈

[
ε,
1

4
ε1/2

]
such that Er(z) occurs

]
≥ 1− cεα.

Proof. By the scale and translation invariance of the law of h, modulo additive constant,
P[Er(z)] does not depend on z or r. Using a “subtracting a bump function” argument,
one can show that p := P[E1(0)] > 0. Hence P[Er(z)] = p for each z ∈ C and r > 0.
We now apply Lemma 14 with K ≍ log ε−1 to get

P
[
∃r ∈ [ε, ε1/2] such that Er(z) occurs

]
≥ 1− qlog ε

−1

for q = q(p) ∈ (0, 1). This last quantity is at least 1 − cεα for an appropriate c, α >
0.

Proof of Lemma 15. By Lemma 17, it suffices to show that if there is an r ∈ [ε, 1
4
ε1/2]

such that Er(z) occurs, then no Dh-geodesic between two points in C \ Bε1/2(z) can
enter Bε(z). Indeed, assume that Er(z) occurs, let u, v ∈ C \ Bε1/2(z), and let P be a
path from u to v which hits Br(z) ⊃ Bε(z). We will show that P is not a Dh-geodesic.
By the definition (10.2) of Er(z), there is a path π in B3r(z)\B2r(z) which disconnects
the inner and outer boundaries of this annulus and has Dh-length strictly less than
Dh(across B2r(z) \Br(z)). Let σ (resp. τ) be the first (resp. last) time that P hits π.
Since P hits Br(z) and u, v /∈ B3r(z), the path P crosses between the inner and outer
boundaries of B2r(z) \Br(z) between times σ and τ . Hence(

Dh-length of P |[σ,τ ]
)
≥ Dh(across B2r(z) \Br(z)). (10.3)

But, since P (τ), P (σ) ∈ π,

Dh(P (σ), P (τ)) ≤ (Dh-length of π) < Dh(across B2r(z) \Br(z))

≤
(
Dh-length of P |[σ,τ ]

)
. (10.4)

This implies that P is not a Dh-geodesic since it is not the Dh-shortest path from P (σ)
to P (τ).
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Figure 4: Graph of best known upper and lower bounds for dγ as a function of γ. The

graphs meet only at (
√

8/3, 4).

11 Open problems

Gromov-Hausdorff limit of non-uniform random planar maps.

� Can compare distances up to polylog errors using mating of trees techniques,
see [GHS20]. No up-to-constants comparison, though.

Compute dγ.

� Reasonably good bounds by the following method: let λ(ξ) = 1 − ξQξ. Get
differential inequality for λ(ξ) from extremely crude estimates for Dε

h. Plug in
known values λ(0) = 0, λ(1/

√
6) = 1/6 (equivalent to d√

8/3
= 4) [DG18,GP19a,

Ang19]. See Figure 4, left.

� Lots of other quantities can be expressed in terms of dγ.

– Distance exponents for random planar maps [DG18].

– Optimal Hölder exponents for LQGmetric w.r.t. Euclidean metric [DFG+20].

– Dimension of metric ball boundary [Gwy20a].

What can be said about LQG geodesics?

� Euclidean dimension (even in terms of dγ)? Proven to be strictly bigger than 1
in [FG22].

� Any description of their laws?

� Miller-Qian: not SLE [MQ20].

Understand non-metric features of LQG in the supercritical case cM ∈ (1, 25).

� Analog of LQG measure (complex GMC)?
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� Analog of SLE (Loewner evolution driven by complex Brownian motion)?

� Planar map connection (local limit of high genus maps)?

� Any duality for different values of cM?

� Any nice interaction with n independent GFFs when cM = n is an integer?

See [GHPR20,DG21c] for more discussion.

References

[AB14] J. Ambjørn and T. G. Budd. Geodesic distances in Liouville quantum
gravity. Nuclear Physics B, 889:676–691, December 2014, 1405.3424.

[Ang19] M. Ang. Comparison of discrete and continuum Liouville first passage
percolation. Electron. Commun. Probab., 24:Paper No. 64, 12, 2019,
1904.09285. MR4029433

[BB19] J. Barkley and T. Budd. Precision measurements of Hausdorff dimen-
sions in two-dimensional quantum gravity. Classical Quantum Gravity,
36(24):244001, 24, 2019, 1908.09469. MR4063686

[BF22] P. Bourgade and H. Falconet. Liouville quantum gravity from random
matrix dynamics. ArXiv e-prints, June 2022, 2206.03029.

[BGS22] J. Borga, E. Gwynne, and X. Sun. Permutons, meanders, and SLE-
decorated Liouville quantum gravity. ArXiv e-prints, July 2022, 2207.02319.

[BHSY22] J. Borga, N. Holden, X. Sun, and P. Yu. Baxter permuton and Liouville
quantum gravity. ArXiv e-prints, March 2022, 2203.12176.

[BJM14] J. Bettinelli, E. Jacob, and G. Miermont. The scaling limit of uniform
random plane maps, via the Ambjørn-Budd bijection. Electron. J. Probab.,
19:no. 74, 16, 2014, 1312.5842. MR3256874

[Bor21] J. Borga. The skew Brownian permuton: a new universality class
for random constrained permutations. ArXiv e-prints, November 2021,
2112.00156.

[BP] N. Berestycki and E. Powell. Gaussian free field, Liouville quantum grav-
ity, and Gaussian multiplicative chaos. Available at https://homepage.

univie.ac.at/nathanael.berestycki/Articles/master.pdf.
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mating of trees. Astérisque, (427):viii+257, 2021, 1409.7055. MR4340069

[DS11] B. Duplantier and S. Sheffield. Liouville quantum gravity and KPZ. Invent.
Math., 185(2):333–393, 2011, 1206.0212. MR2819163 (2012f:81251)

18

http://arxiv.org/abs/2109.01252
http://arxiv.org/abs/1905.00380
http://www.ams.org/mathscinet-getitem?mr=4146541
http://arxiv.org/abs/1807.01072
http://arxiv.org/abs/1610.09998
http://www.ams.org/mathscinet-getitem?mr=4011862
http://arxiv.org/abs/2005.13576
http://arxiv.org/abs/2104.06502
http://arxiv.org/abs/2108.12067
http://arxiv.org/abs/2110.00177
http://arxiv.org/abs/2005.13570
http://www.ams.org/mathscinet-getitem?mr=4344137
http://arxiv.org/abs/1410.7318
http://www.ams.org/mathscinet-getitem?mr=3465434
http://arxiv.org/abs/1409.7055
http://www.ams.org/mathscinet-getitem?mr=4340069
http://arxiv.org/abs/1206.0212
http://www.ams.org/mathscinet-getitem?mr=2819163


[DZZ19] J. Ding, O. Zeitouni, and F. Zhang. Heat kernel for Liouville Brownian
motion and Liouville graph distance. Comm. Math. Phys., 371(2):561–618,
2019, 1807.00422. MR4019914

[FG22] Z. Fan and S. Goswami. Roughness of geodesics in Liouville quantum
gravity. ArXiv e-prints, May 2022, 2205.00676.

[GHM20] E. Gwynne, N. Holden, and J. Miller. An almost sure KPZ relation for
SLE and Brownian motion. Ann. Probab., 48(2):527–573, 2020, 1512.01223.
MR4089487

[GHPR20] E. Gwynne, N. Holden, J. Pfeffer, and G. Remy. Liouville quantum gravity
with matter central charge in (1, 25): a probabilistic approach. Comm.
Math. Phys., 376(2):1573–1625, 2020, 1903.09111. MR4103975

[GHS19] E. Gwynne, N. Holden, and X. Sun. Mating of trees for random planar
maps and Liouville quantum gravity: a survey. Panoramas et Syntheses,
to appear, 2019, 1910.04713.

[GHS20] E. Gwynne, N. Holden, and X. Sun. A mating-of-trees approach for graph
distances in random planar maps. Probab. Theory Related Fields, 177(3-
4):1043–1102, 2020, 1711.00723. MR4126936

[GM20a] E. Gwynne and J. Miller. Confluence of geodesics in Liouville quantum
gravity for γ ∈ (0, 2). Ann. Probab., 48(4):1861–1901, 2020, 1905.00381.
MR4124527

[GM20b] E. Gwynne and J. Miller. Local metrics of the Gaussian free field. Ann.
Inst. Fourier (Grenoble), 70(5):2049–2075, 2020, 1905.00379. MR4245606

[GM21a] E. Gwynne and J. Miller. Conformal covariance of the Liouville quantum
gravity metric for γ ∈ (0, 2). Ann. Inst. Henri Poincaré Probab. Stat.,
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