REVIEW: The swampland program

Severin Lüst

Harvard University

Théorie, Univers et Gravitation Montpellier, 5 octobre 2022

REVIEW: The swampland program

OUTLINE:

- Introduction & Motivation
- Overview of some "Swampland Conjectures"

LITERATURE:

- Eran Palti,
 "The Swampland: Introduction and Review," arXiv:1903.06239.
- Irene Valenzuela et al.,
 "Lectures on the Swampland Program in String Compactifications," arXiv:2102.01111.

STRING THEORY

String Theory:

Consistent Theory of Quantum Gravity

Mathematical Consistency

Compactification:

4D physics from 10D string theory 10 spacetime dimensions

6 small + compact "internal" dimensions

STRING THEORY LANDSCAPE

Compactification geometry:

many possible choices

(e.g. Calabi-Yau geometries)

each has different 4D physics

→ $\mathcal{O}(10^{500})$ string theory vacua & effective 4D models

THE LANDSCAPE

PREDICTIONS FROM THE LANDSCAPE?

► Problem:

Which vacuum do we live in?

- Realistic string theory vacua:
 - Standard model gauge group + matter
 - Dark energy: Small, positive cosmological constant
 - Dark matter
 - Inflation
 - Supersymmetry breaking
 - etc.

How to find such vacua?

Do they exist at all?

Predictability?

Anthropic principle?

STRING INSPIRED MODEL BUILDING

Idea: try to solve these problems individually!

 Combine characteristic features of string compactifications (e.g. susy, extra-dimensions, ...) in 4d-EFT language

Enormous size of the Landscape High probability that a given "string inspired" model exists!

More systematic approach:

Which consistent (e.g. anomaly free) EFTs can be realized in the String Theory Landscape?

Maybe all? Answer: No!

— Swampland Program!

THE SWAMPLAND IDEA

Constraints on Effective Field Theories (EFTs) that can be consistently obtained from String Theory

Landscape: EFTs with a String Theory origin

Swampland:

seemingly consistent EFTs that do not arise from String Theory

THE SWAMPLAND IDEA

Constraints on Effective Field Theories (EFTs) that can be UV completed to Quantum Gravity

Landscape: EFTs with a Quantum Gravity UV completion

Swampland:

seemingly consistent EFTs that do not arise from Quantum Gravity

SWAMPLAND & LANDSCAPE

(taken from [van Beest, Calderón-Infante, Mirfendereski, Valenzuela '21])

SWAMPLAND CONJECTURES

Constraints that determine which Effective Field Theories allow for a String Theory or Quantum Gravity UV-completion

How to obtain Swampland Conjectures?

Top-Down: Inspection of known String Theory examples.

Bottom-Up:Consistency arguments from semi-classical
black holes.

SOME SWAMPLAND CONJECTURES

Conjecture:

There are no exact global symmetries in Quantum Gravity.

→ All symmetries must be only approximate or gauged!

Motivation:

"No-hair theorem"

Properties of black-holes detectable from the outside:

- Mass
- angular momentum
- gauge (!) charge

[Arkani-Hamed, Motl, Nicolis, Vafa '06]

THE WEAK GRAVITY CONJECTURE

What about gauge symmetries?! charged BHs create EM-field \rightarrow gauge charge detectable from outside! **Q**gauge +qBH decay via Hawking radiation to uncharged BH only possible if:

Weak Gravity Conjecture:

There exists at least one state with a charge to mass ratio $\frac{|q|}{m} \ge \frac{1}{gM_{Pl}}.$

MAGNETIC WEAK GRAVITY CONJECTURE

Can we recover a global symmetry from a gauge symmetry by sending

Apply the Weak Gravity Conjecture to magnetic monopoles:

 $\exists \text{ monopole with:} \quad m_{mag} \lesssim g_{mag} M_{pl} \sim \frac{M_{Pl}}{\sigma},$

Magn

The cut-off scale of the EFT is bounded by $\Lambda_{FFT} \leq g M_{Pl}$.

 $\Rightarrow g \rightarrow 0$ is not possible!

[Arkani-Hamed, Motl, Nicolis, Vafa '06]

 $g \rightarrow 0$

mass of a monopole (instanton) in EFT:

$$m_{mag} \sim \frac{\Lambda_{EFT}}{g_{el}^2}$$

[Ooguri, Vafa '06]

String theory:

dynamical gauge couplings: VEVs of scalar fields:

$$g \sim e^{-\langle \phi \rangle}$$

Conjecture:

There are no dimensionless coupling constants in Quantum Gravity.

What happens in the limit $\phi \rightarrow \pm \infty$?!

Expectation from Weak Gravity Conjecture:

Breakdown of the EFT:

 $\Lambda_{EFT} \rightarrow 0$

INFINITE DISTANCE CONJECTURE

 $\mathcal{L} \supset -g_{ij}(\phi)\partial_{\mu}\phi^{i}\partial^{\mu}\phi^{j}$

[Ooguri, Vafa '06]

 σ -model Lagrangian:

Scalar field space / Moduli space:

 m_P

d(P,

coordinates on $\mathcal M$

use g_{ij} to define distances:

d(P, Q): geodesic distance between P and Q

Infinite Distance Conjecture:

There is an infinite tower of states that becomes exponentially light at any infinite field distance limit $m_O \sim m_P e^{-\lambda d(P,Q)}$ for $d(P,Q) \to \infty$

INFINITE DISTANCES AND COMPACTIFICATION

Example: Kaluza-Klein Theory on a circle

$$M_d = M_{d-1} \times S^1$$

► Tower of Kaluza-Klein modes:

Infinite Distance Conjecture: Asymptotic limits in <u>scalar field space</u>!

What about infinite distances in <u>space-time metric space</u>?

Conjecture:

Consider (A)dS space-time with cosmological constant Λ . In the infinite distance limit $\Lambda \to 0$ there is an infinite tower of massive states with masses $m \sim |\Lambda|^{\alpha}.$

Origin of the tower:

 KK-modes of internal space!
 Internal and external space have comparable scales!
 "No Scale Separation" String Theory: well-tested for SUSY AdS!

Recent proposal for dS: $\Lambda \approx 10^{-122} M_{Pl}^2$ \Rightarrow Extra dimension of size $l \sim \Lambda^{\frac{1}{4}} \sim 10^{-6}$ m

[Montero, Vafa, Valenzuela '22] 18

DE SITTER CONJECTURE

[Obied, Ooguri, Spodyneiko, Vafa '18]

 $V(\phi)$

Asymptotic limits in field space play a special role!

What about the scalar potential?

In string theory:

ory:
$$V(\phi) \sim e^{-\alpha \phi}$$
for $\phi \to \infty$

0

Conjecture:

The potential always satisfies the bound $|\nabla V| \ge \alpha V$ for some constant $\alpha \sim \mathcal{O}(1)$

Consequence: No (asymptotic) de Sitter vacua!

(minimum: $\partial_i V = 0$; de Sitter: V > 0)

Also in interior of field space? We don't know! Conjecture:

Sub-Planckian quantum fluctuations always remain quantum.

More precise formulation:

Consider an expanding phase of an FLRW universe. The initial and final scale factors a_i and a_f satisfy:

TRANS-PLANKIAN CENSORSHIP CONJECTURE (2) [Bedroya, Vafa '19]

Consequence of the TCC:

• de Sitter minima possible but unstable

Lifetime:
$$T \lesssim \frac{1}{H} \log \frac{M_{pl}}{H}$$

(for our Universe: $T \approx 10^{12}$ years)

• asymptotically $(\phi \to \infty)$: d = 4 $\frac{|\nabla V|}{V} \ge \frac{2}{\sqrt{(d-1)(d-2)}} = \sqrt{\frac{2}{3}}$ mild tension with single exponential quintessence

 \rightarrow reduces to dS conjecture

But: weaker in the interior of field space!

LANDSCAPE OF SWAMPLAND CONJECTURE

THANK YOU!