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Limitations and puzzles of the standard model

 Singularity


 Horizon


 Flatness


 Monopoles


 Validity of classical GR?
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FIGURE 5. The horizon problem. Left – spacetime diagram beginning at the Big-Bang (i.e. the sin-
gularity). Light emitted in A and B in all possible directions reach regions at the last scattering surface
(surface of decoupling when light stopped scattering and started propagating una⇥ected) that never were
in causal contact. Yet, they appear to have exactly the same physical properties. Right – Angular repre-
sentation of the same thing: the Big-Bang singularity is now represented from our point of view by the
infinite redshift sphere. Calculating the horizon size at decoupling gives one degree on the sky, which is
thus the maximla angular scale over which one might expect to measure an isotropic distribution.

absence of a dominating cosmological constant, deriving Eq. (24) with respect to the
scale factor yields

d�K
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whose solution, for a constant equation of state, reads
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where �ini
K = �K (aini). In order to observe now �K (aobs) ⇤< 0.1, one then needs to

demand that at equality (aobs/aeq ⌅ 104), |�eq
K | ⇤< 3⇥ 10�5. which represents already a

quite substantial amount of fine tuning if �K is to be an arbitrary initial condition. It
becomes even worse of course if one assumes initial conditions ought to be imposed at
the Big-Bang singularity itself, as the requirement then becomes |�Planck

K | ⇤< 10�60: this
is an unacceptably large amount of fine tuning!

Categories of solutions

There are nowadays two categories of solutions as far as I can tell, one widely ac-
cepted and usually set as part of the standard cosmological paradigm, namely inflation,
and a contender based on a bouncing phase. Inflation does not address the singularity
question, while a bounce is in danger of producing too much shear during the contrac-
tion. Moreover, inflation can be easily implemented using a simple scalar field, a de
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Standard paradigm: inflation!
Phase of accelerated expansion
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Standard Model Failures and inflationary solutions

Singularity
Horizon
Flatness

Homogeneity & Isotropy

Perturbations

Not solved... actually not addressed!

Bonus of the theory: superb predictions!!!
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accelerated expansion (inflation)
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can be made as big as one wishes

Initial Universe = very small patch

Accelerated expansion drives the shear to zero...
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Inflation: 

solves cosmological puzzles
uses GR + scalar fields [(semi-)classical]
can be implemented in high energy theories???
makes falsifiable predictions ...
... consistent with all known observations

Alternative model???
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From R. Brandenberger, in M. Lemoine, J. Martin & PP (Eds.), “Inflationary cosmology”,

Lect. Notes Phys. 738 (Springer, Berlin, 2007).

Singularity


 Trans-Planckian


 Hierarchy (amplitude)?


 Classical GR?
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Alternative model???

Inflation: 

solves cosmological puzzles
uses GR + scalar fields [(semi-)classical]
can be implemented in high energy theories???
makes falsifiable predictions ...
... consistent with all known observations

string based ideas (PBB, other brane models, string gas, …)
singularity, initial conditions & homogeneity

provide challengers / new ingredients!
Quantum gravity / cosmology

bouncing cosmology
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A brief history of bouncing cosmology

Many new ideas, models…

M. Novello & S.E. Perez Bergliaffa,  “Bouncing cosmologies”, Phys. Rep. 463, 127  (2008) 

R. C. Tolman,  “On the Theoretical Requirements for a Periodic Behaviour of the Universe”, PRD 38, 1758 (1931) 

G. Lemaître,  “L’Univers en expansion”, Ann. Soc. Sci. Bruxelles (1933) 

A. A. Starobinsky,  “On one non-singular isotropic cosmological model”, Sov. Astron. Lett. 4, 82 (1978) 
V. N. Melnikov, S.V. Orlov, Phys. Lett. A 70, 263 (1979).

 R. Durrer & J. Laukerman,  “The oscillating Universe: an alternative to inflation”, Class. Quantum Grav. 13, 1069 (1996) 
M. Novello & J. M. Salim, Phys. Rev.  D20, 377 (1979).

...
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Singularity pb no solved

D. Battefeld & PP, “A Critical Review of Classical Bouncing Cosmologies”, Phys. Rep. 571, 1  (2015)

R. Brandenberger & PP,  “Bouncing cosmologies: Progress and problems”, Found. Phys. (2017) 
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Singularity
Horizon
Flatness

Homogeneity

Isotropy
Others

Merely a non issue in the bounce case!

Potentially problematic: model dependent

dark matter/energy, baryogenesis, ...
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can be made divergent easily if
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 Large & flat Universe + low initial density + diffusion
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ȧ3

tdiffusion

tHubble
∝

λ

R1/3
H

(

1 +
λ

AR2
H

)

=⇒

6

enough time to dissipate any wavelength

T0a
3ω
0 ! 1500!Pl

nS = 0.96 ± 0.02 =⇒ w ∼< 8 × 10−4

! 0.62

T

S
=

C(T)
10

C(S)
10

= F (Ω, · · ·)
A2

T

A2
S

∝
√

w

T

S
! 4 × 10−2

√

nS − 1

dH ≡ a(t)

∫ t

ti

dτ

a(τ)

ti → −∞

d

dt
|Ω − 1| = −2

ä

ȧ3
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quantum vacuum fluctuations...
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PP & N. Pinto-Neto, Phys. Rev. D78, 063506 (2008) 

Standard Model Failures and bouncing solutions
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ĤAS

|Ainii �! |Aki

�k

| 
AS
i =

X

i

ci|'ii ⌦ |Ainii �!

X

i

(ci|'ii ⌦ |Aii)

1

inflation post-inflation
t

Hubble radius
horizon

=)

`Pl � / k
�1
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Singularity
Horizon
Flatness

Homogeneity

Isotropy
Others

Merely a non issue in the bounce case!

Potentially problematic: model dependent

dark matter/energy, baryogenesis, ...
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can be made divergent easily if
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indicating a high degree of fine-tuning. One might argue that such initial
conditions make no sense in the framework of GR.

Inflation solves this puzzle by adding a phase during which the scale fac-
tor grows quasi-exponentially, in such a way that the causal horizon grows
larger than any other physically relevant scale. The Hubble scale H�1 ⌘ a/ȧ

remains more or less constant, so the scale factor behaves roughly exponen-
tially, ainf / eHt, leading to an exponentially increasing horizon, i.e. dinf

H
⇠

H
�1eH�t, with �T the duration of the inflationary phase. It su�ces that

this duration be large enough, in practice H�T � 60, so that the resulting
horizon scale is much larger than the entire observable Universe today. More-
over, a given quantum fluctuation of wavelength � sourced in the far past can
start out smaller thanH

�1; due to its subsequent growth / a, the wavelength
becomes larger than H

�1, which remains roughly constant. Nevertheless, it
remains within the causal horizon, which grows tremendously: no scale ac-
tually ever becomes “super-horizon”. This is necessary for any consideration
in GR, including the setting of initial conditions, to make sense.

Bouncing models solve this puzzle in a completely di↵erent way. As
far as the background is concerned, consider a contracting phase between
tini < 0 and tend < 0 dominated by a perfect fluid with constant equation of
state parameter w, so that the scale factor behaves as acont / (�t)2/[3(1+w)];
we assume the bounce to take place at t = 0. The contribution of this
contracting phase to the horizon is (we correct a misprint in [322] from which
the argument is taken)

d
cont

H
=

3(1 + w)

1 + 3w
tend

"
1�

✓
tini

tend

◆(1+3w)/[3(1+w)]
#
, (15)

which can be made arbitrarily large for |tini| � |tend| provided that w >

�1/3.
As for the perturbations, we consider that quantum fluctuations are

sourced in the far past, deep within the horizon and the Hubble scale. The
horizon itself grows at all times, and it is possible to have it growing more
rapidly than the scale factor, so that a wavelength, initially smaller than
the horizon, remains so at all subsequent times. During a slow contrac-
tion, the wave modes stay approximately constant, whereas the Hubble scale
is rapidly shrinking as the bounce is approached; thus, modes which are
sourced by quantum mechanical fluctuations inside the Hubble radius be-
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Potentially problematic: model dependent

dark matter/energy, baryogenesis, ...

T0a
3ω
0 ! 1500!Pl

nS = 0.96 ± 0.02 =⇒ w ∼< 8 × 10−4

! 0.62

T

S
=

C(T)
10

C(S)
10

= F (Ω, · · ·)
A2

T

A2
S

∝
√

w

T

S
! 4 × 10−2

√

nS − 1

dH ≡ a(t)

∫ t

ti

dτ

a(τ)

ti → −∞

d

dt
|Ω − 1| = −2

ä
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TUG - Montpellier / 5 octobre 2022Figure 6: How a long contracting phase solves the flatness problem: behavior of the
relative curvature density during a bounce, ⌦K, as a function of conformal time ⌘. During
the contracting phase, the contribution of curvature to the total energy budget in the
Friedmann equation decreases steadily. It then increases tremendously at the bounce
(technically, it actually diverges when H ! 0), but then returns almost to its pre-bounce
negligible value, provided the bounce itself is su�ciently symmetric. If the elapsed time
since the bounce to today is smaller than the time elapsed during the contracting phase,
curvature still appears negligible today.

radiation dominated era, we have a(t) ⇠ t
1/2, so that |⌦K| / t / T

�2, indi-
cating that |⌦K| < 10�16 at T ⇡ 1010 K. That the value of this dimensionless
parameter ought to be so small compared to unity in the early Universe is
called the flatness problem [324].

Inflation solves this problem in a simple way: consider (18) and add, for
a su�ciently long period of time, a phase of accelerated (ä > 0) expansion
(ȧ > 0). In this case, d|⌦K|/dt < 0 and |⌦K| naturally evolves towards
small values. To ensure that |⌦K| ⌧ 1 today, one needs roughly 60 e-folds
of inflation if |⌦K| ⇠ 1 initially. At the end of a quasi-exponential phase
with ainf / eHt, (18) indicates that ⌦K = |K|H�2e�2H�t, again requiring

41

Critical density

for the conservation equation,

H2+K =
�
8�GN

3
⇥+
�

3

⇥
a2 (21)

for the constraint, and finally

H � =
⇤
�4�GN

3
(⇥+3p)+

�

3

⌅
a2. (22)

There exists a special solution, which happens to be realized in our Universe, at least
so seem to say the data, namely that for which the spatial curvatureK vanishes. It defines
a density, called the critical density ⇥c given by

⇥c ⇤
3H2

8�GN

=⌃ ⇥ ⇤ ⇥
⇥c
, (23)

in terms of which one can express all densities in a dimensionless way. For each fluid
component but the cosmological constant, one can set ⇥a = 8�GN⇥a/(3H2) = ⇥a/⇥c;
we also introduce an equivalent curvature "density" as ⇥K = �K/(a2H2) and finally
⇥� = �/(3H2), and then the Friedmann constraint simply reads:

⌥

a
⇥a+⇥�+⇥K = 1, (24)

so the Friedmann equation is understandable as an energy budget: all possible contri-
butions basically sum up to 100%! Numerically, the Hubble constant today is measured
to be of the order of H0 = 100hkm · s�1 ·Mpc�1, where h = 0.704± 0.025. Similarly,
the relative densities are also measured in units of the critical density, estimated as
⇥c ⌅ 1.9⇥ 10�29g · cm�3; they frequently are found expressed as ⇥0

i = ⇥
0
i h2 to account

for the indeterminacy of the Hubble expansion rate as well as on the density parameter
itself, the subscript “0” meaning the present-day value.

Special solution: matter and radiation

With a varying equation of state w(t) and a scale factor a(t), which is a monotonic
function of time, it is always possible to parameterize all functions of time as functions
of a, and in particular w. On can then formally integrate the conservation equation as

⇥[a(t)] = ⇥ini exp
⇧
�3
�

[1+w(a)]d lna
⌃
=

w⇧cst
⇥ini

�
a

aini

⇥�3(1+w)
, (25)

which gives an exact solution for the constant equation of state situation. This is pre-
cisely the case when matter (w = wm = 0) or radiation (w = wr =

1
3) dominates over

everything else. Eq. (25) then shows that matter scales as ⇥m ⌥ a�3, as expected from
mass conservation in an expanding volume, while radiation gets an extra power, scaling

Density parameter

22

�

fluctuations
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�2

V(  )

�
1

stable initial conditions
that make it through the bounce

Dark Energy Expansion

Ekpyrotic Phase

populated

Kinetic Phase

FIG. 8: Schematic of the potential for the Phœnix universe [149] during the dark energy domination. After the bounce, the
trajectory goes back up the hill to the plateau, but, due to the presence of an unstable direction, it will be displaced from the
initial trajectory. Initial values in the light blue region around the initial trajectory are su�cient to guarantee a successful next
bounce. Other initial values, on the other hand, lead to a big crunch. During the dark energy domination, quantum fluctuations
populate the red region. As long as the space-time region in which initial conditions lie within the blue patch grows from cycle
to cycle, universes are reborn out of their ashes. This is guaranteed in the cyclic model if dark energy domination lasts for at
least 60 e-folds.

⇤ (w⇤ = �1) curvature (wK = � 1

3
) or shear density

(w✓ = 1) evolves as

⇢I / a
�3(1+wI) . (24)

The Friedmann equation (6) which provides the time evo-
lution of the Hubble parameter including the above com-
ponents, reads

H
2 =

1

3


�3K

a2
+

⇢m0

a3
+

⇢r0

a4
+

⇢✓0

a6
+ ...+

⇢�0

a3(1+w�)

�

(25)
where we have considered a last contribution from a yet-
unknown constituent labeled � with equation of state pa-
rameter w�. In the absence of the latter constituent, it is
clear that when the universe contracts, i.e. when a ! 0,
the anisotropy term, / a

�6, rapidly becomes dominant:
if one starts with even a slightly perturbed FLRW uni-
verse, one might end up with a highly anisotropic Bianchi
solution unless the primordial shear was generated by
quantum vacuum fluctuations; in this case, scalar and
vector perturbations, regardless of their magnitude [346],
remain comparable [347]: the problem only arises in the
presence of primordial classical shear and it is absent in
inflationary models because any pre-existing anisotropy
is diluted. Fortunately, there is a simple mechanism to
solve the shear problem in a contracting universe: the
incorporation of an ekpyrotic phase.

A generic ekpyrotic scenario requires a scalar field �,
chosen to have canonical kinetic energy without higher

derivative interactions, that is set-up to roll down a steep,
negative potential V (�); a slow contraction ensues with
an equation of state parameter w� � 1, instead of an ac-
celerated expansion which occurs in the slow-roll poten-
tial of inflation. Hence, the scalar field dominates at some
point and anisotropies become suppressed in comparison.
Fig. 10 depicts such a generic ekpyrotic potential.
Let us illustrate this mechanism with a simple expo-

nential potential (which we will use for the calculation of
correlation functions in Sec. IV) as in [48],

V (�) ⇡ �V0e
�c�

, (26)

where15 c ⌘
p

2/p � 1, p ⌧ 1 and V0 > 0; the energy
density and pressure in the homogeneous case are given
by (10) As the field rolls down the steep, negative region
of the exponential potential, the scale factor exhibits a
power-law solution, similar to power-law inflation; this
solution, which causes a slow contraction of the universe,
is an attractor. As discussed below, in order to meet
the requirement of a nearly scale-invariant spectrum, the
potential must satisfy the fast roll condition,

✏ ⌘
✓

V

V,�

◆2

⌧ 1 , (27)

15
To suppress anisotropies one needs p > ⇢, that is c2 > 6, which

is identical to the requirement for having an atractor [348].
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PP & N. Pinto-Neto, Phys. Rev. D78, 063506 (2008) 
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Implementing a bounce
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Quantized scalar field effect model:
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Pre Big Bang scenario: 
M.Gasperini & G. Veneziano, Phys. Rep. 373, 1 (2003), hep-th/0207130 & hep-th/0703055


20 M. Gasperini and G. Veneziano

tions [44, 45]. With such potential V = V (φ) the string cosmology equations
can be rewritten in terms of a, φ, ρ = ρa3 and p = pa3 as follows [36, 37, 38]:

φ̇
2
− 3H2 − V (φ) = 2λ2

se
φ ρ,

Ḣ − Hφ̇ = λ2
s e

φ p,

2φ̈ − φ̇
2
− 3H2 + V (φ) −

∂V

∂φ
= 0. (12)

These equations are still invariant under the duality transformations (4),
(7) but, differently from Eq. (5), they admit regular and self-dual solutions.
We can also obtain exact analytical integrations for appropriate forms of the
potential V (φ), and for equations of state such that p/ρ can be written as
integrable function of a suitable time parameter [15].

Let us consider, as a simple example, the exponential potential V =
−V0 exp(2φ) (with V0 > 0), to be regarded here only as an effective, low-
energy description of the quantum-loop backreaction, possibly computable at
higher orders. Let us use, in addition, an equation of state (motivated by an-
alytical simulations concerning the equation of state of a string gas in back-
grounds with rolling horizons [46]) evolving between the asymptotic values
p = −ρ/3 at t → −∞ and p = ρ/3 at t → +∞, so as to match the low-energy
pre-and post-big bang solutions (10) and (8), respectively. The plot of the
corresponding solution (see [15] for the exact analytic form) is illustrated in
Fig. 2.

t

H
2

gS

Ρe
Φ

pe
Φ

PRE#BIGBANG POST#BIGBANG

V

Fig. 2. Example of smooth transition between a phase of pre-big bang inflation and
the standard radiation-dominated evolution.

The solution smoothly interpolates between the string perturbative vac-
uum at t → −∞ and the standard, radiation-dominated phase at constant
dilaton (described by Eq. (8)) at t → +∞, after a pre-big bang phase of grow-
ing curvature and growing dilaton described by Eq. (10). The dashed curves

22 M. Gasperini and G. Veneziano

Η

HE

gS
ΡE

aE

PRE"BIGBANG POST"BIGBANG

Fig. 3. Example of pre-big bang evolution represented in the E-frame, where the
scale factor is shrinking and the Hubble parameter HE is negative. The plots are
obtained from Eq. (14) with a0 = 0.8, φ0 = 0, ρ0 = 1, η0 = 1.

strong coupling, in a marked quantum regime. Nevertheless, an epoch of pre-
big bang inflation is able to solve the kinematical problems of the standard
scenario starting from different initial conditions which are not necessarily
unnatural [49] or unlikely [50] (see also [51] for a detailed comparison of the
pre-big bang versus post-big bang inflationary kinematics). A possible excep-
tion concerns the presence of primordial “shear”, which is not automatically
inflated away during the phase of pre-big bang evolution: the isotropization
of the three-dimensional spatial sections might require some specific post-big
bang mechanism (see e.g. the discussion of [52]), differently from the standard
inflationary scenario where the dilution of shear is automatic.

Quantum effects, in the pre-big bang scenario, can become important to-
wards the end of the inflationary regime. We can say, in particular, that the
monotonic growth of the curvature and of the string coupling automatically
“prepares” the onset of a typically “stringy” epoch at strong coupling. This
epoch could be characterized by the production of a gas of heavy objects
(such as winding strings [53, 54] or mini-black holes [55]) as well as light,
higher-dimensional branes [56]. In such a context the interaction (and/ or the
eventual collision) of two branes can drive a phase of slow-roll inflation [26],
as discussed in Sect. 3.

At this point of the cosmological evolution there are two possible alterna-
tives.

i) The phase of string/brane dominated inflation is long enough to dilute
all effects of the preceding phase of dilaton inflation, and to give rise to
an epoch of slow-roll inflation able to prepare the subsequent evolution,
according to the conventional inflationary picture.

ii) The back-reaction of the quantum fluctuations, amplified by the phase of
pre-big bang inflation, induces a bounce as soon as the Universe reaches

Einstein frame

J. Acacio de Barros, N. Pinto-Neto & M. Sagorio-Leal

Phys. Lett. A241, 229 (1998)
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Fig. 2. Illustration, for the shearless case ⌫ = 1
2 , of typical bouncing models obtained as solutions

of the dBB equation of motion for the scale factor. The curves are labeled with the initial condition
assumed for Hini , and the solutions are obtained for values of ↵ and � as in Fig. 1. One clearly
sees that not only are such bouncing solutions not necessarily symmetric in time, but also that
they can produce many bounces and not just one, even in the oversimplified situation of the flat
shearless FLRW.

apparent that the very simple solution of Ref. 1, is merely an exceptional case. In
the cases studied here, we find that not only is the bounce often non symmetric in
time, but also that many bounces can naturally occur, and in a way which is quite
sensitive to the initial condition one sets on aini and Hini .

Our study opens a wide range of new studies that need now be done for a com-
plete understanding of such bouncing scenarios. First, the case with non vanishing
shear must be investigated in details, with particular emphasis on the so-called BKL
instability (see again Ref. 20 for a thorough discussion of bounce models and their
problems) according to which a pre-existing shear can spontaneously lead to many
new Kasner-like singularities.

The second point that should be examined in details concerns the propagation
of perturbations through such a complicated bounce. In models such as those based
on dBB trajectories, it was found that perturbations can be easily evaluated in a
way reminiscent the ordinary perturbation theory based on general relativity, but

S. Vitenti & PP

Mod.Phys.Lett. A31, 1640006 (2016).
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Model listing:

Quantum gravity LQG & LQC

Canonical quantum gravity (WdW)

Ekpyrotic & cyclic
Branes

Non relativistic quantum gravity

3

inspiration in the extra dimensional scenarios, à la Ran-
dall – Sundrum [4], and can be motivated by compact-
ifying the action of 11 dimensional supergravity on an
S1/Z2 orbifold, compactified on a Calabi–Yau three-fold.
This results in an effectively five dimensional action read-
ing

S5 ∝
∫

M5

d5x
√

−g5

[

R
(5)

−
1

2
(∂ϕ)2 −

3

2

e2ϕF2

5 !

]

, (1)

where φ is the scalar modulus, and F the field strength of
a four-form gauge field. Two four–dimensional boundary
branes (orbifold fixed planes), one of which to be later
identified with our universe, are separated by a finite gap.
Both are BPS states [13], i.e., they can be described at
low energy by an effective N = 1 supersymmetric model,
so that their curvature vanishes. This is how the flatness
problem is addressed in the ekpyrotic model.
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FIG. 1: Schematic representation of the old ekpyrotic model
as a bulk – boundary branes in an effective five dimensional
theory. Our Universe is to be identified with the visible brane,
and a bulk brane is spontaneously nucleated near the hidden
brane, moving towards our universe to produce the Big-Bang
singularity and primordial perturbations. In the new ekpy-
rotic scenario, the bulk brane is absent and it is the hidden
brane that collides with the visible one, generating the hot
Big Bang singularity.

In the “old” scenario [8], the five dimensional bulk is
also assumed to contain various fields not described here,
whose excitations can lead to the spontaneous nucleation
of yet another, much lighter, freely moving, brane. In
the so-called “new” scenario [9], and its cyclic exten-
sion [23], it is the hidden boundary brane that is able
to move in the bulk. In both cases, this extra brane, if
assumed BPS (as demanded by minimization of the ac-
tion) is flat, parallel to the boundary branes and initially

at rest. Non perturbative effects yield an interaction po-
tential between the visible and the bulk brane. The dis-
tance of the former to the latter can be regarded as a
scalar field living on the four dimensional visible bound-
ary brane whose effective action is thus that of four di-
mensional GR together with a scalar field ϕ evolving in
an exponential potential, namely

S4 =

∫

M4

d4x
√

−g4

[

R
(4)

2κ
−

1

2
(∂φ)2 − V (φ)

]

, (2)

with

V (ϕ) = −Vi exp

[

−
4
√

πγ

mPl

(ϕ − ϕi)

]

, (3)

where γ is a constant and κ = 8πG = 8π/m2
Pl

. Apart
from the sign, the potential is the one that leads to the
well known power-law inflation model if the value of γ
lies in a given range [24].

The interaction between the two branes results in one
(bulk or hidden) brane moving towards the other (vis-
ible) boundary until they collide. This impact time is
then identified with the Big-Bang of standard cosmol-
ogy. Slightly before that time, the exponential potential
abruptly goes to zero so the boundary brane is led to a
singular transition at which the kinetic energy of the bulk
brane is converted into radiation. The result is, from this
point on, exactly similar to standard big bang cosmology,
with the difference that the flatness problem is claimed
to be solved by saying our Universe originated as a BPS
state (see however [23]).

FIG. 2: Scale factor in the new ekpyrotic scenario. The
Universe starts its evolution with a slow contraction phase
a ∝ (−η)1+β with β = −0.9 on the figure. The bounce itself
is explicitly associated with a singularity which is approached
by the scalar field kinetic term domination phase, and the
expansion then connects to the standard Big-Bang radiation
dominated phase.

String theory
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Ekpyrotic scenario: 
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inspiration in the extra dimensional scenarios, à la Ran-
dall – Sundrum [4], and can be motivated by compact-
ifying the action of 11 dimensional supergravity on an
S1/Z2 orbifold, compactified on a Calabi–Yau three-fold.
This results in an effectively five dimensional action read-
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where φ is the scalar modulus, and F the field strength of
a four-form gauge field. Two four–dimensional boundary
branes (orbifold fixed planes), one of which to be later
identified with our universe, are separated by a finite gap.
Both are BPS states [13], i.e., they can be described at
low energy by an effective N = 1 supersymmetric model,
so that their curvature vanishes. This is how the flatness
problem is addressed in the ekpyrotic model.
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FIG. 1: Schematic representation of the old ekpyrotic model
as a bulk – boundary branes in an effective five dimensional
theory. Our Universe is to be identified with the visible brane,
and a bulk brane is spontaneously nucleated near the hidden
brane, moving towards our universe to produce the Big-Bang
singularity and primordial perturbations. In the new ekpy-
rotic scenario, the bulk brane is absent and it is the hidden
brane that collides with the visible one, generating the hot
Big Bang singularity.

In the “old” scenario [8], the five dimensional bulk is
also assumed to contain various fields not described here,
whose excitations can lead to the spontaneous nucleation
of yet another, much lighter, freely moving, brane. In
the so-called “new” scenario [9], and its cyclic exten-
sion [23], it is the hidden boundary brane that is able
to move in the bulk. In both cases, this extra brane, if
assumed BPS (as demanded by minimization of the ac-
tion) is flat, parallel to the boundary branes and initially

at rest. Non perturbative effects yield an interaction po-
tential between the visible and the bulk brane. The dis-
tance of the former to the latter can be regarded as a
scalar field living on the four dimensional visible bound-
ary brane whose effective action is thus that of four di-
mensional GR together with a scalar field ϕ evolving in
an exponential potential, namely
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where γ is a constant and κ = 8πG = 8π/m2
Pl

. Apart
from the sign, the potential is the one that leads to the
well known power-law inflation model if the value of γ
lies in a given range [24].

The interaction between the two branes results in one
(bulk or hidden) brane moving towards the other (vis-
ible) boundary until they collide. This impact time is
then identified with the Big-Bang of standard cosmol-
ogy. Slightly before that time, the exponential potential
abruptly goes to zero so the boundary brane is led to a
singular transition at which the kinetic energy of the bulk
brane is converted into radiation. The result is, from this
point on, exactly similar to standard big bang cosmology,
with the difference that the flatness problem is claimed
to be solved by saying our Universe originated as a BPS
state (see however [23]).

FIG. 2: Scale factor in the new ekpyrotic scenario. The
Universe starts its evolution with a slow contraction phase
a ∝ (−η)1+β with β = −0.9 on the figure. The bounce itself
is explicitly associated with a singularity which is approached
by the scalar field kinetic term domination phase, and the
expansion then connects to the standard Big-Bang radiation
dominated phase.
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inspiration in the extra dimensional scenarios, à la Ran-
dall – Sundrum [4], and can be motivated by compact-
ifying the action of 11 dimensional supergravity on an
S1/Z2 orbifold, compactified on a Calabi–Yau three-fold.
This results in an effectively five dimensional action read-
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where φ is the scalar modulus, and F the field strength of
a four-form gauge field. Two four–dimensional boundary
branes (orbifold fixed planes), one of which to be later
identified with our universe, are separated by a finite gap.
Both are BPS states [13], i.e., they can be described at
low energy by an effective N = 1 supersymmetric model,
so that their curvature vanishes. This is how the flatness
problem is addressed in the ekpyrotic model.
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FIG. 1: Schematic representation of the old ekpyrotic model
as a bulk – boundary branes in an effective five dimensional
theory. Our Universe is to be identified with the visible brane,
and a bulk brane is spontaneously nucleated near the hidden
brane, moving towards our universe to produce the Big-Bang
singularity and primordial perturbations. In the new ekpy-
rotic scenario, the bulk brane is absent and it is the hidden
brane that collides with the visible one, generating the hot
Big Bang singularity.

In the “old” scenario [8], the five dimensional bulk is
also assumed to contain various fields not described here,
whose excitations can lead to the spontaneous nucleation
of yet another, much lighter, freely moving, brane. In
the so-called “new” scenario [9], and its cyclic exten-
sion [23], it is the hidden boundary brane that is able
to move in the bulk. In both cases, this extra brane, if
assumed BPS (as demanded by minimization of the ac-
tion) is flat, parallel to the boundary branes and initially

at rest. Non perturbative effects yield an interaction po-
tential between the visible and the bulk brane. The dis-
tance of the former to the latter can be regarded as a
scalar field living on the four dimensional visible bound-
ary brane whose effective action is thus that of four di-
mensional GR together with a scalar field ϕ evolving in
an exponential potential, namely
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where γ is a constant and κ = 8πG = 8π/m2
Pl

. Apart
from the sign, the potential is the one that leads to the
well known power-law inflation model if the value of γ
lies in a given range [24].

The interaction between the two branes results in one
(bulk or hidden) brane moving towards the other (vis-
ible) boundary until they collide. This impact time is
then identified with the Big-Bang of standard cosmol-
ogy. Slightly before that time, the exponential potential
abruptly goes to zero so the boundary brane is led to a
singular transition at which the kinetic energy of the bulk
brane is converted into radiation. The result is, from this
point on, exactly similar to standard big bang cosmology,
with the difference that the flatness problem is claimed
to be solved by saying our Universe originated as a BPS
state (see however [23]).

FIG. 2: Scale factor in the new ekpyrotic scenario. The
Universe starts its evolution with a slow contraction phase
a ∝ (−η)1+β with β = −0.9 on the figure. The bounce itself
is explicitly associated with a singularity which is approached
by the scalar field kinetic term domination phase, and the
expansion then connects to the standard Big-Bang radiation
dominated phase.
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inspiration in the extra dimensional scenarios, à la Ran-
dall – Sundrum [4], and can be motivated by compact-
ifying the action of 11 dimensional supergravity on an
S1/Z2 orbifold, compactified on a Calabi–Yau three-fold.
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where φ is the scalar modulus, and F the field strength of
a four-form gauge field. Two four–dimensional boundary
branes (orbifold fixed planes), one of which to be later
identified with our universe, are separated by a finite gap.
Both are BPS states [13], i.e., they can be described at
low energy by an effective N = 1 supersymmetric model,
so that their curvature vanishes. This is how the flatness
problem is addressed in the ekpyrotic model.

R
orb

Bulk

K=0

V
is
ib
le

H
id
d
en

4 
D

 b
ra

n
e,

Q
u
as

i 
B

P
S

FIG. 1: Schematic representation of the old ekpyrotic model
as a bulk – boundary branes in an effective five dimensional
theory. Our Universe is to be identified with the visible brane,
and a bulk brane is spontaneously nucleated near the hidden
brane, moving towards our universe to produce the Big-Bang
singularity and primordial perturbations. In the new ekpy-
rotic scenario, the bulk brane is absent and it is the hidden
brane that collides with the visible one, generating the hot
Big Bang singularity.

In the “old” scenario [8], the five dimensional bulk is
also assumed to contain various fields not described here,
whose excitations can lead to the spontaneous nucleation
of yet another, much lighter, freely moving, brane. In
the so-called “new” scenario [9], and its cyclic exten-
sion [23], it is the hidden boundary brane that is able
to move in the bulk. In both cases, this extra brane, if
assumed BPS (as demanded by minimization of the ac-
tion) is flat, parallel to the boundary branes and initially

at rest. Non perturbative effects yield an interaction po-
tential between the visible and the bulk brane. The dis-
tance of the former to the latter can be regarded as a
scalar field living on the four dimensional visible bound-
ary brane whose effective action is thus that of four di-
mensional GR together with a scalar field ϕ evolving in
an exponential potential, namely
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where γ is a constant and κ = 8πG = 8π/m2
Pl

. Apart
from the sign, the potential is the one that leads to the
well known power-law inflation model if the value of γ
lies in a given range [24].

The interaction between the two branes results in one
(bulk or hidden) brane moving towards the other (vis-
ible) boundary until they collide. This impact time is
then identified with the Big-Bang of standard cosmol-
ogy. Slightly before that time, the exponential potential
abruptly goes to zero so the boundary brane is led to a
singular transition at which the kinetic energy of the bulk
brane is converted into radiation. The result is, from this
point on, exactly similar to standard big bang cosmology,
with the difference that the flatness problem is claimed
to be solved by saying our Universe originated as a BPS
state (see however [23]).

FIG. 2: Scale factor in the new ekpyrotic scenario. The
Universe starts its evolution with a slow contraction phase
a ∝ (−η)1+β with β = −0.9 on the figure. The bounce itself
is explicitly associated with a singularity which is approached
by the scalar field kinetic term domination phase, and the
expansion then connects to the standard Big-Bang radiation
dominated phase.

3

inspiration in the extra dimensional scenarios, à la Ran-
dall – Sundrum [4], and can be motivated by compact-
ifying the action of 11 dimensional supergravity on an
S1/Z2 orbifold, compactified on a Calabi–Yau three-fold.
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where φ is the scalar modulus, and F the field strength of
a four-form gauge field. Two four–dimensional boundary
branes (orbifold fixed planes), one of which to be later
identified with our universe, are separated by a finite gap.
Both are BPS states [13], i.e., they can be described at
low energy by an effective N = 1 supersymmetric model,
so that their curvature vanishes. This is how the flatness
problem is addressed in the ekpyrotic model.
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FIG. 1: Schematic representation of the old ekpyrotic model
as a bulk – boundary branes in an effective five dimensional
theory. Our Universe is to be identified with the visible brane,
and a bulk brane is spontaneously nucleated near the hidden
brane, moving towards our universe to produce the Big-Bang
singularity and primordial perturbations. In the new ekpy-
rotic scenario, the bulk brane is absent and it is the hidden
brane that collides with the visible one, generating the hot
Big Bang singularity.

In the “old” scenario [8], the five dimensional bulk is
also assumed to contain various fields not described here,
whose excitations can lead to the spontaneous nucleation
of yet another, much lighter, freely moving, brane. In
the so-called “new” scenario [9], and its cyclic exten-
sion [23], it is the hidden boundary brane that is able
to move in the bulk. In both cases, this extra brane, if
assumed BPS (as demanded by minimization of the ac-
tion) is flat, parallel to the boundary branes and initially

at rest. Non perturbative effects yield an interaction po-
tential between the visible and the bulk brane. The dis-
tance of the former to the latter can be regarded as a
scalar field living on the four dimensional visible bound-
ary brane whose effective action is thus that of four di-
mensional GR together with a scalar field ϕ evolving in
an exponential potential, namely
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where γ is a constant and κ = 8πG = 8π/m2
Pl

. Apart
from the sign, the potential is the one that leads to the
well known power-law inflation model if the value of γ
lies in a given range [24].

The interaction between the two branes results in one
(bulk or hidden) brane moving towards the other (vis-
ible) boundary until they collide. This impact time is
then identified with the Big-Bang of standard cosmol-
ogy. Slightly before that time, the exponential potential
abruptly goes to zero so the boundary brane is led to a
singular transition at which the kinetic energy of the bulk
brane is converted into radiation. The result is, from this
point on, exactly similar to standard big bang cosmology,
with the difference that the flatness problem is claimed
to be solved by saying our Universe originated as a BPS
state (see however [23]).

FIG. 2: Scale factor in the new ekpyrotic scenario. The
Universe starts its evolution with a slow contraction phase
a ∝ (−η)1+β with β = −0.9 on the figure. The bounce itself
is explicitly associated with a singularity which is approached
by the scalar field kinetic term domination phase, and the
expansion then connects to the standard Big-Bang radiation
dominated phase.
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inspiration in the extra dimensional scenarios, à la Ran-
dall – Sundrum [4], and can be motivated by compact-
ifying the action of 11 dimensional supergravity on an
S1/Z2 orbifold, compactified on a Calabi–Yau three-fold.
This results in an effectively five dimensional action read-
ing
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where φ is the scalar modulus, and F the field strength of
a four-form gauge field. Two four–dimensional boundary
branes (orbifold fixed planes), one of which to be later
identified with our universe, are separated by a finite gap.
Both are BPS states [13], i.e., they can be described at
low energy by an effective N = 1 supersymmetric model,
so that their curvature vanishes. This is how the flatness
problem is addressed in the ekpyrotic model.
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FIG. 1: Schematic representation of the old ekpyrotic model
as a bulk – boundary branes in an effective five dimensional
theory. Our Universe is to be identified with the visible brane,
and a bulk brane is spontaneously nucleated near the hidden
brane, moving towards our universe to produce the Big-Bang
singularity and primordial perturbations. In the new ekpy-
rotic scenario, the bulk brane is absent and it is the hidden
brane that collides with the visible one, generating the hot
Big Bang singularity.

In the “old” scenario [8], the five dimensional bulk is
also assumed to contain various fields not described here,
whose excitations can lead to the spontaneous nucleation
of yet another, much lighter, freely moving, brane. In
the so-called “new” scenario [9], and its cyclic exten-
sion [23], it is the hidden boundary brane that is able
to move in the bulk. In both cases, this extra brane, if
assumed BPS (as demanded by minimization of the ac-
tion) is flat, parallel to the boundary branes and initially

at rest. Non perturbative effects yield an interaction po-
tential between the visible and the bulk brane. The dis-
tance of the former to the latter can be regarded as a
scalar field living on the four dimensional visible bound-
ary brane whose effective action is thus that of four di-
mensional GR together with a scalar field ϕ evolving in
an exponential potential, namely
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where γ is a constant and κ = 8πG = 8π/m2
Pl

. Apart
from the sign, the potential is the one that leads to the
well known power-law inflation model if the value of γ
lies in a given range [24].

The interaction between the two branes results in one
(bulk or hidden) brane moving towards the other (vis-
ible) boundary until they collide. This impact time is
then identified with the Big-Bang of standard cosmol-
ogy. Slightly before that time, the exponential potential
abruptly goes to zero so the boundary brane is led to a
singular transition at which the kinetic energy of the bulk
brane is converted into radiation. The result is, from this
point on, exactly similar to standard big bang cosmology,
with the difference that the flatness problem is claimed
to be solved by saying our Universe originated as a BPS
state (see however [23]).

FIG. 2: Scale factor in the new ekpyrotic scenario. The
Universe starts its evolution with a slow contraction phase
a ∝ (−η)1+β with β = −0.9 on the figure. The bounce itself
is explicitly associated with a singularity which is approached
by the scalar field kinetic term domination phase, and the
expansion then connects to the standard Big-Bang radiation
dominated phase.
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Figure 2: Schematic of the potential in the ekpyrotic/cyclic scenario [136].

away from the scaling solution towards an ekpyrotic attractor [157, 158, 159]
see also [148] and Sec. 4.5.1 for details. Alternatively, a reflection of fields
from a sharp boundary of field space can result in a di↵erent conversion
[160, 161], see Sec. 4.5.2; one may also use the curvaton mechanism or modu-
lated (p)reheating [155, 156, 162] after the bounce, Sec. 4.5.3. These entropic
mechanisms are constrained by PLANCK [163, 164] due to their generic pre-
diction of large non-Gaussianities. In that regard, it should be noted that
di↵erent aspects are highlighted in the literature: before the improved con-
straints by PLANCK, Lehners et al. [165, 166, 167] highlighted the generic
prediction of observably large non-Gaussianities of f local

NL
of order 10 or big-

ger for the conversion mechanism in [160, 161]. However, after the publica-
tion of PLANCK, the emphasis was put onto the possibility to counterbal-
ance di↵erent contributions to non-Gaussianities to enable f

local

NL
of order 1

[151]. To this end, the focus shifted to potentials approximately symmetric
transverse to the adiabatic direction, as well as non-minimal entropic models
[168, 169, 170, 171]. All these models entail an unobservable primordial grav-
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FIG. 1: Schematic of the cyclic universe as initially envisioned in [129, 130]: expansion and contraction correspond to the
growing and shrinking of the orbifold in M-theory. The collision of the boundary branes is identified with the big bang, a
singular bounce since the scale factor of the orbifold vanishes. Fluctuations in the distance between branes can be identified
with density fluctuations, which are imprinted onto density fluctuations during the collision, which also reheats the matter
content on our brane. During each cycle the Universe is rendered flat and empty via a phase of dark energy domination. Whilst
this model was not practically working, it has provided a strong motivation for subsequent developments of the cyclic universe.
In the table, the parameter � is given by � = ln(�Vend)

1/4Trh, where Trh is the temperature of radiation when it dominates.
To be compatible with observations, cyclic models require � ⇡ 10� 20 [147].

Instabilities
Model Bounce no tuned i.c. no ghosts A B C D ns f local

NL

Ekpyrotic [148] singular brane 7 3 3 3 3 3 blue [148] ?
Cyclic [129, 130] quant.grav.e↵. 7 3 3 3 3 3 HZ ?
Phœnix [149] brane collision 3 3 3 3 3 3 HZ O(±10) [150]
Bars et al. [55–61] antigravity ? 3 3 3 3 3 ? ?

TABLE I: Singular bouncing models. Instabilities: A – Curvature pertubation; B – Quantum induced anisotropy; C – Grav-
itational instability; D – Initial anisotropy, see Sec. V. Fine-tuned initial conditions, i.c., entail: a) how to get the brane flat,
and b) how to get both fields near the top of the ridge as in Fig. 18. The notation HZ indicates a power spectrum close to
the Harrison-Zeldovich one with ns = 1; in the cyclic/Phœnix universe, the index can be made red by changing the potential
slightly from the exponential one used in e.g. (26) The first three models lack an analytic understanding of the singular bounce
and rely on matching conditions; see section IID for a brief review of non-perturbative attempts based on the AdS/CFT
correspondence and Sec. II E for the singular antigravity bounce. Gravitational waves on CMBR scales are generically not
generated, see Sec. IVC.

is an attempt to incorporate strings and branes into a
cosmological setting by means of a gas approximation,
see [19, 203] for reviews. While attempts to construct al-
ternative proposals to inflation in string gas cosmology,

such as in [204], are still subject to unsolved problems5

5
Although it is possible to generate a nearly scale-invariant spec-

trum and gravitational waves, this proposals is still hampered by

the flatness and relic problems; this is discussed in Sec. III A 4.
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Figure 3: Causal diagram of transitions in the multiverse mediated by a phenomenological
bounce [263]. The AdS bubbles denote a contracting universe with a negative cosmological
constant. Red zig-zag lines indicate a bounce mediating a transition from AdS to dS or
dS to AdS that could otherwise terminate in a big crunch. [262]

2.9. Other models

The models presented above represent the mainstream ideas that have
been proposed to implement a bouncing alternative to inflation. We conclude
this general model presentation by identifying some miscellaneous proposals
[35], which are generally viewed as less fashionable and/or are hampered by
conceptual problems.

2.9.1. Hořava-Lifshitz
Hořava-Liftshitz (HL) gravity, first introduced in [269], is a power-counting

renormalizable theory of gravity with purportedly consistent UV-behavior
and a fixed point in the IR-limit [270, 271]. Therefore, as a modification
to general relativity at high energies, this theory was explored significantly
within the context of cosmology: cosmological solutions with matter and the
possibility of a nonsingular bounce were studied in [272, 273, 274, 275]. HL
gravity was shown to have inconsistencies in [276] and more recently, to be
UV-incomplete [277]. We therefore do not dwell on these models further.

2.9.2. Lee-Wick and Quintom
Lee and Wick [278, 279] proposed, in the late sixties, a finite version of

QED; based upon this proposition, Grinstein et al. constructed a modification
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inspiration in the extra dimensional scenarios, à la Ran-
dall – Sundrum [4], and can be motivated by compact-
ifying the action of 11 dimensional supergravity on an
S1/Z2 orbifold, compactified on a Calabi–Yau three-fold.
This results in an effectively five dimensional action read-
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where φ is the scalar modulus, and F the field strength of
a four-form gauge field. Two four–dimensional boundary
branes (orbifold fixed planes), one of which to be later
identified with our universe, are separated by a finite gap.
Both are BPS states [13], i.e., they can be described at
low energy by an effective N = 1 supersymmetric model,
so that their curvature vanishes. This is how the flatness
problem is addressed in the ekpyrotic model.
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FIG. 1: Schematic representation of the old ekpyrotic model
as a bulk – boundary branes in an effective five dimensional
theory. Our Universe is to be identified with the visible brane,
and a bulk brane is spontaneously nucleated near the hidden
brane, moving towards our universe to produce the Big-Bang
singularity and primordial perturbations. In the new ekpy-
rotic scenario, the bulk brane is absent and it is the hidden
brane that collides with the visible one, generating the hot
Big Bang singularity.

In the “old” scenario [8], the five dimensional bulk is
also assumed to contain various fields not described here,
whose excitations can lead to the spontaneous nucleation
of yet another, much lighter, freely moving, brane. In
the so-called “new” scenario [9], and its cyclic exten-
sion [23], it is the hidden boundary brane that is able
to move in the bulk. In both cases, this extra brane, if
assumed BPS (as demanded by minimization of the ac-
tion) is flat, parallel to the boundary branes and initially

at rest. Non perturbative effects yield an interaction po-
tential between the visible and the bulk brane. The dis-
tance of the former to the latter can be regarded as a
scalar field living on the four dimensional visible bound-
ary brane whose effective action is thus that of four di-
mensional GR together with a scalar field ϕ evolving in
an exponential potential, namely
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where γ is a constant and κ = 8πG = 8π/m2
Pl

. Apart
from the sign, the potential is the one that leads to the
well known power-law inflation model if the value of γ
lies in a given range [24].

The interaction between the two branes results in one
(bulk or hidden) brane moving towards the other (vis-
ible) boundary until they collide. This impact time is
then identified with the Big-Bang of standard cosmol-
ogy. Slightly before that time, the exponential potential
abruptly goes to zero so the boundary brane is led to a
singular transition at which the kinetic energy of the bulk
brane is converted into radiation. The result is, from this
point on, exactly similar to standard big bang cosmology,
with the difference that the flatness problem is claimed
to be solved by saying our Universe originated as a BPS
state (see however [23]).

FIG. 2: Scale factor in the new ekpyrotic scenario. The
Universe starts its evolution with a slow contraction phase
a ∝ (−η)1+β with β = −0.9 on the figure. The bounce itself
is explicitly associated with a singularity which is approached
by the scalar field kinetic term domination phase, and the
expansion then connects to the standard Big-Bang radiation
dominated phase.
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could have been the victim to Ockham’s razor. Only sub-
sequent improvements to his model, particularly the use
of ellipses, led to the simple Keplerian model we know
today, which is still an approximation to the full solution
in General Relativity. Bouncing cosmologies may be at
a similar stage, where simplicity, if present, is not yet
apparent. Thus, we should strive to extract distinct pre-
dictions of bouncing cosmologies and confront them with
experiments, while simultaneously aiming to improve the
conceptual underpinning. We hope the present review of
pros and cons can be helpful in achieving these goals.
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Implementing a bounce = problem with GR!

Violation of Null Energy Condition (NEC)

Instabilities for perfect fluids

concentrated on quite di↵erent categories of models, while this work aims at
discussing more widely held views.

1.2. What is used to get a bounce?

To achieve a bounce, the Hubble rate H, which emerges from the con-
tracting phase with a negative value, must increase, since it is positive dur-
ing the subsequent expanding phase. There are two options to increase the
Hubble rate from negative to positive: the first one operates within general
relativity and hence usually requires the violation of the null energy condi-
tion, NEC, ⇢ + P � 0 [46]: Einstein equations (6), as provided in the next
section, indeed imply that the time derivative of the Hubble rate reads

Ḣ =
K
a2

� 1

2
(⇢+ P ) , (1)

so that when the spatial sections are flat (K ! 0), Ḣ > 0 definitely demands
⇢ + P < 0. A generic consequence of violating the null energy condition
is the appearance of fields with negative kinetic energy: ghosts; a crucial
point in bouncing models is actually to construct a regular model in which
such ghosts are absent while still having a bouncing phase. It is possible to
generate a bounce in the presence of curvature K = 1 without violating the
NEC, but only the strong energy condition, SEC, which demands ⇢+P � 0
and ⇢+3P � 0, see [48, 22] for concrete models. Such a bounce leaves some
amount of spatial curvature in the expanding phase, whose amplitude may
require a subsequent inflationary phase to dilute it, hence possibly ruining
the alternative-to-inflation program (we shall not be concerned here with the
mixed models in which a bounce permits to avoid a primordial singularity
while a subsequent inflation phase solves the other puzzles of the standard
hot big-bang model).

The second option is to allow for a classically singular bounce. Here the
scale factor actually vanishes and as such, four-dimensional general relativity
ceases to be valid close to the bounce. Pragmatically, the contracting phase
is often matched to the expanding one within GR under the assumption that
the actual bounce leaves observables una↵ected. In the words of [49]: “[...]
the Universe contracts towards a “big crunch” until the scale factor a(t) is
so small that quantum gravity e↵ects become important. The presumption
is that these quantum gravity e↵ects introduce deviations from conventional
general relativity and produce a bounce that preserves the smooth, flat con-
ditions achieved during the ultra-slow contraction phase”. One thus assumes
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Implementing a bounce = problem with GR!

Violation of Null Energy Condition (NEC)

Positive spatial curvature + scalar field

concentrated on quite di↵erent categories of models, while this work aims at
discussing more widely held views.

1.2. What is used to get a bounce?

To achieve a bounce, the Hubble rate H, which emerges from the con-
tracting phase with a negative value, must increase, since it is positive dur-
ing the subsequent expanding phase. There are two options to increase the
Hubble rate from negative to positive: the first one operates within general
relativity and hence usually requires the violation of the null energy condi-
tion, NEC, ⇢ + P � 0 [46]: Einstein equations (6), as provided in the next
section, indeed imply that the time derivative of the Hubble rate reads

Ḣ =
K
a2

� 1

2
(⇢+ P ) , (1)

so that when the spatial sections are flat (K ! 0), Ḣ > 0 definitely demands
⇢ + P < 0. A generic consequence of violating the null energy condition
is the appearance of fields with negative kinetic energy: ghosts; a crucial
point in bouncing models is actually to construct a regular model in which
such ghosts are absent while still having a bouncing phase. It is possible to
generate a bounce in the presence of curvature K = 1 without violating the
NEC, but only the strong energy condition, SEC, which demands ⇢+P � 0
and ⇢+3P � 0, see [48, 22] for concrete models. Such a bounce leaves some
amount of spatial curvature in the expanding phase, whose amplitude may
require a subsequent inflationary phase to dilute it, hence possibly ruining
the alternative-to-inflation program (we shall not be concerned here with the
mixed models in which a bounce permits to avoid a primordial singularity
while a subsequent inflation phase solves the other puzzles of the standard
hot big-bang model).

The second option is to allow for a classically singular bounce. Here the
scale factor actually vanishes and as such, four-dimensional general relativity
ceases to be valid close to the bounce. Pragmatically, the contracting phase
is often matched to the expanding one within GR under the assumption that
the actual bounce leaves observables una↵ected. In the words of [49]: “[...]
the Universe contracts towards a “big crunch” until the scale factor a(t) is
so small that quantum gravity e↵ects become important. The presumption
is that these quantum gravity e↵ects introduce deviations from conventional
general relativity and produce a bounce that preserves the smooth, flat con-
ditions achieved during the ultra-slow contraction phase”. One thus assumes

8

. 1%

dt = a(⌘)d⌘

⌘

H ⌘
1

a

da

dt
⌘

ȧ
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rive the relevant perturbation potentials.

A. The de Sitter–like bounce

Once the background is fixed, the effective potentials for
the quantities u and v are completely specified. In this sec-
tion, our aim is therefore to discuss how one can model the
scale factor of a bouncing universe. At this point, one should
notice the differences !and similarities" with inflation. In an
inflationary universe, the behavior of the scale factor is
known: essentially, this is a#!$!!1, i.e. the de Sitter phase.
However, one can also treat slightly more complicated back-
grounds by means of an expansion around this de Sitter so-
lution. This expansion is characterized by the so-called slow-
roll parameters %24&, which are constrained to be small. The
de Sitter solution also exists in the bounce case %25& and, as
we shall see, it can be used in much the same way. However,
contrary to the inflation case, there is no fundamental reason
why the background equation of state should be close to
vacuum. Despite this fact, one can nevertheless expand
around the K"1 de Sitter spacetime and similarly define
parameters which control the departure from it. Obviously,
those parameters are not subject to tight constraints, and in
particular are not required to be small.
For K#0, the de Sitter solution %25& corresponds to the

scale factor a(t)"a0cosh('t), which is expressed as a func-
tion of the cosmic time t, with '"1/a0. More general solu-
tions are obtained by relaxing this last constraint and consid-
ering a general value for ' . These de Sitter–like solutions
are the ones we shall be concerned with in what follows: our
expansion will be based on these solutions. In terms of con-
formal time, one can integrate the relation ad$"dt to get

a!$""a0!1$tan2" $
$0

# , !21"

where the conformal time is bounded within the range
!(/2%$/$0%(/2 and the conformal time duration $0 is
related to the de Sitter coefficient ' through $0"(a0')

!1

%the solution !21" is shown in Fig. 1&.
In order to understand the dynamics of this solution, one

needs to obtain the evolution of the scalar field. It can be
integrated straightforwardly with the scale factor !21": from
Eqs. !4" and !5", one obtains

)")0$!2*

+ " $$
(

2
$0# , !22"

where we have set )→)0 as the cosmic time t→!, , i.e. as
$/$0→!(/2, and we also have defined a parameter

*-1!
1

$0
2

!23"

for further convenience. We shall keep this definition later on
for more general bounces than the quasi–de Sitter ones.
It should be noted that the parameter * , in the case of de

Sitter like expansion !21" is, according to the definition !6",
*dS"H 2. , which is proportional to /$p . As a result, the

null energy condition at the bounce can only be satisfied
provided *#0, i.e. if !$0!01: indeed, one has

lim
$→0

!/$p ""2
*

a0
2
, !24"

a relation which we shall use in the rest of the paper to define
* in a solution-independent way. As emphasized before, the
case $0"1 corresponds to a constant scalar field potential
and to an equation of state /"!p and is thus the exact
counterpart of the inflationary de Sitter solution. The scalar
field time derivative is now simply obtained as

d)

dt
"
d)

ad$
"
1

a0 $ 2*

+%1$tan2" $
$0

# &' 1/2

. !25"

Both the field and its time derivative are displayed in Fig. 2

FIG. 1. Scale factors as functions of the conformal time $ cor-

responding to the de Sitter–like solution %Eq. !21", full line& and its
various levels of approximations stemming from Eq. !30", namely
up to quadratic !dashed", quartic !dotted", sixth !dot-dashed" and
eighth power !dot-dot-dashed". The last two approximations, al-
though clearly better from the point of view of the scale factor, do

not lead to any new qualitative information as far as the evolution

of the perturbations is concerned.

FIG. 2. Behavior of the scalar field and its coordinate time

derivative as functions of the conformal time $ !varying between
!(/2 and (/2 for the overall evolution of the Universe" for the
de Sitter–like solution with $0"1.01.
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Implementing a bounce = problem with GR!

Violation of Null Energy Condition (NEC)

Positive spatial curvature + scalar field

Modify GR?

Add new terms?

K-bounce, Ghost condensates, Galileons...?

concentrated on quite di↵erent categories of models, while this work aims at
discussing more widely held views.

1.2. What is used to get a bounce?

To achieve a bounce, the Hubble rate H, which emerges from the con-
tracting phase with a negative value, must increase, since it is positive dur-
ing the subsequent expanding phase. There are two options to increase the
Hubble rate from negative to positive: the first one operates within general
relativity and hence usually requires the violation of the null energy condi-
tion, NEC, ⇢ + P � 0 [46]: Einstein equations (6), as provided in the next
section, indeed imply that the time derivative of the Hubble rate reads

Ḣ =
K
a2

� 1

2
(⇢+ P ) , (1)

so that when the spatial sections are flat (K ! 0), Ḣ > 0 definitely demands
⇢ + P < 0. A generic consequence of violating the null energy condition
is the appearance of fields with negative kinetic energy: ghosts; a crucial
point in bouncing models is actually to construct a regular model in which
such ghosts are absent while still having a bouncing phase. It is possible to
generate a bounce in the presence of curvature K = 1 without violating the
NEC, but only the strong energy condition, SEC, which demands ⇢+P � 0
and ⇢+3P � 0, see [48, 22] for concrete models. Such a bounce leaves some
amount of spatial curvature in the expanding phase, whose amplitude may
require a subsequent inflationary phase to dilute it, hence possibly ruining
the alternative-to-inflation program (we shall not be concerned here with the
mixed models in which a bounce permits to avoid a primordial singularity
while a subsequent inflation phase solves the other puzzles of the standard
hot big-bang model).

The second option is to allow for a classically singular bounce. Here the
scale factor actually vanishes and as such, four-dimensional general relativity
ceases to be valid close to the bounce. Pragmatically, the contracting phase
is often matched to the expanding one within GR under the assumption that
the actual bounce leaves observables una↵ected. In the words of [49]: “[...]
the Universe contracts towards a “big crunch” until the scale factor a(t) is
so small that quantum gravity e↵ects become important. The presumption
is that these quantum gravity e↵ects introduce deviations from conventional
general relativity and produce a bounce that preserves the smooth, flat con-
ditions achieved during the ultra-slow contraction phase”. One thus assumes
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Implementing a bounce = problem with GR!

Violation of Null Energy Condition (NEC)

Positive spatial curvature + scalar field

Modify GR?

Add new terms?

Various instabilities may arise!

(e.g. radiation for matter bounce or curvature perturbations)

K-bounce, Ghost condensates, Galileons...?

concentrated on quite di↵erent categories of models, while this work aims at
discussing more widely held views.

1.2. What is used to get a bounce?

To achieve a bounce, the Hubble rate H, which emerges from the con-
tracting phase with a negative value, must increase, since it is positive dur-
ing the subsequent expanding phase. There are two options to increase the
Hubble rate from negative to positive: the first one operates within general
relativity and hence usually requires the violation of the null energy condi-
tion, NEC, ⇢ + P � 0 [46]: Einstein equations (6), as provided in the next
section, indeed imply that the time derivative of the Hubble rate reads

Ḣ =
K
a2

� 1

2
(⇢+ P ) , (1)

so that when the spatial sections are flat (K ! 0), Ḣ > 0 definitely demands
⇢ + P < 0. A generic consequence of violating the null energy condition
is the appearance of fields with negative kinetic energy: ghosts; a crucial
point in bouncing models is actually to construct a regular model in which
such ghosts are absent while still having a bouncing phase. It is possible to
generate a bounce in the presence of curvature K = 1 without violating the
NEC, but only the strong energy condition, SEC, which demands ⇢+P � 0
and ⇢+3P � 0, see [48, 22] for concrete models. Such a bounce leaves some
amount of spatial curvature in the expanding phase, whose amplitude may
require a subsequent inflationary phase to dilute it, hence possibly ruining
the alternative-to-inflation program (we shall not be concerned here with the
mixed models in which a bounce permits to avoid a primordial singularity
while a subsequent inflation phase solves the other puzzles of the standard
hot big-bang model).

The second option is to allow for a classically singular bounce. Here the
scale factor actually vanishes and as such, four-dimensional general relativity
ceases to be valid close to the bounce. Pragmatically, the contracting phase
is often matched to the expanding one within GR under the assumption that
the actual bounce leaves observables una↵ected. In the words of [49]: “[...]
the Universe contracts towards a “big crunch” until the scale factor a(t) is
so small that quantum gravity e↵ects become important. The presumption
is that these quantum gravity e↵ects introduce deviations from conventional
general relativity and produce a bounce that preserves the smooth, flat con-
ditions achieved during the ultra-slow contraction phase”. One thus assumes
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The problem with contraction: BKL/shear instability

3

since in the present paper we adopt the convention that
the scalar field ⌅ is dimensionless.

The function g(⌅) is chosen such that a phase of ghost
condensation only occurs during a short time when ⌅ ap-
proaches ⌅ = 0. This requires the dimensionless function
g to be smaller than unity when |⌅|⇤ 1 but larger than
unity when ⌅ approaches the origin. To obtain a nonsin-
gular bounce, we must make an explicit choice of g as a
function of ⌅. We want g to be negligible when |⌅| ⇤ 1.
In order to obtain a violation of the Null Energy Con-
dition after the termination of the Ekpyrotic contracting
phase, g must become the dominant coe⇥cient in the
quadratic kinetic term when ⌅ approaches 0. Thus, we
suggest its form to be

g(⌅) =
2g0

e�
q

2
p ⇥ + ebg

q
2
p ⇥

, (6)

where g0 is a positive constant defined as the value of g
at the moment when ⌅ = 0, and is required to be larger
than unity, g0 > 1.

We have also introduced a non-trivial potential V for ⌅.
This potential is chosen such that Ekpyrotic contraction
is possible. It is well known that the homogeneous tra-
jectory of a scalar field can be an attractor solution when
its potential is an exponential function. One example is
inflationary expansion of the universe in a positive-valued
exponential potential, and the other one is the Ekpyrotic
model in which the homogeneous field trajectory for a
negative exponential potential is an attractor in a con-
tracting universe. For a phase of Ekpyrotic contraction,
we take the form of the potential to be

V (⌅) = � 2V0

e�
q

2
q ⇥ + ebV

q
2
q ⇥

, (7)

where V0 is a positive constant with dimension of (mass)4.
Thus the potential is always negative and asymptotically
approaches zero when |⌅|⇤ 1. Ignoring the second term
of the denominator, this potential reduces to the form
used in the Ekpyrotic scenario [32]. Both functions g(⌅)
and V (⌅) are shown on Fig. 1 with the parameters used
in the later parts of this work.

The term G(⌅, X) is a Galileon type6 operator which
is consistent with the fact that the Lagrangian contains
higher order derivative terms in ⌅, but the equation of
motion remains a second order di�erential equation. Phe-
nomenologically, there are few requirements on the ex-
plicit form of G(⌅, X). We introduce this operator since
we expect that it can be used to stabilize the gradi-
ent term of cosmological perturbations, which requires
that the sound speed parameter behaves smoothly and is
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where the overdot denotes the derivative with respect to
cosmic time t.

Since we are interested in studying anisotropies rather
than inhomogeneities we can treat the matter fields to be
homogeneous, which implies ⇧ is only a function of cosmic
time. Thus, the kinetic terms of the homogeneous scalar
field background become

X =
1
2
⇧̇2,

�⇧ = ⇧̈ + 3H⇧̇, (13)

so that, for this background, the energy density of the
scalar field is
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1
2
M2
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(1� g)⇧̇2 +

3
4
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and the pressure is
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4
�⇧̇4 � ⇥⇧̇2⇧̈� V (⇧), (15)

as follows by computing the diagonal components of the
stress-energy tensor (4).

Additionally, the matter fluid contributes its own en-
ergy density ⌅m and pressure pm, and usually they are
associated with a constant equation-of-state parameter
wm = pm/⌅m. Namely, for normal radiation, wm = 1

3 ,
while for normal matter, wm = 0.

To derive the equation of motion for ⇧, one can either
vary the Lagrangian with respect to ⇧ or, equivalently,
require that the covariant derivative of its stress-energy
tensor vanishes. This yields

P⇧̈ +D⇧̇ + V,⇤ = 0, (16)

where we have introduced

P = (1� g)M2
Pl

+ 6⇥H⇧̇ + 3�⇧̇2 +
3⇥2
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(⌅m + pm)⇧̇. (18)

From Eq. (16), it is clear that the function P determines
the positivity of the kinetic term of the scalar field and
thus can be used to determine whether the model con-
tains a ghost or not at the perturbative level; the function
D on the other hand, represents an e�ective damping
term. By keeping the first terms of the expressions of
P and D and setting g = 0, one can recover the stan-
dard Klein-Gordon equation in the FRW background.
Neglecting the other terms is a good approximation when
the velocity of ⇧ is sub-Planckian. Note that the friction
term D contains the contributions from anisotropic fac-
tors and matter fluid, which can be suppressed for small

values of ⇧̇. However, these terms will become important
during the bouncing phase where ⇧̇ reaches a maximal
value. For simplicity, in the following we will consider
matter fluid is cold and thus wm = 0.

Finally, we can write down Einstein equations in this
background, given by

M2
Pl

�
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R

2
gµ⇥

⇥
= T⇤

µ⇥ + Tm
µ⇥ . (19)

Once expanded in components, this tensor equation
yields the e�ective Friedmann equations,
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i , (20)

Ḣ = �⌅T + pT
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2
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i

⇤̇2
i , (21)

where ⌅T and pT represent the total energy density and
pressure in the Bianchi type-I universe, i.e., the sum of
the contributions of the scalar field and the fluid.

Moreover, combining the spatial component of Ein-
stein equation with the constraint equation (10) yields

⇤̈i + 3H ⇤̇i = 0, (22)

from which it follows that

⇤̇i(t) = M�,i
a3

B

a3(t)
, (23)

where aB is the mean scale factor of the universe at the
bouncing point. The coe⇥cients M�,i are integral con-
stants with a dimension of mass. According to the con-
straint equation (10), one can read o� that

⇤

i

M�,i = 0. (24)

Plugging Eq. (23) into Eq. (20) shows that one can
introduce an e�ective energy density of anisotropy

⌅� ⇥
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2
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i ⇤ a�6, (25)

whose evolution as 1/a6 implies an e�ective equation-of-
state parameter equal to w� = 1. We see that this e�ec-
tive energy density increases faster than that of pressure-
less matter or radiation in a contraction universe. This
is the source of the BKL instability of the contracting
phase of many bouncing cosmologies.

III. BACKGROUND EVOLUTION

The initial conditions of our model are chosen (as in
[38]) such that we start in a contracting phase dominated
by regular matter. Since the energy density of the Ekpy-
rotic scalar field ⇧ grows faster than that of regular mat-
ter, ⇧ will at some time begin to dominate the energy
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background, given by
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yields the e�ective Friedmann equations,
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where ⌅T and pT represent the total energy density and
pressure in the Bianchi type-I universe, i.e., the sum of
the contributions of the scalar field and the fluid.

Moreover, combining the spatial component of Ein-
stein equation with the constraint equation (10) yields

⇤̈i + 3H ⇤̇i = 0, (22)

from which it follows that

⇤̇i(t) = M�,i
a3
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where aB is the mean scale factor of the universe at the
bouncing point. The coe⇥cients M�,i are integral con-
stants with a dimension of mass. According to the con-
straint equation (10), one can read o� that
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Plugging Eq. (23) into Eq. (20) shows that one can
introduce an e�ective energy density of anisotropy
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whose evolution as 1/a6 implies an e�ective equation-of-
state parameter equal to w� = 1. We see that this e�ec-
tive energy density increases faster than that of pressure-
less matter or radiation in a contraction universe. This
is the source of the BKL instability of the contracting
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A nonsingular bounce model: ghost condensate & Galileon

2

sity ⌅) is dominant in the contracting phase3. Such an
equation of state can be realized by treating the dominant
form of matter as a scalar field with negative exponen-
tial potential. Since the energy density of the dominant
matter then scales with a�q with q ⇤ 6, anisotropies be-
come negligible and the BKL instability is avoided [37]4.
In a recent paper [38], a subset of the present authors
introduced a scalar field with an Ekpyrotic potential to
construct a matter bounce scenario which is free from the
BKL instability problem.

The Ekpyrotic scenario in its original formulation [32]
involves a singular bounce. In addition, the curvature
spectrum of ⇥ is an nS = 3 spectrum rather than a scale-
invariant nS = 1 one [39–42]. Hence, without non-trivial
matching of ⇥ across the bounce, one cannot obtain a
scale-invariant spectrum at late time5. To solve this
problem, a new and non-singular version of the Ekpyrotic
scenario [46] was proposed in which a second scalar field
is introduced which does not influence the background
dynamics but develops a scale-invariant spectrum which
starts out as an isocurvature mode but which is trans-
ferred to the adiabatic mode during the evolution. The
second field can also be given a “ghost condensate” La-
grangian [47] in which case it mediates a non-singular
bounce. However, as has been pointed out in [48], in
this “New Ekpyrotic” scenario the anisotropies which are
highly suppressed during the contracting phase again
raise their head and lead to a BKL instability.

In our previous work [38], we argued qualitatively that
in the model we considered the anisotropies remained
negligibly small during the bouncing phase. The reason
for the di�erence compared to what happens in the model
of [46] is that in our model the kinetic condensate which
grows as the bounce is approached does not need to de-
crease again by the time of the bounce point. This leads
to a shorter bounce time scale and to di�erent dynamics.

In this paper we carefully study the development of
anisotropies in the bouncing cosmology with an Ekpy-
rotic phase of contraction introduced in [38]. We work
in the context of a homogeneous but anisotropic Bianchi
cosmology in which the scale factors in each spatial di-
mension evolve independently. We are able to show that
no BKL type instability develops, in agreement with
what the study of [38] indicated. Our work thus shows
that the arguments against non-singular (as opposed to
singular) bouncing cosmologies put forwards in [48] do

3 There are other approaches to address the anisotropy prob-
lem. For example, nonlinear matter terms may smooth out the
anisotropies [33]. Adding quadratic R�⇥R�⇥ terms to the grav-
itational action can also prevent the BKL instability [34].

4 Note, however, that including anisotropic pressures may reintro-
duce instabilities towards anisotropy generation [35].

5 However, the spectrum of the Bardeen potential � is scale-
invariant [43], and, as argued in [10] and shown explicitly in some
examples [44, 45], it is this spectrum which may pass through
the bounce, thus yielding a scale-invariant spectrum of curva-
ture fluctuations at late times.

not apply to all non-singular bouncing cosmologies.
The outline of this paper is as follows. In the next sec-

tion we review the bounce model introduced in [38] and
derive the resulting equations of motion for a homoge-
neous but anisotropic universe. In Section 3 we analyt-
ically study the background dynamics in each phase of
the cosmological evolution from the initial matter phase
of contraction through the Ekpyrotic phase to the bounc-
ing phase and the subsequent fast-roll expanding period.
Specifically, we determine the decay or growth rates of
the anisotropy parameter in each phase. In Section 4 we
solve the dynamical system numerically and present our
final results. We close with a general discussion.

A word on notation: We define the reduced Planck
mass by MPl = 1/

�
8⇤GN where GN is Newton’s gravi-

tational constant. The sign of the metric is taken to be
(+,�,�,�). Note that we take the value of the mean
scale factor at the bounce point to be aB = 1 throughout
the paper.

II. A NONSINGULAR BOUNCE MODEL

We consider a nonsingular bounce model in which the
universe is filled with two matter components, a cosmic
scalar field ⇧ and a generic matter fluid, as proposed in
Ref. [38] (which, in turn, is based on the theory devel-
oped in [49]). The Lagrangian of ⇧ is given by

L [⇧ (x)] = K(⇧, X) + G(⇧, X)�⇧, (1)

where K and G are functions of ⇧ and its canonical ki-
netic term

X ⇥ 1
2
⌃µ⇧⌃µ⇧, (2)

while the other kinetic terms of ⇧ include the operator

�⇧ ⇥ gµ�⌅µ⌅�⇧. (3)

Variation of the above scalar field Lagrangian mini-
mally coupled to Einstein gravity leads to the following
corresponding energy momentum tensor

T⇤
µ� = (�K + 2XG,⇤ + G,X⌅⇥X⌅⇥⇧)gµ�

+(K,X + G,X�⇧� 2G,⇤)⌅µ⇧⌅�⇧

�G,X(⌅µX⌅�⇧ +⌅�X⌅µ⇧), (4)

in which we use the notation that F,⇤ and F,X denote
derivatives of whatever functional F(⇧, X) may be with
respect to ⇧ and X, respectively.

For the model under consideration we choose:

K(⇧, X) = M2
Pl

[1� g(⇧)]X + �X2 � V (⇧), (5)

where we introduce a positive-definite parameter � so
that the kinetic term is bounded from below at high en-
ergy scales. Note that the first term of K involves M2

Pl
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anisotropies in the bouncing cosmology with an Ekpy-
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since in the present paper we adopt the convention that
the scalar field ⌅ is dimensionless.

The function g(⌅) is chosen such that a phase of ghost
condensation only occurs during a short time when ⌅ ap-
proaches ⌅ = 0. This requires the dimensionless function
g to be smaller than unity when |⌅|⇤ 1 but larger than
unity when ⌅ approaches the origin. To obtain a nonsin-
gular bounce, we must make an explicit choice of g as a
function of ⌅. We want g to be negligible when |⌅| ⇤ 1.
In order to obtain a violation of the Null Energy Con-
dition after the termination of the Ekpyrotic contracting
phase, g must become the dominant coe⇥cient in the
quadratic kinetic term when ⌅ approaches 0. Thus, we
suggest its form to be

g(⌅) =
2g0

e�
q

2
p ⇥ + ebg

q
2
p ⇥

, (6)

where g0 is a positive constant defined as the value of g
at the moment when ⌅ = 0, and is required to be larger
than unity, g0 > 1.

We have also introduced a non-trivial potential V for ⌅.
This potential is chosen such that Ekpyrotic contraction
is possible. It is well known that the homogeneous tra-
jectory of a scalar field can be an attractor solution when
its potential is an exponential function. One example is
inflationary expansion of the universe in a positive-valued
exponential potential, and the other one is the Ekpyrotic
model in which the homogeneous field trajectory for a
negative exponential potential is an attractor in a con-
tracting universe. For a phase of Ekpyrotic contraction,
we take the form of the potential to be

V (⌅) = � 2V0

e�
q

2
q ⇥ + ebV

q
2
q ⇥

, (7)

where V0 is a positive constant with dimension of (mass)4.
Thus the potential is always negative and asymptotically
approaches zero when |⌅|⇤ 1. Ignoring the second term
of the denominator, this potential reduces to the form
used in the Ekpyrotic scenario [32]. Both functions g(⌅)
and V (⌅) are shown on Fig. 1 with the parameters used
in the later parts of this work.

The term G(⌅, X) is a Galileon type6 operator which
is consistent with the fact that the Lagrangian contains
higher order derivative terms in ⌅, but the equation of
motion remains a second order di�erential equation. Phe-
nomenologically, there are few requirements on the ex-
plicit form of G(⌅, X). We introduce this operator since
we expect that it can be used to stabilize the gradi-
ent term of cosmological perturbations, which requires
that the sound speed parameter behaves smoothly and is
positive-definite throughout most of the background evo-
lution. For simplicity, we will choose G to be a simple

6 See [36] for a discussion of Galileon type Lagrangians.

Figure 1: Model functions g(�) and V (�) as given by Eqs. (6)
and (7), with background parameters taken as for the follow-
ing evolution figures, namely as in Eqs. (65) and (66).

function of only X:

G(X) = �X, (8)

where � is a positive-definite number.
We now turn to the study of the cosmology of this

model. In order to characterize a homogeneous but
anisotropic universe, we take the metric to be of the form

ds2 = dt2 � a2(t)
⇤

i

e2�i(t)⇤i⇤i, (9)

where t is cosmic time, ⇤i are linearly independent at
all points in space-time and form a three dimensional
homogeneous space.

In the case of a Ricci flat space, one can consider the
projection ⇤i = dxi and thus the metric is of Bianchi
type-I form. The factor a(t) can be viewed as the mean
scale factor of this universe, and the functions e�i(t) de-
scribe the correction of anisotropies to the scale factor.
Since the values of scale factors can be re-scaled arbitrar-
ily, one can impose an additional constraint

⇤

i

⇥i = 0. (10)

Then, one can immediately define a mean Hubble param-
eter as follows,
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The function g(⌅) is chosen such that a phase of ghost
condensation only occurs during a short time when ⌅ ap-
proaches ⌅ = 0. This requires the dimensionless function
g to be smaller than unity when |⌅|⇤ 1 but larger than
unity when ⌅ approaches the origin. To obtain a nonsin-
gular bounce, we must make an explicit choice of g as a
function of ⌅. We want g to be negligible when |⌅| ⇤ 1.
In order to obtain a violation of the Null Energy Con-
dition after the termination of the Ekpyrotic contracting
phase, g must become the dominant coe⇥cient in the
quadratic kinetic term when ⌅ approaches 0. Thus, we
suggest its form to be
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where g0 is a positive constant defined as the value of g
at the moment when ⌅ = 0, and is required to be larger
than unity, g0 > 1.

We have also introduced a non-trivial potential V for ⌅.
This potential is chosen such that Ekpyrotic contraction
is possible. It is well known that the homogeneous tra-
jectory of a scalar field can be an attractor solution when
its potential is an exponential function. One example is
inflationary expansion of the universe in a positive-valued
exponential potential, and the other one is the Ekpyrotic
model in which the homogeneous field trajectory for a
negative exponential potential is an attractor in a con-
tracting universe. For a phase of Ekpyrotic contraction,
we take the form of the potential to be
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where V0 is a positive constant with dimension of (mass)4.
Thus the potential is always negative and asymptotically
approaches zero when |⌅|⇤ 1. Ignoring the second term
of the denominator, this potential reduces to the form
used in the Ekpyrotic scenario [32]. Both functions g(⌅)
and V (⌅) are shown on Fig. 1 with the parameters used
in the later parts of this work.

The term G(⌅, X) is a Galileon type6 operator which
is consistent with the fact that the Lagrangian contains
higher order derivative terms in ⌅, but the equation of
motion remains a second order di�erential equation. Phe-
nomenologically, there are few requirements on the ex-
plicit form of G(⌅, X). We introduce this operator since
we expect that it can be used to stabilize the gradi-
ent term of cosmological perturbations, which requires
that the sound speed parameter behaves smoothly and is
positive-definite throughout most of the background evo-
lution. For simplicity, we will choose G to be a simple

6 See [36] for a discussion of Galileon type Lagrangians.
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efficient at lowering the contribution of anisotropies since a mere few e-folds of ekpyrotic
contraction are enough to damp any reasonable initial anisotropy to negligible level.

Note that the e-folding number NE can also be constrained on observable scales of CMB
experiments, and we expect that this may impose a much more stringent constraint on the
anisotropy parameters. For that, one could require that the anisotropy contribution be smaller
that the observed level of perturbations, namely !pert ∼ 10−10.

It is interesting to note that increasing the ekpyrotic e-fold number to, say, NE ∼ 15,
while keeping q ∼ 0.1, leads to relation (31) to yield !θ ∼ 10−10 ∼ !2

pert # !pert. This
means that after a sufficiently long ekpyrotic contraction, the anisotropy contribution is totally
negligible, even compared with the amplitude of primordial perturbations. At this particular
level, however, the anisotropy contribution could be comparable to second order in terms of
the primordial curvature perturbation expansion, and thus could contribute to the primordial
non-Gaussianities of local shape with fNL ∼ O(1).

If one wants to make successful contact with late time cosmology, there is a second
constraint that should be implemented on the model, namely that the fast-roll phase ends
before the time of Big Bang nucleosynthesis (BBN). Roughly speaking, the energy density
of regular matter does not change much during the phase of ekpyrotic contraction (for small
values of q). On the other hand, the density of φ grows rapidly. In the fast-roll phase of
expansion, the decrease in the density of regular matter is no longer negligible. Hence, the
energy density of matter will be much lower at the time tF when ρm(tF ) = ρφ(tF ) than at the
time tE when ekpyrotic contraction begins. In fact, it is straightforward to derive that

HF ! |HE | e−(1−3q)NE /(1−q), (62)

showing that the value of HF should be much less than |HE |. The Hubble rate HF is associated
with the initial temperature TF when the expansion begins to follow the Standard Big Bang
evolution (it is the equivalent of the temperature of reheating in inflationary cosmology).
Specifically, the relation is

HF $
g1/2

s πT 2
F

9.5MPl

, (63)

where gs is the effective particle number for radiation. As a consequence, in analogy with
inflationary cosmology, the constraint (62) leads to an upper bound on the effective ‘reheating’
temperature:

TF !
(

3MPl |HB− |
g1/2

s

) 1
2

e−(2−3q)NE /[2(1−q)] (64)

in our nonsingular bounce model. From the BBN constraint, we find that the lower limit of
the ‘reheating’ temperature is of the order O(MeV). If we consider this lower bound and take
gs ∼ 100, NE ∼ 30 and q ∼ 0.1, then we find that HB+ > 10−17MPl which can easily be
implemented in the model, as we shall see in the following numerical calculations.

3.6. Numerical estimates

To illustrate that a nonsingular bounce can be achieved in our model, we numerically solved
the background equations of motion. Expressing all relevant functions and parameters in the
corresponding units of the reduced Planck mass MPl , we set

V0 = 10−7, g0 = 1.1,β = 5, γ = 10−3,

bV = 5, bg = 0.5, p = 0.01, q = 0.1 (65)

to illustrate the calculations.
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sity ⇤) is dominant in the contracting phase3. Such an
equation of state can be realized by treating the dominant
form of matter as a scalar field with negative exponen-
tial potential. Since the energy density of the dominant
matter then scales with a�q with q ⇤ 6, anisotropies be-
come negligible and the BKL instability is avoided [37]4.
In a recent paper [38], a subset of the present authors
introduced a scalar field with an Ekpyrotic potential to
construct a matter bounce scenario which is free from the
BKL instability problem.

The Ekpyrotic scenario in its original formulation [32]
involves a singular bounce. In addition, the curvature
spectrum of � is an nS = 3 spectrum rather than a scale-
invariant nS = 1 one [39–42]. Hence, without non-trivial
matching of � across the bounce, one cannot obtain a
scale-invariant spectrum at late time5. To solve this
problem, a new and non-singular version of the Ekpyrotic
scenario [46] was proposed in which a second scalar field
is introduced which does not influence the background
dynamics but develops a scale-invariant spectrum which
starts out as an isocurvature mode but which is trans-
ferred to the adiabatic mode during the evolution. The
second field can also be given a “ghost condensate” La-
grangian [47] in which case it mediates a non-singular
bounce. However, as has been pointed out in [48], in
this “New Ekpyrotic” scenario the anisotropies which are
highly suppressed during the contracting phase again
raise their head and lead to a BKL instability.

In our previous work [38], we argued qualitatively that
in the model we considered the anisotropies remained
negligibly small during the bouncing phase. The reason
for the di�erence compared to what happens in the model
of [46] is that in our model the kinetic condensate which
grows as the bounce is approached does not need to de-
crease again by the time of the bounce point. This leads
to a shorter bounce time scale and to di�erent dynamics.

In this paper we carefully study the development of
anisotropies in the bouncing cosmology with an Ekpy-
rotic phase of contraction introduced in [38]. We work
in the context of a homogeneous but anisotropic Bianchi
cosmology in which the scale factors in each spatial di-
mension evolve independently. We are able to show that
no BKL type instability develops, in agreement with
what the study of [38] indicated. Our work thus shows
that the arguments against non-singular (as opposed to
singular) bouncing cosmologies put forwards in [48] do
not apply to all non-singular bouncing cosmologies.

The outline of this paper is as follows. In the next sec-

tion we review the bounce model introduced in [38] and
derive the resulting equations of motion for a homoge-
neous but anisotropic universe. In Section 3 we analyt-
ically study the background dynamics in each phase of
the cosmological evolution from the initial matter phase
of contraction through the Ekpyrotic phase to the bounc-
ing phase and the subsequent fast-roll expanding period.
Specifically, we determine the decay or growth rates of
the anisotropy parameter in each phase. In Section 4 we
solve the dynamical system numerically and present our
final results. We close with a general discussion.

A word on notation: We define the reduced Planck
mass by MPl = 1/

�
8⇥GN where GN is Newton’s gravi-

tational constant. The sign of the metric is taken to be
(+,�,�,�). Note that we take the value of the mean
scale factor at the bounce point to be aB = 1 throughout
the paper.

II. A NONSINGULAR BOUNCE MODEL

We consider a nonsingular bounce model in which the
universe is filled with two matter components, a cosmic
scalar field ⌅ and a generic matter fluid, as proposed in
Ref. [38] (which, in turn, is based on the theory devel-
oped in [49]). The Lagrangian of ⌅ is given by

L [⌅ (x)] = K(⌅, X) + G(⌅, X)�⌅, (1)

where K and G are functions of ⌅ and its canonical ki-
netic term

X ⇥ 1
2
⇧µ⌅⇧µ⌅, (2)

while the other kinetic terms of ⌅ include the operator

�⌅ ⇥ gµ�⌅µ⌅�⌅. (3)

Variation of the above scalar field Lagrangian mini-
mally coupled to Einstein gravity leads to the following
corresponding energy momentum tensor

T⇤
µ� = (�K + 2XG,⇤ + G,X⌅⇥X⌅⇥⌅)gµ�

+(K,X + G,X�⌅� 2G,⇤)⌅µ⌅⌅�⌅

�G,X(⌅µX⌅�⌅ +⌅�X⌅µ⌅), (4)

T⇤
µ� = (�K + 2XG,⇤ + G,X⌅⇥X⌅⇥⌅) gµ� + (K,X + G,X�⌅� 2G,⇤)⌅µ⌅⌅�⌅�G,X(⌅µX⌅�⌅ +⌅�X⌅µ⌅) (5)

in which we use the notation that F,⇤ and F,X denote
derivatives of whatever functional F(⌅, X) may be with

respect to ⌅ and X, respectively.
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and the individual Hubble parameters along spatial di-
rections are given by,

Hi ⇥
1

ae�i

d
dt

�
ae�i

⇥
= H + ⇤̇i, (no sum) (13)

where the overdot denotes the derivative with respect to
cosmic time t.

Since we are interested in studying anisotropies rather
than inhomogeneities we can treat the matter fields to be
homogeneous, which implies ⇧ is only a function of cosmic
time. Thus, the kinetic terms of the homogeneous scalar
field background become

X =
1
2
⇧̇2,

�⇧ = ⇧̈ + 3H⇧̇, (14)

so that, for this background, the energy density of the
scalar field is

⌅⇤ =
1
2
M2

Pl
(1� g)⇧̇2 +

3
4
�⇧̇4 + 3⇥H⇧̇3 + V (⇧), (15)

and the pressure is

p⇤ =
1
2
M2

Pl
(1� g)⇧̇2 +

1
4
�⇧̇4 � ⇥⇧̇2⇧̈� V (⇧), (16)

as follows by computing the diagonal components of the
stress-energy tensor (4).

Additionally, the matter fluid contributes its own en-
ergy density ⌅m and pressure pm, and usually they are
associated with a constant equation-of-state parameter
wm = pm/⌅m. Namely, for normal radiation, wm = 1

3 ,
while for normal matter, wm = 0.

To derive the equation of motion for ⇧, one can either
vary the Lagrangian with respect to ⇧ or, equivalently,
require that the covariant derivative of its stress-energy
tensor vanishes. This yields

P⇧̈ +D⇧̇ + V,⇤ = 0, (17)

where we have introduced

P = (1� g)M2
Pl

+ 6⇥H⇧̇ + 3�⇧̇2 +
3⇥2

2M2
Pl

⇧̇4, (18)

D = 3(1� g)M2
Pl

H +
⇤

9⇥H2 � 1
2
M2

Pl
g,⇤

⌅
⇧̇ + 3�H⇧̇2

�3
2
(1� g)⇥⇧̇3 � 9⇥2H⇧̇4

2M2
Pl

� 3�⇥⇧̇5

2M2
Pl

�3
2
G,X

⇧

i

⇤̇2
i ⇧̇� 3G,X

2M2
Pl

(⌅m + pm)⇧̇. (19)

From Eq. (17), it is clear that the function P determines
the positivity of the kinetic term of the scalar field and
thus can be used to determine whether the model con-
tains a ghost or not at the perturbative level; the function
D on the other hand, represents an e�ective damping
term. By keeping the first terms of the expressions of

P and D and setting g = 0, one can recover the stan-
dard Klein-Gordon equation in the FRW background.
Neglecting the other terms is a good approximation when
the velocity of ⇧ is sub-Planckian. Note that the friction
term D contains the contributions from anisotropic fac-
tors and matter fluid, which can be suppressed for small
values of ⇧̇. However, these terms will become important
during the bouncing phase where ⇧̇ reaches a maximal
value. For simplicity, in the following we will consider
matter fluid is cold and thus wm = 0.

Finally, we can write down Einstein equations in this
background, given by

M2
Pl

⇤
Rµ⇥ �

R

2
gµ⇥

⌅
= T⇤

µ⇥ + Tm
µ⇥ . (20)

Once expanded in components, this tensor equation
yields the e�ective Friedmann equations,

H2 =
⌅T

3M2
Pl

+
1
6

⇧

i

⇤̇2
i , (21)

Ḣ = �⌅T + pT

2M2
Pl

� 1
2

⇧

i

⇤̇2
i , (22)

where ⌅T and pT represent the total energy density and
pressure in the Bianchi type-I universe, i.e., the sum of
the contributions of the scalar field and the fluid.

Moreover, combining the spatial component of Ein-
stein equation with the constraint equation (11) yields

⇤̈i + 3H ⇤̇i = 0, (23)

from which it follows that

⇤̇i(t) = M�,i
a3

B

a3(t)
, (24)

where aB is the mean scale factor of the universe at the
bouncing point. The coe⇥cients M�,i are integral con-
stants with a dimension of mass. According to the con-
straint equation (11), one can read o� that

⇧

i

M�,i = 0. (25)

Plugging Eq. (24) into Eq. (21) shows that one can
introduce an e�ective energy density of anisotropy

⌅� ⇥
M2

Pl

2

⇧

i

⇤̇2
i ⇤ a�6, (26)

whose evolution as 1/a6 implies an e�ective equation-of-
state parameter equal to w� = 1. We see that this e�ec-
tive energy density increases faster than that of pressure-
less matter or radiation in a contraction universe. This
is the source of the BKL instability of the contracting
phase of many bouncing cosmologies.
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while for normal matter, wm = 0.

To derive the equation of motion for ⇧, one can either
vary the Lagrangian with respect to ⇧ or, equivalently,
require that the covariant derivative of its stress-energy
tensor vanishes. This yields
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where we have introduced
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From Eq. (17), it is clear that the function P determines
the positivity of the kinetic term of the scalar field and
thus can be used to determine whether the model con-
tains a ghost or not at the perturbative level; the function
D on the other hand, represents an e�ective damping
term. By keeping the first terms of the expressions of

P and D and setting g = 0, one can recover the stan-
dard Klein-Gordon equation in the FRW background.
Neglecting the other terms is a good approximation when
the velocity of ⇧ is sub-Planckian. Note that the friction
term D contains the contributions from anisotropic fac-
tors and matter fluid, which can be suppressed for small
values of ⇧̇. However, these terms will become important
during the bouncing phase where ⇧̇ reaches a maximal
value. For simplicity, in the following we will consider
matter fluid is cold and thus wm = 0.

Finally, we can write down Einstein equations in this
background, given by
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Once expanded in components, this tensor equation
yields the e�ective Friedmann equations,
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where ⌅T and pT represent the total energy density and
pressure in the Bianchi type-I universe, i.e., the sum of
the contributions of the scalar field and the fluid.

Moreover, combining the spatial component of Ein-
stein equation with the constraint equation (11) yields

⇤̈i + 3H ⇤̇i = 0, (23)

from which it follows that

⇤̇i(t) = M�,i
a3

B

a3(t)
, (24)

where aB is the mean scale factor of the universe at the
bouncing point. The coe⇥cients M�,i are integral con-
stants with a dimension of mass. According to the con-
straint equation (11), one can read o� that

⇧

i

M�,i = 0. (25)

Plugging Eq. (24) into Eq. (21) shows that one can
introduce an e�ective energy density of anisotropy

⌅� ⇥
M2

Pl

2
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i

⇤̇2
i ⇤ a�6, (26)

whose evolution as 1/a6 implies an e�ective equation-of-
state parameter equal to w� = 1. We see that this e�ec-
tive energy density increases faster than that of pressure-
less matter or radiation in a contraction universe. This
is the source of the BKL instability of the contracting
phase of many bouncing cosmologies.

4

and the individual Hubble parameters along spatial di-
rections are given by,

Hi ⇥
1

ae�i

d
dt

�
ae�i

⇥
= H + ⇤̇i, (no sum) (13)

where the overdot denotes the derivative with respect to
cosmic time t.

Since we are interested in studying anisotropies rather
than inhomogeneities we can treat the matter fields to be
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as follows by computing the diagonal components of the
stress-energy tensor (4).
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associated with a constant equation-of-state parameter
wm = pm/⌅m. Namely, for normal radiation, wm = 1
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From Eq. (17), it is clear that the function P determines
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tains a ghost or not at the perturbative level; the function
D on the other hand, represents an e�ective damping
term. By keeping the first terms of the expressions of

P and D and setting g = 0, one can recover the stan-
dard Klein-Gordon equation in the FRW background.
Neglecting the other terms is a good approximation when
the velocity of ⇧ is sub-Planckian. Note that the friction
term D contains the contributions from anisotropic fac-
tors and matter fluid, which can be suppressed for small
values of ⇧̇. However, these terms will become important
during the bouncing phase where ⇧̇ reaches a maximal
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where ⌅T and pT represent the total energy density and
pressure in the Bianchi type-I universe, i.e., the sum of
the contributions of the scalar field and the fluid.
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state parameter equal to w� = 1. We see that this e�ec-
tive energy density increases faster than that of pressure-
less matter or radiation in a contraction universe. This
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as follows by computing the diagonal components of the
stress-energy tensor (4).

Additionally, the matter fluid contributes its own en-
ergy density ⌅m and pressure pm, and usually they are
associated with a constant equation-of-state parameter
wm = pm/⌅m. Namely, for normal radiation, wm = 1
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while for normal matter, wm = 0.

To derive the equation of motion for ⇧, one can either
vary the Lagrangian with respect to ⇧ or, equivalently,
require that the covariant derivative of its stress-energy
tensor vanishes. This yields
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where we have introduced

P = (1� g)M2
Pl

+ 6⇥H⇧̇ + 3�⇧̇2 +
3⇥2

2M2
Pl

⇧̇4, (18)

D = 3(1� g)M2
Pl

H +
⇤

9⇥H2 � 1
2
M2

Pl
g,⇤

⌅
⇧̇ + 3�H⇧̇2

�3
2
(1� g)⇥⇧̇3 � 9⇥2H⇧̇4

2M2
Pl

� 3�⇥⇧̇5

2M2
Pl

�3
2
G,X

⇧

i

⇤̇2
i ⇧̇� 3G,X

2M2
Pl

(⌅m + pm)⇧̇. (19)

From Eq. (17), it is clear that the function P determines
the positivity of the kinetic term of the scalar field and
thus can be used to determine whether the model con-
tains a ghost or not at the perturbative level; the function
D on the other hand, represents an e�ective damping
term. By keeping the first terms of the expressions of

P and D and setting g = 0, one can recover the stan-
dard Klein-Gordon equation in the FRW background.
Neglecting the other terms is a good approximation when
the velocity of ⇧ is sub-Planckian. Note that the friction
term D contains the contributions from anisotropic fac-
tors and matter fluid, which can be suppressed for small
values of ⇧̇. However, these terms will become important
during the bouncing phase where ⇧̇ reaches a maximal
value. For simplicity, in the following we will consider
matter fluid is cold and thus wm = 0.

Finally, we can write down Einstein equations in this
background, given by
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Once expanded in components, this tensor equation
yields the e�ective Friedmann equations,
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Ḣ = �⌅T + pT

2M2
Pl

� 1
2

⇧

i

⇤̇2
i , (22)

where ⌅T and pT represent the total energy density and
pressure in the Bianchi type-I universe, i.e., the sum of
the contributions of the scalar field and the fluid.

Moreover, combining the spatial component of Ein-
stein equation with the constraint equation (11) yields

⇤̈i + 3H ⇤̇i = 0, (23)

from which it follows that

⇤̇i(t) = M�,i
a3

B

a3(t)
, (24)

where aB is the mean scale factor of the universe at the
bouncing point. The coe⇥cients M�,i are integral con-
stants with a dimension of mass. According to the con-
straint equation (11), one can read o� that
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i

M�,i = 0. (25)

Plugging Eq. (24) into Eq. (21) shows that one can
introduce an e�ective energy density of anisotropy
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whose evolution as 1/a6 implies an e�ective equation-of-
state parameter equal to w� = 1. We see that this e�ec-
tive energy density increases faster than that of pressure-
less matter or radiation in a contraction universe. This
is the source of the BKL instability of the contracting
phase of many bouncing cosmologies.
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than at the time tE when Ekpyrotic contraction begins.
In fact, it is straightforward to derive that

HF � |HE |e�(1�3q)NE/(1�q), (64)

showing that the value of HF should be much less than
|HE |. The Hubble rate HF is associated with the ini-
tial temperature TF when the expansion begins to follow
the Standard Big Bang evolution (it is the equivalent of
the temperature of reheating in inflationary cosmology).
Specifically, the relation is

HF ⌅
g1/2

s ⇤T 2
F

9.5MPl

, (65)

where gs is the e�ective partible number for radiation.
As a consequence, in analogy with inflationary cosmol-
ogy, the constraint (64) leads to an upper bound on the
e�ective “reheating” temperature:

TF �
�

3MPl |HB� |
g1/2

s

⇥ 1
2

e�(2�3q)NE/[2(1�q)] (66)

in our nonsingular bounce model. From the BBN con-
straint, we find that the lower limit of the “reheating”
temperature is of the order O(MeV). If we consider this
lower bound and take gs ⇤ 100, NE ⇤ 30 and q ⇤ 0.1,
then we find that HB+ > 10�17MPl which can easily be
implemented in the model, as we shall see in the following
numerical calculations.

F. Numerical estimates

To illustrate that a nonsingular bounce can be achieved
in our model, we numerically solved the background
equations of motion. Expressing all relevant functions
and parameters in the corresponding units of the reduced
Planck mass MPl , we set

V0 = 10�7, g0 = 1.1, � = 5, ⇥ = 10�3,

bV = 5, bg = 0.5, p = 0.01, q = 0.1 (67)

to illustrate the calculations.
Moreover, we consider the following parameters of the

matter fluid and the anisotropy

⌅m,B = 2.8⇥ 10�10, M�,1 = 2.2⇥ 10�6,

M�,2 = 3.4⇥ 10�6, M�,3 = �5.6⇥ 10�6, (68)

and choose as the initial conditions for the scalar field
the following:

⇧ini = �2, ⇧̇ini = 7.8⇥ 10�6. (69)

The actual computation also requires the initial value
of the mean Hubble parameter, which is determined by
imposing the Hamiltonian constraint equation. Figs. 2
and 3 show the evolution of the Hubble parameters and
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Figure 2: Time evolution of the Hubble parameters H (black
line) and Hi (red dashed, blue dotted and magenta dot-dashed
lines for the Hubble expansion rates along the x1, x2, and x3

axes, respectively), in units of the reduced Planck mass MPl ,
with background parameters given by Eqs. (67) and (68),
and initial conditions as in (69). The main plot shows that
a nonsingular bounce occurs, and that the time scale of the
bounce is short (it is a “fast bounce” model). The inner insert
shows a blowup of the smooth Hubble parameters during the
bounce phase: this zoomed-in view of the Hubble parameters
around the bounce point shows that the Hubble rates vanish
at di�erent times, so that the scale factors bounce at di�erent
times as well.

“e�ective” energy densities for matter components and
for the anisotropy, respectively.

From Fig. 2, one can see that Hubble parameters
along all spatial coordinates evolve smoothly through the
bouncing point with an approximate dependence on cos-
mic time which is linear. The maximal value of the mean
Hubble parameter, which we denote as the bounce scale
HB , is mainly determined by the value of the potential
parameter V0. Specifically, HB is of order O(10�4MPl) in
our numerical result. We also note that the bounces oc-
curring in the three spatial directions do not occur at ex-
actly the same moment – a consequence of the existence
of anisotropy. This could leave a smoking gun signature
for detecting nonsingular bounce cosmology in high accu-
racy CMB experiments since the di�erence in the times
of the bounces along various spatial coordinates would
a�ect the ultraviolet (UV) modes of primordial pertur-
bations passing through the bouncing phase. We leave
this issue for a forthcoming investigation.

From Fig. 3, one can easily see that the universe in
our model experiences four phases, which are matter con-
traction, Ekpyrotic contraction, the bounce, and fast-roll
expansion, in turn. At the beginning, the universe is
dominated by the matter fluid. At some point (time tE)
during the phase of contraction, the contribution of the
scalar field becomes dominant, and the universe enters
the Ekpyrotic phase. Note that the e�ective energy den-
sity of anisotropies grows faster than ⌅m but slower than
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than at the time tE when Ekpyrotic contraction begins.
In fact, it is straightforward to derive that
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temperature is of the order O(MeV). If we consider this
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numerical calculations.
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a nonsingular bounce occurs, and that the time scale of the
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around the bounce point shows that the Hubble rates vanish
at di�erent times, so that the scale factors bounce at di�erent
times as well.
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HB , is mainly determined by the value of the potential
parameter V0. Specifically, HB is of order O(10�4MPl) in
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curring in the three spatial directions do not occur at ex-
actly the same moment – a consequence of the existence
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racy CMB experiments since the di�erence in the times
of the bounces along various spatial coordinates would
a�ect the ultraviolet (UV) modes of primordial pertur-
bations passing through the bouncing phase. We leave
this issue for a forthcoming investigation.
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expansion, in turn. At the beginning, the universe is
dominated by the matter fluid. At some point (time tE)
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in our nonsingular bounce model. From the BBN con-
straint, we find that the lower limit of the “reheating”
temperature is of the order O(MeV). If we consider this
lower bound and take gs ⇤ 100, NE ⇤ 30 and q ⇤ 0.1,
then we find that HB+ > 10�17MPl which can easily be
implemented in the model, as we shall see in the following
numerical calculations.

F. Numerical estimates

To illustrate that a nonsingular bounce can be achieved
in our model, we numerically solved the background
equations of motion. Expressing all relevant functions
and parameters in the corresponding units of the reduced
Planck mass MPl , we set

V0 = 10�7, g0 = 1.1, � = 5, ⇥ = 10�3,

bV = 5, bg = 0.5, p = 0.01, q = 0.1 (67)

to illustrate the calculations.
Moreover, we consider the following parameters of the

matter fluid and the anisotropy

⌅m,B = 2.8⇥ 10�10, M�,1 = 2.2⇥ 10�6,

M�,2 = 3.4⇥ 10�6, M�,3 = �5.6⇥ 10�6, (68)

and choose as the initial conditions for the scalar field
the following:

⇧ini = �2, ⇧̇ini = 7.8⇥ 10�6. (69)

The actual computation also requires the initial value
of the mean Hubble parameter, which is determined by
imposing the Hamiltonian constraint equation. Figs. 2
and 3 show the evolution of the Hubble parameters and
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Figure 2: Time evolution of the Hubble parameters H (black
line) and Hi (red dashed, blue dotted and magenta dot-dashed
lines for the Hubble expansion rates along the x1, x2, and x3

axes, respectively), in units of the reduced Planck mass MPl ,
with background parameters given by Eqs. (67) and (68),
and initial conditions as in (69). The main plot shows that
a nonsingular bounce occurs, and that the time scale of the
bounce is short (it is a “fast bounce” model). The inner insert
shows a blowup of the smooth Hubble parameters during the
bounce phase: this zoomed-in view of the Hubble parameters
around the bounce point shows that the Hubble rates vanish
at di�erent times, so that the scale factors bounce at di�erent
times as well.

“e�ective” energy densities for matter components and
for the anisotropy, respectively.

From Fig. 2, one can see that Hubble parameters
along all spatial coordinates evolve smoothly through the
bouncing point with an approximate dependence on cos-
mic time which is linear. The maximal value of the mean
Hubble parameter, which we denote as the bounce scale
HB , is mainly determined by the value of the potential
parameter V0. Specifically, HB is of order O(10�4MPl) in
our numerical result. We also note that the bounces oc-
curring in the three spatial directions do not occur at ex-
actly the same moment – a consequence of the existence
of anisotropy. This could leave a smoking gun signature
for detecting nonsingular bounce cosmology in high accu-
racy CMB experiments since the di�erence in the times
of the bounces along various spatial coordinates would
a�ect the ultraviolet (UV) modes of primordial pertur-
bations passing through the bouncing phase. We leave
this issue for a forthcoming investigation.

From Fig. 3, one can easily see that the universe in
our model experiences four phases, which are matter con-
traction, Ekpyrotic contraction, the bounce, and fast-roll
expansion, in turn. At the beginning, the universe is
dominated by the matter fluid. At some point (time tE)
during the phase of contraction, the contribution of the
scalar field becomes dominant, and the universe enters
the Ekpyrotic phase. Note that the e�ective energy den-
sity of anisotropies grows faster than ⌅m but slower than
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Figure 3: Time evolution of the “E�ective” energy densities of
the scalar field ⇥⇥ (full black line), the matter fluid ⇥m (dot-
dashed green line) and the anisotropy factors ⇥�i (red dashed,
blue dotted and magenta dot-dashed lines), with same initial
conditions and background parameters are in Fig. 2.

⇥⇥ during the matter contraction phase. Thus, if ⇥�i

does not dominate over the background before tE , it will
never become dominant throughout the whole evolution,
as already discussed in the previous sections. After the
bounce, the scalar field ⌅ enters a fast roll phase with
an e�ective equation of state equal to unity. As a con-
sequence, the energy densities ⇥⇥ and ⇥�i dilute at the
same rate, and finally the matter fluid catches up with
the density of ⌅ at the time tF .

Fig. 4 shows the evolution of the anisotropy factors
�i and their time derivatives. Although the anisotropy
functions grow during the contraction, they evolve to-
wards constant values in the expanding epoch. There-
fore, after the time tF , one can rescale all scale factors by
absorbing the asymptotic factors in a redefinition of the
coordinates, and we finally get an isotropic universe. It
implies that at the level of homogeneous cosmology the
anisotropies do not destabilize our nonsingular bounce
model. This can also be read from the upper panel of
Fig. 4 which shows that �̇i approach zero after a su⇥-
ciently long period of expansion.

In order to better characterize the anisotropy quanti-
tatively, we can define the so-called shear parameters

⇤i � �̇ie2�i , (70)

and the density parameters

�I �
⇥I�
I
⇥I

, (71)

where the subscript “I” represents ⌅, m and �, respec-
tively. Fig. 5 shows the numerical solution we obtained
for their time development. The shear functions increase
up to their maximal values at the bounce point, after
which they rapidly decrease to end up vanishingly small
when the universe connects with the Standard Big Bang
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Figure 4: Time evolution of the anisotropy factors �i (lower
panel) and their time derivatives �̇i (upper panel), with same
initial conditions and background parameters are in Fig. 2.
The anisotropies increase during the contracting phase but
rapidly approach constant values in the following expanding
phase.
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Figure 5: Time evolution of the density parameters �⇥, �m,
and �� (upper panel), and of the shear function ⇤i (lower
panel), with same initial conditions and background parame-
ters are in Fig. 2.

evolution. From the evolution of the density parameters,
we see that the contribution of the anisotropy only grows
relative to the dominant density in the phase of matter
contraction, but it then rapidly decreases in the Ekpy-
rotic phase and in the fast roll phase.

Note that all numerical calculations shown here are
meant to illustrate the discussion of the previous sections.
Indeed, the parameters chosen do not satisfy the bounds
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Figure 3: Time evolution of the “E�ective” energy densities of
the scalar field ⇥⇥ (full black line), the matter fluid ⇥m (dot-
dashed green line) and the anisotropy factors ⇥�i (red dashed,
blue dotted and magenta dot-dashed lines), with same initial
conditions and background parameters are in Fig. 2.

⇥⇥ during the matter contraction phase. Thus, if ⇥�i

does not dominate over the background before tE , it will
never become dominant throughout the whole evolution,
as already discussed in the previous sections. After the
bounce, the scalar field ⌅ enters a fast roll phase with
an e�ective equation of state equal to unity. As a con-
sequence, the energy densities ⇥⇥ and ⇥�i dilute at the
same rate, and finally the matter fluid catches up with
the density of ⌅ at the time tF .

Fig. 4 shows the evolution of the anisotropy factors
�i and their time derivatives. Although the anisotropy
functions grow during the contraction, they evolve to-
wards constant values in the expanding epoch. There-
fore, after the time tF , one can rescale all scale factors by
absorbing the asymptotic factors in a redefinition of the
coordinates, and we finally get an isotropic universe. It
implies that at the level of homogeneous cosmology the
anisotropies do not destabilize our nonsingular bounce
model. This can also be read from the upper panel of
Fig. 4 which shows that �̇i approach zero after a su⇥-
ciently long period of expansion.

In order to better characterize the anisotropy quanti-
tatively, we can define the so-called shear parameters

⇤i � �̇ie2�i , (70)

and the density parameters

�I �
⇥I�
I
⇥I

, (71)

where the subscript “I” represents ⌅, m and �, respec-
tively. Fig. 5 shows the numerical solution we obtained
for their time development. The shear functions increase
up to their maximal values at the bounce point, after
which they rapidly decrease to end up vanishingly small
when the universe connects with the Standard Big Bang
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Figure 4: Time evolution of the anisotropy factors �i (lower
panel) and their time derivatives �̇i (upper panel), with same
initial conditions and background parameters are in Fig. 2.
The anisotropies increase during the contracting phase but
rapidly approach constant values in the following expanding
phase.
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Figure 5: Time evolution of the density parameters �⇥, �m,
and �� (upper panel), and of the shear function ⇤i (lower
panel), with same initial conditions and background parame-
ters are in Fig. 2.

evolution. From the evolution of the density parameters,
we see that the contribution of the anisotropy only grows
relative to the dominant density in the phase of matter
contraction, but it then rapidly decreases in the Ekpy-
rotic phase and in the fast roll phase.

Note that all numerical calculations shown here are
meant to illustrate the discussion of the previous sections.
Indeed, the parameters chosen do not satisfy the bounds
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Anisotropies can remain small all throughout

Y. Cai, R. Brandenberger & PP, CQG 30, 075019 (2013)

Class. Quantum Grav. 30 (2013) 075019 Y-F Cai et al
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Figure 2. Time evolution of the Hubble parameters H (black line) and Hi (red dashed, blue
dotted and magenta dot–dashed lines for the Hubble expansion rates along the x1, x2 and x3 axes,
respectively), in units of the reduced Planck mass MPl , with background parameters given by
equations (65) and (66), and initial conditions as in (67). The main plot shows that a nonsingular
bounce occurs, and that the time scale of the bounce is short (it is a ‘fast bounce’ model). The inner
inset shows a blowup of the smooth Hubble parameters during the bounce phase: this zoomed-in
view of the Hubble parameters around the bounce point shows that the Hubble rates vanish at
different times, so that the scale factors bounce at different times as well.

Moreover, we consider the following parameters of the matter fluid and the anisotropy:

ρm,B = 2.8 × 10−10, Mθ ,1 = 2.2 × 10−6,

Mθ ,2 = 3.4 × 10−6, Mθ ,3 = −5.6 × 10−6, (66)

and choose the following as the initial conditions for the scalar field::

φini = −2, φ̇ini = 7.8 × 10−6. (67)

The actual computation also requires the initial value of the mean Hubble parameter, which
is determined by imposing the Hamiltonian constraint equation. Figures 2 and 3 show the
evolution of the Hubble parameters and ‘effective’ energy densities for matter components
and for the anisotropy, respectively.

From figure 2, one can see that Hubble parameters along all spatial coordinates evolve
smoothly through the bouncing point with an approximate dependence on cosmic time which
is linear. The maximal value of the mean Hubble parameter, which we denote as the bounce
scale HB , is mainly determined by the value of the potential parameter V0. Specifically, HB

is of order O(10−4MPl ) in our numerical result. We also note that the bounces occurring in
the three spatial directions do not occur at exactly the same moment—a consequence of the
existence of anisotropy. This could leave a smoking gun signature for detecting nonsingular
bounce cosmology in high accuracy CMB experiments since the difference in the times
of the bounces along various spatial coordinates would affect the ultraviolet (UV) modes
of primordial perturbations passing through the bouncing phase. We leave this issue for a
forthcoming investigation.

From figure 3, one can easily see that the universe in our model experiences four phases,
which are matter contraction, ekpyrotic contraction, the bounce, and fast-roll expansion, in
turn. At the beginning, the universe is dominated by the matter fluid. At some point (time tE )
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A generic model-independent treatment of the bounce phase?
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still satisfied. As a consequence, this implies that H(! j) can-
not be large in comparison to K!1; in fact, since !0!1 and
x"1, H 2 is expected to be negligibly small compared to
unity right after the bounce. This means that one necessarily
connects the bounce to a regime where the curvature is im-
portant or, in other words, in a region where the sine function
appearing in the scale factor "39# cannot be approximated by
the first term of the Taylor expansion, a(!)!a r(!#! r) . The
only way to avoid this conclusion would be to violate the
null energy condition, as already noticed in Ref. $4% and to
have a small !0 but then it would have been useless to con-
sider the case K!1 for modeling the bounce since this was
done precisely in order to satisfy this condition. Therefore,
we conclude that between the bounce and the standard hot
big bang, another phase must necessary occur whose main
effect will be to drive H to sufficiently large values. This is
usually the role played by a phase of inflation.
With the general framework thus clarified, let us turn to

the evolution of the scalar gravitational perturbations through
the bounce by means of evaluating the effective potential for
the variable u related with the Bardeen potential through Eq.
"11#. We discuss the potential for the variable v in the dis-
cussion Sec. V A below.

D. The potential Vu„!…
The effective potential for the variable u in the de Sitter–

like solution is, according to Eq. "29#, constant in time. This
is however very specific to this particular solution, as any
displacement away from it immediately leads to a different
form of the potential. This is illustrated in Fig. 4 which
shows the relative accuracy of the expansion "30# around the
de Sitter–like solution "21#. It is also clear from the figure
that the expansion "30#, if pushed to sufficiently high orders
in ! , gives back the correct constant value over a large range
of conformal times. Let us now turn to the more general
bounce case of Eq. "30#.
Arbitrary values for the parameter & restricted to the range

of interest discussed above lead to the generic shape illus-

trated in Fig. 5. The calculation of the effective potential is
extremely complicated even with the quartic approximation
of the scale factor. Even if it can be done in full generality
since, for a scale factor given by Eq. "30#, the potential
Vu(!) reads

Vu"!#'
(!
(

$3K"1#cS
2#!

P24"!#

Q24"!#
, "41#

where P24(!) and Q24(!) are two polynomials of order 24,
in practice the calculation is not tractable. However, since in
practice we always have !/!0"1, only the first monomials
are important. One can check that the following approxima-
tion

Vu
(app)"!#!3

c0$c2!
2

d0$d2!
2$d4!

4
, "42#

FIG. 4. Absolute value of the effective potential Vu(!) for the perturbation variable u(!) for the de Sitter–like case "full line on both
panels#, for which it is constant and for the various approximation levels "from quadratic to eighth power of the scale factor#. The left panel
shows the potential as obtained by using the quadratic "dotted line# and quartic "dashed# expansions of the scale factor only, whereas the right
panel presents the situation when quartic "dashed#, sixth "dotted# and eighth "dot-dashed# terms are used. It is clear that the quadratic
approximation is qualitatively wrong and cannot be used to describe a de Sitter bounce. The value !0!1.01 has been used to derive these
plots.

FIG. 5. Absolute value of the potential Vu(!) as a function of
rescaled conformal time !/!0 for !0!1.01 as derived using either
the assumption that the scale factor behaves as a square root, i.e.,

a!a0!1$(!/!0)
2, "full line# or Eq. "30# up to quadratic "dotted

line# and quartic order with )!0 and &!#2/5 "dashed line#. The
quartic approximation is extremely close to the exact solution, ex-

emplifying its accuracy, while the quadratic approximation appears

to be at best qualitatively correct.
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Non trivial transfer matrix

Id

τa

A(1, 1) ... A(1, n)
... ... ...

A(m, 1) ... A(m, n)

Tij(k) =

[

A(k) B(k)
C(k) D(k)

]

〈a†a〉 # 1

c2
T

=
T

U

Ωvortons # 1

1

“Causality” argument... J. Martin & PP, Phys. Rev. Lett. 92, 061301 (2004)
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where the k dependence stems from the solution !78" and the
unknown matrices T?

! and T?
" refer to the unknown parts

sketched in Fig. 10. The coefficients one is interested in,
namely T11 and T12 , giving the amplitude of the growing
mode in the expanding phase as functions of the modes in
the contracting phase, accordingly can depend on k. In addi-
tion, it is important to notice that, as shown in Ref. #16$, this
mechanism does not violate causality; a similar statement
was also emphasized in Ref. #30$.
Paradoxically, obtaining a spectral modification at the

bounce is possible provided the bounce lasts the minimal
amount of conformal time compatible with the NEC preser-
vation. Nevertheless, the assumption of no effect can be jus-
tified provided the constraint %0#1$” 1 is satisfied, or in the
pure de Sitter case having %0%1 strictly. This last situation
is what happens in models in which the bounce takes place
for a vanishing value of the scalar field kinetic energy #5$,
whereas the former case implies a kinetic energy density !not
the scalar field itself" for the scalar field comparable to the
Planck scale, which may render the semi-classical field
theory dubious.
This can be particularly important in view of the string

motivated potential alternatives to inflation of the pre big
bang kind if it turns out that these models might lead to such
spectral corrections as discussed above. This condition needs

be verified in each particular situation. For instance, in the
pre big bang case, one would need to model the bounce
occurring in the Einstein frame, in which our formalism is
well suited, to see what the behavior of Vu is in this context.
Therefore, and unfortunately, one consequence of the failure
of any general argument preventing any alteration of the
spectrum is that one needs to explicitly model a regime in
which higher order string corrections are dominant. Avoiding
this was the main interest of the general argument in ques-
tion.
We also obtained that the relevant propagation variable is

not v , whose flat space equivalent is commonly used for
quantization, i.e. for setting up the initial conditions, but
rather the intermediate variable u, directly related to the
Bardeen potential. This is to be compared with what was
recently obtained in Ref. #6$, based on a completely different
theory of gravity, in which neither variable happens to be
bounded at the bounce.
The spectrum of gravitational wave cannot be affected by

propagating through these bounces. This exemplifies the fact
that there is no fundamental reason according to which scalar
and tensor modes should propagate similarly through a
bounce.
The picture that emerges for the construction of a com-

plete model of the universe is shown in Fig. 10 and consists
in a regime in which quantum field theory in a time-
dependent background is well suited, as is the case for in-
stance in many string motivated scenarios #7,8$; this first
phase allows an easy calculation of a spectrum of perturba-
tion that would be sort of pre-primordial. Then, unless the
curvature was always important in this first period, it is fol-
lowed by an unknown epoch which connects to the bounce
itself, which should also be followed by yet another un-
known epoch in order for the curvature to be negligible #16$.
This reveals the most important difference between bouncing
scenarios and inflation, namely the need for a high curvature
phase, which we have seen may drastically modify the physi-
cal predictions.
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Another issue…

spectral index n < 1s

Non gaussianities:

Following [31–33], we consider the simplest possible model in which a bounce can be accommodated in the
framework of GR: K = +1 with the matter content sourcing the Einstein equations (2.2) taken to be a single scalar
field � whose dynamics is governed by a canonical kinetic term and a potential V (�). The corresponding background
equations of motion (2.2) thus read

�02

a2
=

2

a2
�
H2 �H0 +K

�
and � 6

a2
H0 = �2V (�)


1� �02

a2V (�)

�
, (2.3)

the combination of which yields the Klein-Gordon equation �00 + 2H�0 + a2V,� = 0. The simplest background
cosmology in inflation is obtained from slight deviations from a spatially flat de Sitter cosmology. Here, instead, the
simplest background nonsingular cosmology is obtained from a slight deviation away from de Sitter cosmology in a
spacetime of constant positively curved spatial sections. The K = +1 de Sitter scale factor reads

a(⌘) = a0 sec (⌘) . (2.4)

and two kinds of generic deviations from the de Sitter solution can be introduced. The first is an overall deviation
from the de Sitter bouncing timescale through

a(⌘) = a0 sec

✓
⌘

⌘c

◆
, (2.5)

where ⌘c = 1/(!a0), ! being a dimensionful constant equal to 1/a0 in the de Sitter case. It can be checked that the
null energy condition is preserved provided ! < a�1

0
, so that ⌘c � 1 [31]. Such non-de-Sitter bounces thus occur

over conformal timescales greater than ⇡. This first kind of deviation from the de Sitter case is however not sufficient
as it yields a constant potential for cosmological perturbations [31].

In order to achieve further deviations from de Sitter in the vicinity of the bounce point, we Taylor-expand (2.5)
and modify the resulting expression by introducing a set of parameters �i. The resulting scale-factor reads

a(⌘) = a0

"
1 +

1

2

✓
⌘

⌘c

◆
2

+ �3

✓
⌘

⌘c

◆
3

+
5

24
(1 + �4)

✓
⌘

⌘c

◆
4
#
. (2.6)

The scale factor stays close to de Sitter as long as ⌘c is close to unity, and if the parameters �i are close to zero.
Solving the Friedmann equations and the Klein-Gordon equation order by order in powers of ⌘, we can write

down the constants a0, ⌘c and the �i’s in terms of ⌥ ⌘ �02

0
/2 and the successive derivatives of V (�) with respect to �,

evaluated at the bounce point. Introducing the following notation, reminiscent of the one used in slow roll inflation,

"V =
V 0

0

V0

, ⌘V =
V 00

0

V0

, (2.7)

we find that the coefficients �i in the Taylor expansion (2.6) can be expressed in terms of ⌥, " and ⌘V through

⌘2c =
1

1�⌥
, a0 =

3�⌥

V0

,

and

�3 =
1

3
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� (3�⌥)2
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5
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(1�⌥)2
⌘V . (2.8)

The bounce is thus controlled by ⌥ and the two first derivatives of the potential normalized by V0. In a similar way,
we express the coefficients H0

0
, H00

0
, �00

0
and �000

0
, that appear in

H(⌘) = H0
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H00

0

2
⌘2 and �(⌘) = �0 + �0
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0

2
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6
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in terms of ⌥, "V and ⌘V . The background cosmology in the neighborhood of the bounce is thus entirely specified by
⌥, "V and ⌘V . Note that in the actual application below (Section 4.2 onwards), we shall concentrate on a symmetric
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complete set of parameters

bounce, and thus set "V to zero. Inclusion of some amount of asymmetry during the bounce does not modify our
conclusions, except insofar as it induces the production of additional non-gaussianities at next-to-leading order in our
computation scheme. What is therefore produced in our symmetric model can thus be understood as the minimum
level expected in curvature-dominated bounces.

Finally, note that although we have no specific knowledge on the pre-bounce phase, but because the de Sitter
solution is an attractor in most theories of gravity, we assume that our bouncing cosmolgy is driven towards the de
Sitter attractor. We will therefore take ⌥, "V and ⌘V , to be small and present the results in Section 4.2 onwards as
expansions in these parameters.

2.2 Linear perturbations

We work with the metric in the Poisson gauge (or the generalized Newtonian gauge) and consider only scalar pertur-
bations. The perturbed metric therefore reads

ds2 = gµ⌫dxµdx⌫ = a2
�
�e2�d⌘2 + e�2 �ijdxidxj

�
, (2.10)

where �ij is the metric on the background spatial hypersurface (2.1). In a homogeneous and isotropic spatial volume,
it is convenient to work in spherical coordinates where �ij takes the form

�ijdxidxj = d�2 +K�1 sin2
⇣p

K�
⌘ �

d✓2 + sin2 ✓d�2
�
. (2.11)

In this work, we expand all quantities up to the second order as

X (x, ⌘) = X(1) (x, ⌘) +
1

2
X(2) (x, ⌘) + · · · , (2.12)

where X stands for �,  and �� etc, X(1) and X(2) are the first and second order perturbations respectively. In a
universe filled with single scalar field matter, the equation of motion for the linear perturbation  (1) is well-known
and reads (see Appendix A)

 00

(1)
+ F (⌘) 0

(1)
� r̄2 (1) +W (⌘) (1) = 0, (2.13)

where r̄2 is the Laplacian w.r.t. the spatial metric (2.11) and where

F (⌘) = 2

✓
H� �̄00

�̄0

◆
, W (⌘) = 2

✓
H0 �H �̄00

�̄0
� 2K

◆
. (2.14)

Since K = +1, and in order to compute the spectral matrix P and the bispectrum B , the first order perturbation is
decomposed on the three-sphere in terms of the set of hyperspherical harmonics Q`mn(�, ✓,') as follows:

 (1)(x, ⌘) =
X

`mn

 `mn(⌘)Q`mn(�, ✓,') with Q`mn(�, ✓,') = R`n(�)Y`m(✓,'), (2.15)

with R`n(�) defined in Appendix C.

2.3 Stochastic initial conditions

In order to specify the set of initial conditions for the first order perturbation  (1) prior to the bounce, let us consider
some spatial hypersurface M at some initial time ⌘� before the bounce. On M, let us assume that the initial conditions
can be written as two classical gaussian random fields, one for  and one for its time derivative at ⌘�:


 (1) (k, ⌘�)
 0

(1)
(k, ⌘�)

�
⌘


x̂1 (k)
x̂2 (k)

�
. (2.16)

In this work, we shall treat the set {x̂i} as the initial conditions and shall make use of their two-point correlations
which we define as (see Appendix B)

⌦
x̂i (k) x̂j

�
k0
�↵

⌘ �k,k0Pij (k) with �k,k0 ⌘ �nn0�``0�mm0 (2.17)
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The recently released Planck data [1, 2] have set new

standards as far as cosmological modeling is concerned,

imposing very tight constraints on early universe physics

[3, 4] and discriminating [5, 6] between numerous infla-

tionary theories [7]. Bouncing alternatives [8–10] have

been claimed to be able to reproduce the observed power

spectrum, but probably the most serious constraint to

date on primordial cosmological models is that provided

by the smallness of non-Gaussianities [11]. Whether or

not generic bouncing models can successfully pass this

test will decide on the viability of such alternatives. The

current work, drawing heavily on the results of Ref. [12],

seems to imply that the level of non-Gaussianity pro-

duced during the contraction to expansion transition

alone can be expected to be orders of magnitudes above

the current limits. Although our result applies, strictly

speaking, to the production of non-Gaussianities in a par-

ticular category of non-singular bouncing models with

constant positive spatial curvature
1
and for which Gen-

eral Relativity (GR) is valid all along, we conjecture that

it could apply to a much wider set of models, hence rais-

ing a possibly generic problem with bouncing cosmologies

that would need to be addressed for each specific model.

1 Spatial curvature, being the only e↵ective negative energy com-
ponent at the bounce, is crucial for this category of models based
on positive energy single scalar field matter content. Although
many models are realized with vanishing or negligible spatial
curvature contribution, they necessarily involve other types of
negative energy fields, which may cause serious instabilities, and
hence also potentially large amounts of non-Gaussianities.

We start from the action describing a single scalar field

� with a canonical kinetic term and evolving in a poten-

tial V (�) within GR (in units in which 8⇡GN = 1),

S = �

Z
d
4x

p
�g

h
R+ (@�)2 + V (�)

i
, (1)

where R is the Ricci scalar derived from the metric ten-

sor gµ⌫ for the perturbed Friedman-Lemâıtre-Robertson-

Walker line element, given in Poisson gauge by

ds2 = a2
�
�e

2�
d⌘2 + e

�2 �ijdx
i
dxj

�
, (2)

where �ij =
�
1 +

1
4K�mnxmxn

��2
�ij is the background

spatial metric which we take to be of constant positive

curvature (K ! 1) in order to obtain a non-singular

bouncing behavior, and where  =
P

i
 (i)

i! and � =
P

i
�(i)

i! are the Bardeen potentials up to arbitrary order

in perturbations which encode the scalar cosmological

fluctuations in the metric. One has  (1) = �(1).

Introducing u / a (1)/�
0
and its Fourier modes, de-

fined by �uk = �k2uk, one finds [13]

u00
k +

⇥
k2 � Vu(⌘)

⇤
uk = 0, (3)

where the potential Vu(⌘) is sketched in Fig. 1, draw-

ing on the specific functional shapes of Vu(⌘) obtained

in the works [14–16]. As shown in the figure, a typically

asymmetric bouncing phase occurs at ⌘B and is gener-

ically preceded and followed by peaks in the potential

with model-dependent amplitudes and widths. The peak

that occurs prior to the bounce follows a regime in which

Vu vanishes, in such a way that unambiguous vacuum
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perturbations up to 2nd order

bounce, and thus set "V to zero. Inclusion of some amount of asymmetry during the bounce does not modify our
conclusions, except insofar as it induces the production of additional non-gaussianities at next-to-leading order in our
computation scheme. What is therefore produced in our symmetric model can thus be understood as the minimum
level expected in curvature-dominated bounces.

Finally, note that although we have no specific knowledge on the pre-bounce phase, but because the de Sitter
solution is an attractor in most theories of gravity, we assume that our bouncing cosmolgy is driven towards the de
Sitter attractor. We will therefore take ⌥, "V and ⌘V , to be small and present the results in Section 4.2 onwards as
expansions in these parameters.

2.2 Linear perturbations

We work with the metric in the Poisson gauge (or the generalized Newtonian gauge) and consider only scalar pertur-
bations. The perturbed metric therefore reads

ds2 = gµ⌫dxµdx⌫ = a2
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�e2�d⌘2 + e�2 �ijdxidxj
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, (2.10)

where �ij is the metric on the background spatial hypersurface (2.1). In a homogeneous and isotropic spatial volume,
it is convenient to work in spherical coordinates where �ij takes the form

�ijdxidxj = d�2 +K�1 sin2
⇣p
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d✓2 + sin2 ✓d�2
�
. (2.11)

In this work, we expand all quantities up to the second order as

X (x, ⌘) = X(1) (x, ⌘) +
1

2
X(2) (x, ⌘) + · · · , (2.12)

where X stands for �,  and �� etc, X(1) and X(2) are the first and second order perturbations respectively. In a
universe filled with single scalar field matter, the equation of motion for the linear perturbation  (1) is well-known
and reads (see Appendix A)
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Since K = +1, and in order to compute the spectral matrix P and the bispectrum B , the first order perturbation is
decomposed on the three-sphere in terms of the set of hyperspherical harmonics Q`mn(�, ✓,') as follows:

 (1)(x, ⌘) =
X

`mn

 `mn(⌘)Q`mn(�, ✓,') with Q`mn(�, ✓,') = R`n(�)Y`m(✓,'), (2.15)

with R`n(�) defined in Appendix C.

2.3 Stochastic initial conditions

In order to specify the set of initial conditions for the first order perturbation  (1) prior to the bounce, let us consider
some spatial hypersurface M at some initial time ⌘� before the bounce. On M, let us assume that the initial conditions
can be written as two classical gaussian random fields, one for  and one for its time derivative at ⌘�:


 (1) (k, ⌘�)
 0

(1)
(k, ⌘�)

�
⌘


x̂1 (k)
x̂2 (k)

�
. (2.16)

In this work, we shall treat the set {x̂i} as the initial conditions and shall make use of their two-point correlations
which we define as (see Appendix B)

⌦
x̂i (k) x̂j
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k0
�↵

⌘ �k,k0Pij (k) with �k,k0 ⌘ �nn0�``0�mm0 (2.17)
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conclusions, except insofar as it induces the production of additional non-gaussianities at next-to-leading order in our
computation scheme. What is therefore produced in our symmetric model can thus be understood as the minimum
level expected in curvature-dominated bounces.
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expansions in these parameters.

2.2 Linear perturbations

We work with the metric in the Poisson gauge (or the generalized Newtonian gauge) and consider only scalar pertur-
bations. The perturbed metric therefore reads

ds2 = gµ⌫dxµdx⌫ = a2
�
�e2�d⌘2 + e�2 �ijdxidxj

�
, (2.10)

where �ij is the metric on the background spatial hypersurface (2.1). In a homogeneous and isotropic spatial volume,
it is convenient to work in spherical coordinates where �ij takes the form

�ijdxidxj = d�2 +K�1 sin2
⇣p

K�
⌘ �

d✓2 + sin2 ✓d�2
�
. (2.11)

In this work, we expand all quantities up to the second order as

X (x, ⌘) = X(1) (x, ⌘) +
1

2
X(2) (x, ⌘) + · · · , (2.12)

where X stands for �,  and �� etc, X(1) and X(2) are the first and second order perturbations respectively. In a
universe filled with single scalar field matter, the equation of motion for the linear perturbation  (1) is well-known
and reads (see Appendix A)

 00

(1)
+ F (⌘) 0

(1)
� r̄2 (1) +W (⌘) (1) = 0, (2.13)

where r̄2 is the Laplacian w.r.t. the spatial metric (2.11) and where

F (⌘) = 2

✓
H� �̄00

�̄0

◆
, W (⌘) = 2

✓
H0 �H �̄00

�̄0
� 2K

◆
. (2.14)
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decomposed on the three-sphere in terms of the set of hyperspherical harmonics Q`mn(�, ✓,') as follows:
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hyperspherical harmonics

C Mode functions in K > 0 spacetime

As usual, it is convenient to work in k-space instead of configuration space. In our case, since the spatial volume has
constant positive curvature, we shall make use of the 3-dimensional hyperspherical harmonics Qn`m(�, ✓,�), which
are given by (C.4)-(C.5). Any real scalar field f(x) ⌘ f(�, ✓,�) can then be expanded in terms of Qn`m(�, ✓,�),
using the normalization given in (C.8), as

f (x) =
X

n,l,m

fn`mQn`m (x) , with fn`m =

Z
d3x

p
hQ⇤

n`m (x) f (x) , (C.1)

where
p
h = f2

K
(�) sin ✓, with fK ⌘ K�1/2 sin

⇣p
K�

⌘
. The Qn`m’s are the eigenmodes of the Laplacian � ⌘ r2:

�Qn`m = �k2Qn`m = �Kn(n+ 2)Qn`m, n � 1. (C.2)

It can be convenient to introduce q = n+ 1, with q running from 0 to 1 so that

�Qn`m = �K(q2 � 1)Qn`m. (C.3)

The harmonics in S3 are given by hyperspherical harmonics which can be expressed as

Qn`m (�, ✓,�) = Rnl (�)Y`m (✓,�) , (C.4)

where the Y`m(✓,�)’s are the standard spherical harmonics in S2 and

Rn` (�) =

s
(n+ 1) (n+ `+ 1)!

(n� `)!

s
K

fK (�)
P

�`� 1

2

n+ 1

2

h
cos

⇣p
K�

⌘i
. (C.5)

The associated Legendre functions of half-integer degree and order read

P�`�1/2
n+1/2 (x) = (�1)n�` (1� x2)�`/2�1/4

2n+`/2�(n+ 3/2)

dn�`

dxn�`
(1� x2)n+1/2. (C.6)

and are related to the Gegenbauer polynomials according to the relation

C`+1

n�`(x) = 2�`
⇣⇡
2

⌘
1/2

(1� x2)�`/2�1/4 �(n+ `+ 2)

(n� `)!�(`+ 1)
P�`�1/2
n+1/2 (x). (C.7)

With the choice of normalisation made for ⇧n`(�), the quantity Qn`m (�, ✓,�) satisfies the orthogonality condition
Z

d3x
p
hQ⇤

n`m (x)Qn0l0m0 (x) = �nn0�ll0�mm0 . (C.8)

The addition theorem for hyperspherical harmonics on the 3-sphere reads

X

`m

Q⇤

n`m(⌦1)Qn`m(⌦2) =
n+ 1

2⇡2
C1

n(cos↵). (C.9)

Here, ⌦i ⌘ (�i, ✓i,�i) and ↵ is the angle between the two direction defined by the angles ⌦1 and ⌦2; C1
n(cos↵) is

the Gegenbauer polynomial of degree n and order 1.
Since the Qn`m’s form a complete and orthogonal basis in S3, the product of any two Qn`m’s can be expanded

as a summation over Qn`m:
Qp1

(x)Qp2
(x) =

X

k

Gk,p1,p2
Qk (x) , (C.10)
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bounce, and thus set "V to zero. Inclusion of some amount of asymmetry during the bounce does not modify our
conclusions, except insofar as it induces the production of additional non-gaussianities at next-to-leading order in our
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 (1)(x, ⌘) =
X

`mn

 `mn(⌘)Q`mn(�, ✓,') with Q`mn(�, ✓,') = R`n(�)Y`m(✓,'), (2.15)

with R`n(�) defined in Appendix C.

2.3 Stochastic initial conditions

In order to specify the set of initial conditions for the first order perturbation  (1) prior to the bounce, let us consider
some spatial hypersurface M at some initial time ⌘� before the bounce. On M, let us assume that the initial conditions
can be written as two classical gaussian random fields, one for  and one for its time derivative at ⌘�:


 (1) (k, ⌘�)
 0

(1)
(k, ⌘�)

�
⌘


x̂1 (k)
x̂2 (k)

�
. (2.16)

In this work, we shall treat the set {x̂i} as the initial conditions and shall make use of their two-point correlations
which we define as (see Appendix B)

⌦
x̂i (k) x̂j

�
k0
�↵

⌘ �k,k0Pij (k) with �k,k0 ⌘ �nn0�``0�mm0 (2.17)

– 5 –

bounce, and thus set "V to zero. Inclusion of some amount of asymmetry during the bounce does not modify our
conclusions, except insofar as it induces the production of additional non-gaussianities at next-to-leading order in our
computation scheme. What is therefore produced in our symmetric model can thus be understood as the minimum
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where �ij is the metric on the background spatial hypersurface (2.1). In a homogeneous and isotropic spatial volume,
it is convenient to work in spherical coordinates where �ij takes the form
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In this work, we expand all quantities up to the second order as

X (x, ⌘) = X(1) (x, ⌘) +
1

2
X(2) (x, ⌘) + · · · , (2.12)

where X stands for �,  and �� etc, X(1) and X(2) are the first and second order perturbations respectively. In a
universe filled with single scalar field matter, the equation of motion for the linear perturbation  (1) is well-known
and reads (see Appendix A)
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Since K = +1, and in order to compute the spectral matrix P and the bispectrum B , the first order perturbation is
decomposed on the three-sphere in terms of the set of hyperspherical harmonics Q`mn(�, ✓,') as follows:
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with R`n(�) defined in Appendix C.

2.3 Stochastic initial conditions

In order to specify the set of initial conditions for the first order perturbation  (1) prior to the bounce, let us consider
some spatial hypersurface M at some initial time ⌘� before the bounce. On M, let us assume that the initial conditions
can be written as two classical gaussian random fields, one for  and one for its time derivative at ⌘�:
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In this work, we shall treat the set {x̂i} as the initial conditions and shall make use of their two-point correlations
which we define as (see Appendix B)
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2

initial conditions can be set. In contrast with what hap-

pens in inflation, for which modes cross the potential only

once (e.g. k3 in Fig. 1), in a bouncing cosmology, modes

may cross the potential three or more times (e.g. k1 or

k2 in Fig. 1). The primordial spectrum is therefore mod-

ified for wavenumbers k1, k2, with possible superimposed

oscillations [15, 16] and, as will be shown below, the am-

plitude of the three-point function of cosmological per-

turbations generated by the bounce is large [12].

We concentrate here on the calculation of the amount

of non-Gaussianity produced by the bouncing phase only.

It is thus su�cient for our purpose to expand the scale

factor around the bounce in powers of conformal time ⌘,

a

a0
= 1+

1

2

✓
⌘

⌘c

◆2

+�3

✓
⌘

⌘c

◆3

+
5(1 + �4)

24

✓
⌘

⌘c

◆4

+ · · · ,

(4)

where ⌘c is the characteristic timescale of the bounce,

and to compute the production of non-Gaussianity be-

tween an initial spatial hypersurface at time ⌘� satisfying

�⌘c . ⌘� < 0 and a final spatial hypersurface at time

⌘+ satisfying 0 . ⌘+ < ⌘c. In Eq. (4), the two additional

constants �3 and �4 parameterize deviations from a de

Sitter bounce at cubic and quartic order in ⌘ respectively

while ⌘c is an overall deviation in the bouncing timescale

from the de Sitter bouncing timescale.

FIG. 1: Prototypical potential Vu(⌘) as function of time and
wavenumber squared in a bouncing cosmology (see [14–16]
for explicit examples) with the bounce itself taking place be-
tween times ⌘� and ⌘+. At the level of two-point statistics,
small scale perturbations (e.g. those of wavenumber k4) re-
main una↵ected, while long wavelength perturbations (k1, k2
or k3) can be spectrally modified in di↵erent ways. For il-
lustrative purposes, the time evolution of two modes, uk2(⌘)
and uk3(⌘) is also shown. The bounce produces possibly large
non-Gaussianities for any {k1, k2, k3} configuration.

At the level of the background cosmology, introduc-

ing the parameter ⌥ = �02
B
/2 (the subscript “B” denotes

a quantity evaluated at the time of the bounce), one

may use the Einstein equations to express the bounc-

ing timescale as ⌘c = (1 � ⌥)
�1/2

� 1. Two additional

parameters "V = (V,�/V )|B and ⌘V = (V,��/V )|B can be

related to ⌥, �3 and �4 in Eq. (4) through the Einstein

equations, with the de Sitter bounce being recovered in

the limit ⌥ ! 0 [12, 14, 15]. In terms of ⌥, "V and ⌘V ,
the bounce is seen to be controlled by the kinetic energy

of � and the flatness of the potential V (�).

The equation of motion for the ith order reads

D (i) = S
⇥
 (i�1)

⇤
, (5)

where D = @2
⌘ + F (⌘) @⌘ + k2 + W (⌘) (the subscript

“k” on the modes is not written but implicitely assumed

for notational simplicity), with F (⌘) = 2 (H� �00/�0
)

and W (⌘) = 2 (H
0
�H�00/�0

� 2K) The source term

S
⇥
 (i�1)

⇤
is vanishing for i = 1; its explicit form is not

essential for our discussion and can be found in [12].

The series solution of Eq. (5) for  (1) up to ⌘2 can

be written in terms of two modes functions v1(k, ⌘) and
v2(k, ⌘) normalized such that v1(k, ⌘�) = 1, v01(k, ⌘�) =
0, v2(k, ⌘�) = 0 and v02(k, ⌘�) = 1 [12]. In this basis, the

initial conditions are given in terms of a set of random

variables x̂a ⌘

n
 (1)(⌘�), 

0
(1)(⌘�)

o
providing the ini-

tial conditions of the first order perturbation and its time

derivative on the initial spatial hypersurface. As we are

interested in the amount of non-Gaussianity produced in

the bouncing phase, we shall assume that the variables x̂a

follow Gaussian statistics. The x̂a in turn define a spec-

tral matrix P at ⌘� by hx̂a (k1) x̂b (k2)i = �k1k2Pab (k).
It is important to note that, in general, and in contrast

to the more usual inflationary case, all four entries in P
are necessary to calculate the amount of non-Gaussianity

produced by the bouncing phase. Note also that the

background spacetime being of constant positive curva-

ture, all calculations are performed on the three-sphere

S3 and the wave vectors consist in three integer numbers,

n > 1, giving the amplitude k2 = n(n + 2), ` > 0, and

m 2 [�`, `], while �k1k2 is the product of three Kronecker

delta functions �n1n2 , �`1`2 , and �m1m2 .

The bispectrum B at ⌘+ is defined through the three-

point function of the perturbation  evaluated at ⌘+ [12],

h k1 k2 k3i =
1

2
Gk1k2k3B (k1, k2, k3) , (6)

where Gk1k2k3 is a geometrical form factor generalizing

the flat case � (k1 + k2 + k3) to S3; it is given by an inte-

gral over the product of three hyperspherical harmonics.

The bispectrum is also used to define the non-linearity

parameter fNL , obtained by expressing the non-Gaussian

signal in terms of the sum of squares of the two-point

functions for wavenumbers k1, k2 and k3 through
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The recently released Planck data [1, 2] have set new

standards as far as cosmological modeling is concerned,

imposing very tight constraints on early universe physics

[3, 4] and discriminating [5, 6] between numerous infla-

tionary theories [7]. Bouncing alternatives [8–10] have

been claimed to be able to reproduce the observed power

spectrum, but probably the most serious constraint to

date on primordial cosmological models is that provided

by the smallness of non-Gaussianities [11]. Whether or

not generic bouncing models can successfully pass this

test will decide on the viability of such alternatives. The

current work, drawing heavily on the results of Ref. [12],

seems to imply that the level of non-Gaussianity pro-

duced during the contraction to expansion transition

alone can be expected to be orders of magnitudes above

the current limits. Although our result applies, strictly

speaking, to the production of non-Gaussianities in a par-

ticular category of non-singular bouncing models with

constant positive spatial curvature
1
and for which Gen-

eral Relativity (GR) is valid all along, we conjecture that

it could apply to a much wider set of models, hence rais-

ing a possibly generic problem with bouncing cosmologies

that would need to be addressed for each specific model.

1 Spatial curvature, being the only e↵ective negative energy com-
ponent at the bounce, is crucial for this category of models based
on positive energy single scalar field matter content. Although
many models are realized with vanishing or negligible spatial
curvature contribution, they necessarily involve other types of
negative energy fields, which may cause serious instabilities, and
hence also potentially large amounts of non-Gaussianities.

We start from the action describing a single scalar field

� with a canonical kinetic term and evolving in a poten-

tial V (�) within GR (in units in which 8⇡GN = 1),

S = �

Z
d
4x

p
�g

h
R+ (@�)2 + V (�)

i
, (1)

where R is the Ricci scalar derived from the metric ten-

sor gµ⌫ for the perturbed Friedman-Lemâıtre-Robertson-

Walker line element, given in Poisson gauge by

ds2 = a2
�
�e

2�
d⌘2 + e

�2 �ijdx
i
dxj

�
, (2)

where �ij =
�
1 +

1
4K�mnxmxn

��2
�ij is the background

spatial metric which we take to be of constant positive

curvature (K ! 1) in order to obtain a non-singular

bouncing behavior, and where  =
P

i
 (i)

i! and � =
P

i
�(i)

i! are the Bardeen potentials up to arbitrary order

in perturbations which encode the scalar cosmological

fluctuations in the metric. One has  (1) = �(1).

Introducing u / a (1)/�
0
and its Fourier modes, de-

fined by �uk = �k2uk, one finds [13]

u00
k +

⇥
k2 � Vu(⌘)

⇤
uk = 0, (3)

where the potential Vu(⌘) is sketched in Fig. 1, draw-

ing on the specific functional shapes of Vu(⌘) obtained

in the works [14–16]. As shown in the figure, a typically

asymmetric bouncing phase occurs at ⌘B and is gener-

ically preceded and followed by peaks in the potential

with model-dependent amplitudes and widths. The peak

that occurs prior to the bounce follows a regime in which

Vu vanishes, in such a way that unambiguous vacuum
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initial conditions can be set. In contrast with what hap-

pens in inflation, for which modes cross the potential only

once (e.g. k3 in Fig. 1), in a bouncing cosmology, modes

may cross the potential three or more times (e.g. k1 or

k2 in Fig. 1). The primordial spectrum is therefore mod-

ified for wavenumbers k1, k2, with possible superimposed

oscillations [15, 16] and, as will be shown below, the am-

plitude of the three-point function of cosmological per-

turbations generated by the bounce is large [12].

We concentrate here on the calculation of the amount

of non-Gaussianity produced by the bouncing phase only.

It is thus su�cient for our purpose to expand the scale

factor around the bounce in powers of conformal time ⌘,
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where ⌘c is the characteristic timescale of the bounce,

and to compute the production of non-Gaussianity be-

tween an initial spatial hypersurface at time ⌘� satisfying

�⌘c . ⌘� < 0 and a final spatial hypersurface at time

⌘+ satisfying 0 . ⌘+ < ⌘c. In Eq. (4), the two additional

constants �3 and �4 parameterize deviations from a de

Sitter bounce at cubic and quartic order in ⌘ respectively

while ⌘c is an overall deviation in the bouncing timescale

from the de Sitter bouncing timescale.

FIG. 1: Prototypical potential Vu(⌘) as function of time and
wavenumber squared in a bouncing cosmology (see [14–16]
for explicit examples) with the bounce itself taking place be-
tween times ⌘� and ⌘+. At the level of two-point statistics,
small scale perturbations (e.g. those of wavenumber k4) re-
main una↵ected, while long wavelength perturbations (k1, k2
or k3) can be spectrally modified in di↵erent ways. For il-
lustrative purposes, the time evolution of two modes, uk2(⌘)
and uk3(⌘) is also shown. The bounce produces possibly large
non-Gaussianities for any {k1, k2, k3} configuration.

At the level of the background cosmology, introduc-

ing the parameter ⌥ = �02
B
/2 (the subscript “B” denotes

a quantity evaluated at the time of the bounce), one

may use the Einstein equations to express the bounc-

ing timescale as ⌘c = (1 � ⌥)
�1/2

� 1. Two additional

parameters "V = (V,�/V )|B and ⌘V = (V,��/V )|B can be

related to ⌥, �3 and �4 in Eq. (4) through the Einstein

equations, with the de Sitter bounce being recovered in

the limit ⌥ ! 0 [12, 14, 15]. In terms of ⌥, "V and ⌘V ,
the bounce is seen to be controlled by the kinetic energy

of � and the flatness of the potential V (�).

The equation of motion for the ith order reads

D (i) = S
⇥
 (i�1)

⇤
, (5)

where D = @2
⌘ + F (⌘) @⌘ + k2 + W (⌘) (the subscript

“k” on the modes is not written but implicitely assumed

for notational simplicity), with F (⌘) = 2 (H� �00/�0
)

and W (⌘) = 2 (H
0
�H�00/�0

� 2K) The source term

S
⇥
 (i�1)

⇤
is vanishing for i = 1; its explicit form is not

essential for our discussion and can be found in [12].

The series solution of Eq. (5) for  (1) up to ⌘2 can

be written in terms of two modes functions v1(k, ⌘) and
v2(k, ⌘) normalized such that v1(k, ⌘�) = 1, v01(k, ⌘�) =
0, v2(k, ⌘�) = 0 and v02(k, ⌘�) = 1 [12]. In this basis, the

initial conditions are given in terms of a set of random

variables x̂a ⌘

n
 (1)(⌘�), 

0
(1)(⌘�)

o
providing the ini-

tial conditions of the first order perturbation and its time

derivative on the initial spatial hypersurface. As we are

interested in the amount of non-Gaussianity produced in

the bouncing phase, we shall assume that the variables x̂a

follow Gaussian statistics. The x̂a in turn define a spec-

tral matrix P at ⌘� by hx̂a (k1) x̂b (k2)i = �k1k2Pab (k).
It is important to note that, in general, and in contrast

to the more usual inflationary case, all four entries in P
are necessary to calculate the amount of non-Gaussianity

produced by the bouncing phase. Note also that the

background spacetime being of constant positive curva-

ture, all calculations are performed on the three-sphere

S3 and the wave vectors consist in three integer numbers,

n > 1, giving the amplitude k2 = n(n + 2), ` > 0, and

m 2 [�`, `], while �k1k2 is the product of three Kronecker

delta functions �n1n2 , �`1`2 , and �m1m2 .

The bispectrum B at ⌘+ is defined through the three-

point function of the perturbation  evaluated at ⌘+ [12],

h k1 k2 k3i =
1

2
Gk1k2k3B (k1, k2, k3) , (6)

where Gk1k2k3 is a geometrical form factor generalizing

the flat case � (k1 + k2 + k3) to S3; it is given by an inte-

gral over the product of three hyperspherical harmonics.

The bispectrum is also used to define the non-linearity

parameter fNL , obtained by expressing the non-Gaussian

signal in terms of the sum of squares of the two-point

functions for wavenumbers k1, k2 and k3 through
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2nd order

In this work, we focus on the behaviour of perturbations around the bouncing point and thus solve for v1 and v2
up to quadratic order in the neighborhood of ⌘ = 0. We find that

vi(⌘) = ci,0 + ci,1⌘ +
1

2
ci,2⌘

2, i = 1, 2, (2.27)

where the coefficients ci0, ci1 and ci2 are functions of k. Plugging (2.27) into (2.13) and setting ⌘ = 0 yields

ci,2 + F0 ci,1 +
�
k2 +W0

�
ci,0 = 0, (2.28)

with

F0 ⌘ F (⌘ = 0) = �2
�̄00

0

�̄0

0

= (⌥� 3)

r
2

⌥
"V (2.29)

W0 ⌘ W (⌘ = 0) = 2
�
H0

0 � 2K
�
= 2� 2⌥� 4K, (2.30)

where we have used the fact that H(⌘ = 0) = 0, and where the subscript “0” denotes quantities evaluated at the
bounce point. Together with the initial conditions (2.26), we immediately get

c1,0 =
2� 2F0⌘�

�2F0⌘� + ⌘2
�
k2 + ⌘2

�
W0 + 2

, (2.31)

c1,1 =
2⌘�

�
k2 +W0

�

�2F0⌘� + ⌘2
�
k2 + ⌘2

�
W0 + 2

, (2.32)

c1,2 = �
2
�
k2 +W0

�

�2F0⌘� + ⌘2
�
k2 + ⌘2

�
W0 + 2

, (2.33)

and

c2,0 =
⌘� (F0⌘� � 2)

�2F0⌘� + ⌘2
�
k2 + ⌘2

�
W0 + 2

, (2.34)

c2,1 = �
⌘2�k

2 + ⌘2�W0 � 2

�2F0⌘� + ⌘2
�
k2 + ⌘2

�
W0 + 2

, (2.35)

c2,2 =
2
�
⌘�

�
k2 +W0

�
� F0

�

�2F0⌘� + ⌘2
�
k2 + ⌘2

�
W0 + 2

. (2.36)

In Section 4 , we shall use these expressions to compute the shapes and amplitudes of non-gaussianities induced by
the bouncing phase.

3 Nonlinear evolution of perturbations through the bounce

The equation of motion for  (2) in real space reads
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with
F (X) =

�
r̄2r̄2 + 3Kr̄2

��1
h
r̄ir̄j

⇣
3r̄iXr̄jX � �ij

�
r̄kX

�
2
⌘i

. (3.3)

The reader is referred to Appendix A for the details of the calculation. In k-space, S(2) can be written in the compact
form

S(2) (k, ⌘) =
X

p1,p2

Gk,p1,p2
⌃̃ij (k, p1, p2; ⌘) âi (p1) âj (p2) , (3.4)

where Gk,p1,p2 is a geometrical form factor defined in Appendix C (recall that we are working in an FLRW background
with positvely curved spatial hypersurfaces, so that the usual flat-space Fourier integrals are replaced by discrete sums
over hyperspherical harmonics, see Appendix B), and where

⌃̃ij (k, p1, p2; ⌘) = C1 (k, p1, p2; ⌘) i (p1, ⌘) j (p2, ⌘) +

C2 (k, p1, p2; ⌘) i (p1, ⌘) 
0

j (p2, ⌘) + C3 (k, p1, p2; ⌘) 0

i (p1, ⌘) 
0

j (p2, ⌘) . (3.5)

with the coefficients C1, C2 and C3 as given in Appendix D. As already pointed out, it is more convenient to rewrite
the source term in terms of the Gaussian variables x̂i(k) and mode functions v(k, ⌘) defined in (2.23). This yields

S(2) (k, ⌘) =
X

p1,p2

Gk,p1,p2
⌃ij (k, p1, p2; ⌘) x̂i (p1) x̂j (p2) , (3.6)

where

⌃ij (k, p1, p2; ⌘) = Fki⌃̃klFlj

= C1 (k, p1, p2; ⌘) vi (p1, ⌘) vj (p2, ⌘) +
C2 (k, p1, p2; ⌘) vi (p1, ⌘) v0j (p2, ⌘) + C3 (k, p1, p2; ⌘) v0i (p1, ⌘) v0j (p2, ⌘) . (3.7)

From (3.1), the general solution for  (2) is

 (2) (k, ⌘) =  
(0)

(2)
(k, ⌘) +

X

p1,p2

Gk,p1,p2
⇧ij (k, p1, p2; ⌘) x̂i (p1) x̂j (p2) , (3.8)

where  (0)

(2)
(k, ⌘) is a particular solution for  (2) without the source term and where

⇧ij (k, p1, p2; ⌘) ⌘
Z ⌘

⌘�

d⌘0G
�
k, ⌘, ⌘0

�
⌃ij

�
k, p1, p2; ⌘

0
�
, (3.9)

the Green’s function being given by

G(k, ⌘, ⌘0) ⌘ �v1 (k, ⌘) v2 (k, ⌘0) + v2 (k, ⌘) v1 (k, ⌘0)

Wv(k, ⌘0)
, (3.10)

the Wronskian Wv(k, ⌘0) being given by

Wv(k, ⌘
0) = v1

�
k, ⌘0

�
v02

�
k, ⌘0

�
� v01

�
k, ⌘0

�
v2

�
k, ⌘0

�
. (3.11)

Up to now, the calculation is rather general, and can be applied to the non-linear evolution of up to second order for
an arbitrary cosmological evolution in a spatially closed FLRW background3. We now evaluate the elements of the
matrix ⇧ which is defined in (3.9) and encode the influence of non-linearities on the statistics of  . This requires a
concrete cosmology both at the level of the background and at the level of first order perturbations which we take to
be the ones introduced in Sections 2.1 to 2.3.

3Note that the same techniques have been applied earlier to compute the non-linear transfer of the gravitational potential into the temperature
anisotropies on large scales [17, 35–38]. It was found that the non-linearities of gravitation would only contribute O(1) non-gaussianities during
the standard big-bang evolution, although these can be amplified in a modified theory of gravity [34]. Our work demonstrates that bouncing
cosmologies provide another possibility to enhance nonlinearities.
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3Note that the same techniques have been applied earlier to compute the non-linear transfer of the gravitational potential into the temperature
anisotropies on large scales [17, 35–38]. It was found that the non-linearities of gravitation would only contribute O(1) non-gaussianities during
the standard big-bang evolution, although these can be amplified in a modified theory of gravity [34]. Our work demonstrates that bouncing
cosmologies provide another possibility to enhance nonlinearities.
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Up to now, the calculation is rather general, and can be applied to the non-linear evolution of up to second order for
an arbitrary cosmological evolution in a spatially closed FLRW background3. We now evaluate the elements of the
matrix ⇧ which is defined in (3.9) and encode the influence of non-linearities on the statistics of  . This requires a
concrete cosmology both at the level of the background and at the level of first order perturbations which we take to
be the ones introduced in Sections 2.1 to 2.3.

3Note that the same techniques have been applied earlier to compute the non-linear transfer of the gravitational potential into the temperature
anisotropies on large scales [17, 35–38]. It was found that the non-linearities of gravitation would only contribute O(1) non-gaussianities during
the standard big-bang evolution, although these can be amplified in a modified theory of gravity [34]. Our work demonstrates that bouncing
cosmologies provide another possibility to enhance nonlinearities.
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Bispectrum

4 Bispectrum formula, non-gaussian shapes and amplitudes

4.1 The general form of the bispectrum and parameter fNL

Let us define the bispectrum B (k1, k2, k3; ⌘) in terms of the three-point function through the relation

h (k1, ⌘) (k2, ⌘) (k3, ⌘)i ⌘
1

2
Gk1k2k3

B (k1, k2, k3; ⌘) (4.1)

where Gk1k2k3
is the geometric form factor introduced before and where we have included a factor 1/2 for conve-

nience. Given that the perturbation  is expanded according to (2.12), the leading (second order) contribution to the
three-point function is given by

h (k1, ⌘) (k2, ⌘) (k3, ⌘)i =
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⌦
 (1) (k1, ⌘) (1) (k2, ⌘) (2) (k3, ⌘)

↵
+ 2 perms. (4.2)

Let us focus our attention on the production of second order perturbations during the bouncing phase. To that end we
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(2)
and write (2.16) and (3.8) in vector form as
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As made clear in Section 2.3, the statistics of  (1) are assumed Gaussian. The three-point function then becomes
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where we have used Wick theorem and the definition of the spectral matrix P defined in (2.17) in going from the
second to the third line. The leading order contributions to the bispectrum thus take the form

B (k1, k2, k3; ⌘) = vT (k1, ⌘)P (k1)⇧ (k3, k1, k2; ⌘)P (k2) v (k2, ⌘) + 5 perms, (4.5)

where ⇧ is defined in (3.9). The amplitude of the bispectrum is popularly characterized by the so-called dimensionless
nonlinear parameter fNL, defined by [39]

fNL ⌘ 5

6

B (k1, k2, k3; ⌘)
P (k1)P (k2) + P (k2)P (k3) + P (k3)P (k1)

=
5

6

vT (k1, ⌘)P (k1)⇧ (k3, k1, k2; ⌘)P (k2) v (k2, ⌘) + 5 perms

vT (k1, ⌘)P (k1) v (k1, ⌘) vT (k2, ⌘)P (k2) v (k2, ⌘) + (2 ! 3) + (1 ! 3)
. (4.6)

This is the principal exact result of this work. Before proceeding, it is worth remembering that the spectral matrix P
is not known. Therefore, only the “sourcing” factor of non-gaussianities across the bounce can be computed, that is,
the matrix elements of ⇧.

Although there are a total of six terms in each matrix element of ⇧, it is useful to note that the off-diagonal
elements of the matrix ⇧ are symmetric under the following simultaneous index permutations

⇧12(ki, kj , kl) = ⇧21(ki, kl, kj). (4.7)

This reduces the number of distinct terms in ⇧ to 18. In the equilateral configuration in which all three wavenumbers
are equal, there is just one contribution to each of the three distinct matrix elements in ⇧. In both the folded (ki =
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3

B (k1, k2, k3) =
6

5
fNL [P  (k1)P  (k2) + P  (k2)P  (k3) + P  (k3)P  (k1)] . (7)

Using the results obtained in [12], we now proceed by calculating fNL at leading order in ⌥, "V and ⌘V and in the limit

of large wavenumbers k . This latter assumption is justified because the range of observationally accessible physical

wavenumbers today is 10
3hMpc

�1 . kphys . 10
3hMpc

�1
and corresponds to a range of comoving wavenumbers

10
2 . k . 10

8
for a conservative value ⌦K  10

�2
[2]. We find

fNL = �
5(k1 + k2 + k3)

3⌥K3 (k1, k2, k3)
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where the dots denote sub-leading terms in inverse powers of k and higher order in ⌥, "V and ⌘V . We also defined

K1(k) = 6P  (k) + 7P  0(k) + 2P 0 0(k) , K2(k) = 7P  (k) + 11P  0(k) + 4P 0 0(k) (9)

and

K3(k1, k2, k3) = 81

X

�(i,j)

P  (ki)P  (kj) + 108

X

�(i,j)

P  (ki)P  0(kj) + 36

X

�(i,j)

P  (ki)P 0 0(kj) +

144

X

�(i,j)

P  0(ki)P  0(kj) + 48

X

�(i,j)

P  0(ki)P 0 0(kj) + 16

X

�(i,j)

P 0 0(ki)P 0 0(kj). (10)

In Eqs. (8) and (10), the sums and products are taken

over all possible permutations of i, j and `: �(i, j, `)
denotes (i, j, `) 2 {(1, 2, 3), (1, 3, 2), (2, 3, 1)}, and �(i, j)
denotes (i, j) 2 {(1, 2), (1, 3), (2, 3)}. In the equilateral

(k1 = k2 = k3 = k) and squeezed (ki = kj = k and

k` = p ⌧ k) configurations and at leading order, Eq. (8)

simplifies to

f equi
NL

= �
15k2

⌥

K2
1 (k)

K3(k, k, k)
, (11)

f sq
NL

= �
20k2

3⌥

K2
1 (k) +K1(k)K1(p)

K3(k, k, p)
, (12)

so that the non-Gaussianity parameter is of order k2/⌥.
In the folded configuration (k2 = k3 =

1
2k1), the first

non-vanishing term is given in the second line of Eq. (8)

and simplifies to

f fold
NL

=
40

9⌥

K1(k) [K1(k)� 16K1(2k)]

K3(k, k, 2k)
, (13)

The square of the wavenumber does not appear in the

numerator of Eq. (13) so that the folded configuration is

much below the equilateral and squeezed configuration.

Although the matrix P , and hence the functions K’s,

is unknown, some information on the dominant shapes

of non-Gaussianities can be extracted from Eq. (8) in

two obvious ways which also highlight the dependence of

the shapes of non-Gaussianities obtained on the initial

conditions before the bounce.

Let us first assume that K1(ki)K1,2(kj) '

K3(k1, k2, k3), an approximation that should be

roughly valid in the cosmologically relevant situation

for which the power spectra are scale-invariant. With

this simplifying assumption, one obtains from Eq. (8)

that fNL / (k21/⌥) ⇥ S(x2, x3) where S(x2, x3) is

a dimensionless characteristic shape function which

depends only on the ratios x2 = k2/k1 and x3 = k3/k1;
it is displayed in the left panel of Fig. 2 where, without

loss of generality, we have ordered the variables by

assuming x3  x2  1, with the triangle inequality

given by x2 � x3  1  x2 + x3. The plot suggests that

the non-Gaussianities produced in the bouncing phase

peak in the equilateral, take intermediate values in the

squeezed, and are small in the folded configuration.

Another way to determine the shapes of non-

Gaussianities produced in a bouncing phase in a largely

model-independent way consists in assuming the Bardeen

potential to have reached, at ⌘ = ⌘�, the “frozen” state,

so that one has  
0
⌧  , leading to P 0 0 ⌧ P  0 ⌧

P  . Merely considering the power spectrum and assum-

ing it to behave as a power law P  / k↵, we once again
obtain an expression of the type fNL / (k21/⌥)⇥S(x2, x3)

where this time S(x2, x3) is shown in the right panel of

Fig. 2, exhibiting a similar kind of behavior as in the left
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Using the results obtained in [12], we now proceed by calculating fNL at leading order in ⌥, "V and ⌘V and in the limit

of large wavenumbers k . This latter assumption is justified because the range of observationally accessible physical
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where the dots denote sub-leading terms in inverse powers of k and higher order in ⌥, "V and ⌘V . We also defined

K1(k) = 6P  (k) + 7P  0(k) + 2P 0 0(k) , K2(k) = 7P  (k) + 11P  0(k) + 4P 0 0(k) (9)

and
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In Eqs. (8) and (10), the sums and products are taken

over all possible permutations of i, j and `: �(i, j, `)
denotes (i, j, `) 2 {(1, 2, 3), (1, 3, 2), (2, 3, 1)}, and �(i, j)
denotes (i, j) 2 {(1, 2), (1, 3), (2, 3)}. In the equilateral

(k1 = k2 = k3 = k) and squeezed (ki = kj = k and

k` = p ⌧ k) configurations and at leading order, Eq. (8)

simplifies to
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, (11)
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so that the non-Gaussianity parameter is of order k2/⌥.
In the folded configuration (k2 = k3 =

1
2k1), the first

non-vanishing term is given in the second line of Eq. (8)

and simplifies to

f fold
NL

=
40

9⌥

K1(k) [K1(k)� 16K1(2k)]
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The square of the wavenumber does not appear in the

numerator of Eq. (13) so that the folded configuration is

much below the equilateral and squeezed configuration.

Although the matrix P , and hence the functions K’s,

is unknown, some information on the dominant shapes
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two obvious ways which also highlight the dependence of

the shapes of non-Gaussianities obtained on the initial

conditions before the bounce.
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this simplifying assumption, one obtains from Eq. (8)
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a dimensionless characteristic shape function which

depends only on the ratios x2 = k2/k1 and x3 = k3/k1;
it is displayed in the left panel of Fig. 2 where, without

loss of generality, we have ordered the variables by

assuming x3  x2  1, with the triangle inequality

given by x2 � x3  1  x2 + x3. The plot suggests that

the non-Gaussianities produced in the bouncing phase

peak in the equilateral, take intermediate values in the

squeezed, and are small in the folded configuration.

Another way to determine the shapes of non-

Gaussianities produced in a bouncing phase in a largely

model-independent way consists in assuming the Bardeen

potential to have reached, at ⌘ = ⌘�, the “frozen” state,

so that one has  
0
⌧  , leading to P 0 0 ⌧ P  0 ⌧

P  . Merely considering the power spectrum and assum-

ing it to behave as a power law P  / k↵, we once again
obtain an expression of the type fNL / (k21/⌥)⇥S(x2, x3)

where this time S(x2, x3) is shown in the right panel of

Fig. 2, exhibiting a similar kind of behavior as in the left
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and simplifies to
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The square of the wavenumber does not appear in the

numerator of Eq. (13) so that the folded configuration is

much below the equilateral and squeezed configuration.

Although the matrix P , and hence the functions K’s,

is unknown, some information on the dominant shapes

of non-Gaussianities can be extracted from Eq. (8) in

two obvious ways which also highlight the dependence of

the shapes of non-Gaussianities obtained on the initial

conditions before the bounce.

Let us first assume that K1(ki)K1,2(kj) '

K3(k1, k2, k3), an approximation that should be

roughly valid in the cosmologically relevant situation

for which the power spectra are scale-invariant. With

this simplifying assumption, one obtains from Eq. (8)

that fNL / (k21/⌥) ⇥ S(x2, x3) where S(x2, x3) is

a dimensionless characteristic shape function which

depends only on the ratios x2 = k2/k1 and x3 = k3/k1;
it is displayed in the left panel of Fig. 2 where, without

loss of generality, we have ordered the variables by

assuming x3  x2  1, with the triangle inequality

given by x2 � x3  1  x2 + x3. The plot suggests that

the non-Gaussianities produced in the bouncing phase

peak in the equilateral, take intermediate values in the

squeezed, and are small in the folded configuration.

Another way to determine the shapes of non-

Gaussianities produced in a bouncing phase in a largely

model-independent way consists in assuming the Bardeen

potential to have reached, at ⌘ = ⌘�, the “frozen” state,

so that one has  
0
⌧  , leading to P 0 0 ⌧ P  0 ⌧

P  . Merely considering the power spectrum and assum-

ing it to behave as a power law P  / k↵, we once again
obtain an expression of the type fNL / (k21/⌥)⇥S(x2, x3)

where this time S(x2, x3) is shown in the right panel of

Fig. 2, exhibiting a similar kind of behavior as in the left

2

initial conditions can be set. In contrast with what hap-

pens in inflation, for which modes cross the potential only

once (e.g. k3 in Fig. 1), in a bouncing cosmology, modes

may cross the potential three or more times (e.g. k1 or

k2 in Fig. 1). The primordial spectrum is therefore mod-

ified for wavenumbers k1, k2, with possible superimposed

oscillations [15, 16] and, as will be shown below, the am-

plitude of the three-point function of cosmological per-

turbations generated by the bounce is large [12].

We concentrate here on the calculation of the amount

of non-Gaussianity produced by the bouncing phase only.

It is thus su�cient for our purpose to expand the scale

factor around the bounce in powers of conformal time ⌘,

a

a0
= 1+

1

2

✓
⌘

⌘c

◆2

+�3

✓
⌘

⌘c

◆3

+
5(1 + �4)

24

✓
⌘

⌘c

◆4

+ · · · ,

(4)

where ⌘c is the characteristic timescale of the bounce,

and to compute the production of non-Gaussianity be-

tween an initial spatial hypersurface at time ⌘� satisfying

�⌘c . ⌘� < 0 and a final spatial hypersurface at time

⌘+ satisfying 0 . ⌘+ < ⌘c. In Eq. (4), the two additional

constants �3 and �4 parameterize deviations from a de

Sitter bounce at cubic and quartic order in ⌘ respectively

while ⌘c is an overall deviation in the bouncing timescale

from the de Sitter bouncing timescale.

FIG. 1: Prototypical potential Vu(⌘) as function of time and
wavenumber squared in a bouncing cosmology (see [14–16]
for explicit examples) with the bounce itself taking place be-
tween times ⌘� and ⌘+. At the level of two-point statistics,
small scale perturbations (e.g. those of wavenumber k4) re-
main una↵ected, while long wavelength perturbations (k1, k2
or k3) can be spectrally modified in di↵erent ways. For il-
lustrative purposes, the time evolution of two modes, uk2(⌘)
and uk3(⌘) is also shown. The bounce produces possibly large
non-Gaussianities for any {k1, k2, k3} configuration.

At the level of the background cosmology, introduc-

ing the parameter ⌥ = �02
B
/2 (the subscript “B” denotes

a quantity evaluated at the time of the bounce), one

may use the Einstein equations to express the bounc-

ing timescale as ⌘c = (1 � ⌥)
�1/2

� 1. Two additional

parameters "V = (V,�/V )|B and ⌘V = (V,��/V )|B can be

related to ⌥, �3 and �4 in Eq. (4) through the Einstein

equations, with the de Sitter bounce being recovered in

the limit ⌥ ! 0 [12, 14, 15]. In terms of ⌥, "V and ⌘V ,
the bounce is seen to be controlled by the kinetic energy

of � and the flatness of the potential V (�).

The equation of motion for the ith order reads

D (i) = S
⇥
 (i�1)

⇤
, (5)

where D = @2
⌘ + F (⌘) @⌘ + k2 + W (⌘) (the subscript

“k” on the modes is not written but implicitely assumed

for notational simplicity), with F (⌘) = 2 (H� �00/�0
)

and W (⌘) = 2 (H
0
�H�00/�0

� 2K) The source term

S
⇥
 (i�1)

⇤
is vanishing for i = 1; its explicit form is not

essential for our discussion and can be found in [12].

The series solution of Eq. (5) for  (1) up to ⌘2 can

be written in terms of two modes functions v1(k, ⌘) and
v2(k, ⌘) normalized such that v1(k, ⌘�) = 1, v01(k, ⌘�) =
0, v2(k, ⌘�) = 0 and v02(k, ⌘�) = 1 [12]. In this basis, the

initial conditions are given in terms of a set of random

variables x̂a ⌘

n
 (1)(⌘�), 

0
(1)(⌘�)

o
providing the ini-

tial conditions of the first order perturbation and its time

derivative on the initial spatial hypersurface. As we are

interested in the amount of non-Gaussianity produced in

the bouncing phase, we shall assume that the variables x̂a

follow Gaussian statistics. The x̂a in turn define a spec-

tral matrix P at ⌘� by hx̂a (k1) x̂b (k2)i = �k1k2Pab (k).
It is important to note that, in general, and in contrast

to the more usual inflationary case, all four entries in P
are necessary to calculate the amount of non-Gaussianity

produced by the bouncing phase. Note also that the

background spacetime being of constant positive curva-

ture, all calculations are performed on the three-sphere

S3 and the wave vectors consist in three integer numbers,

n > 1, giving the amplitude k2 = n(n + 2), ` > 0, and

m 2 [�`, `], while �k1k2 is the product of three Kronecker

delta functions �n1n2 , �`1`2 , and �m1m2 .

The bispectrum B at ⌘+ is defined through the three-

point function of the perturbation  evaluated at ⌘+ [12],

h k1 k2 k3i =
1

2
Gk1k2k3B (k1, k2, k3) , (6)

where Gk1k2k3 is a geometrical form factor generalizing

the flat case � (k1 + k2 + k3) to S3; it is given by an inte-

gral over the product of three hyperspherical harmonics.

The bispectrum is also used to define the non-linearity

parameter fNL , obtained by expressing the non-Gaussian

signal in terms of the sum of squares of the two-point

functions for wavenumbers k1, k2 and k3 through
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equilateral
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folded

3

B (k1, k2, k3) =
6

5
fNL [P  (k1)P  (k2) + P  (k2)P  (k3) + P  (k3)P  (k1)] . (7)

Using the results obtained in [12], we now proceed by calculating fNL at leading order in ⌥, "V and ⌘V and in the limit

of large wavenumbers k . This latter assumption is justified because the range of observationally accessible physical

wavenumbers today is 10
3hMpc

�1 . kphys . 10
3hMpc

�1
and corresponds to a range of comoving wavenumbers

10
2 . k . 10

8
for a conservative value ⌦K  10

�2
[2]. We find

fNL = �
5(k1 + k2 + k3)
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where the dots denote sub-leading terms in inverse powers of k and higher order in ⌥, "V and ⌘V . We also defined

K1(k) = 6P  (k) + 7P  0(k) + 2P 0 0(k) , K2(k) = 7P  (k) + 11P  0(k) + 4P 0 0(k) (9)

and

K3(k1, k2, k3) = 81

X

�(i,j)

P  (ki)P  (kj) + 108

X

�(i,j)

P  (ki)P  0(kj) + 36

X

�(i,j)

P  (ki)P 0 0(kj) +

144

X

�(i,j)

P  0(ki)P  0(kj) + 48

X

�(i,j)

P  0(ki)P 0 0(kj) + 16

X

�(i,j)

P 0 0(ki)P 0 0(kj). (10)

In Eqs. (8) and (10), the sums and products are taken

over all possible permutations of i, j and `: �(i, j, `)
denotes (i, j, `) 2 {(1, 2, 3), (1, 3, 2), (2, 3, 1)}, and �(i, j)
denotes (i, j) 2 {(1, 2), (1, 3), (2, 3)}. In the equilateral

(k1 = k2 = k3 = k) and squeezed (ki = kj = k and

k` = p ⌧ k) configurations and at leading order, Eq. (8)

simplifies to

f equi
NL

= �
15k2

⌥

K2
1 (k)

K3(k, k, k)
, (11)

f sq
NL

= �
20k2

3⌥

K2
1 (k) +K1(k)K1(p)

K3(k, k, p)
, (12)

so that the non-Gaussianity parameter is of order k2/⌥.
In the folded configuration (k2 = k3 =

1
2k1), the first

non-vanishing term is given in the second line of Eq. (8)

and simplifies to

f fold
NL

=
40

9⌥

K1(k) [K1(k)� 16K1(2k)]

K3(k, k, 2k)
, (13)

The square of the wavenumber does not appear in the

numerator of Eq. (13) so that the folded configuration is

much below the equilateral and squeezed configuration.

Although the matrix P , and hence the functions K’s,

is unknown, some information on the dominant shapes

of non-Gaussianities can be extracted from Eq. (8) in

two obvious ways which also highlight the dependence of

the shapes of non-Gaussianities obtained on the initial

conditions before the bounce.

Let us first assume that K1(ki)K1,2(kj) '
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roughly valid in the cosmologically relevant situation

for which the power spectra are scale-invariant. With

this simplifying assumption, one obtains from Eq. (8)

that fNL / (k21/⌥) ⇥ S(x2, x3) where S(x2, x3) is

a dimensionless characteristic shape function which

depends only on the ratios x2 = k2/k1 and x3 = k3/k1;
it is displayed in the left panel of Fig. 2 where, without

loss of generality, we have ordered the variables by

assuming x3  x2  1, with the triangle inequality

given by x2 � x3  1  x2 + x3. The plot suggests that

the non-Gaussianities produced in the bouncing phase

peak in the equilateral, take intermediate values in the

squeezed, and are small in the folded configuration.

Another way to determine the shapes of non-

Gaussianities produced in a bouncing phase in a largely

model-independent way consists in assuming the Bardeen
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so that one has  
0
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P  . Merely considering the power spectrum and assum-

ing it to behave as a power law P  / k↵, we once again
obtain an expression of the type fNL / (k21/⌥)⇥S(x2, x3)
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so that the non-Gaussianity parameter is of order k2/⌥.
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The square of the wavenumber does not appear in the

numerator of Eq. (13) so that the folded configuration is

much below the equilateral and squeezed configuration.

Although the matrix P , and hence the functions K’s,

is unknown, some information on the dominant shapes

of non-Gaussianities can be extracted from Eq. (8) in

two obvious ways which also highlight the dependence of

the shapes of non-Gaussianities obtained on the initial

conditions before the bounce.

Let us first assume that K1(ki)K1,2(kj) '

K3(k1, k2, k3), an approximation that should be

roughly valid in the cosmologically relevant situation

for which the power spectra are scale-invariant. With

this simplifying assumption, one obtains from Eq. (8)

that fNL / (k21/⌥) ⇥ S(x2, x3) where S(x2, x3) is

a dimensionless characteristic shape function which

depends only on the ratios x2 = k2/k1 and x3 = k3/k1;
it is displayed in the left panel of Fig. 2 where, without

loss of generality, we have ordered the variables by

assuming x3  x2  1, with the triangle inequality

given by x2 � x3  1  x2 + x3. The plot suggests that

the non-Gaussianities produced in the bouncing phase

peak in the equilateral, take intermediate values in the

squeezed, and are small in the folded configuration.

Another way to determine the shapes of non-

Gaussianities produced in a bouncing phase in a largely

model-independent way consists in assuming the Bardeen

potential to have reached, at ⌘ = ⌘�, the “frozen” state,

so that one has  
0
⌧  , leading to P 0 0 ⌧ P  0 ⌧

P  . Merely considering the power spectrum and assum-

ing it to behave as a power law P  / k↵, we once again
obtain an expression of the type fNL / (k21/⌥)⇥S(x2, x3)

where this time S(x2, x3) is shown in the right panel of

Fig. 2, exhibiting a similar kind of behavior as in the left
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The square of the wavenumber does not appear in the
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Although the matrix P , and hence the functions K’s,

is unknown, some information on the dominant shapes
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two obvious ways which also highlight the dependence of

the shapes of non-Gaussianities obtained on the initial

conditions before the bounce.

Let us first assume that K1(ki)K1,2(kj) '

K3(k1, k2, k3), an approximation that should be

roughly valid in the cosmologically relevant situation

for which the power spectra are scale-invariant. With

this simplifying assumption, one obtains from Eq. (8)

that fNL / (k21/⌥) ⇥ S(x2, x3) where S(x2, x3) is

a dimensionless characteristic shape function which

depends only on the ratios x2 = k2/k1 and x3 = k3/k1;
it is displayed in the left panel of Fig. 2 where, without

loss of generality, we have ordered the variables by

assuming x3  x2  1, with the triangle inequality

given by x2 � x3  1  x2 + x3. The plot suggests that

the non-Gaussianities produced in the bouncing phase

peak in the equilateral, take intermediate values in the

squeezed, and are small in the folded configuration.

Another way to determine the shapes of non-

Gaussianities produced in a bouncing phase in a largely

model-independent way consists in assuming the Bardeen

potential to have reached, at ⌘ = ⌘�, the “frozen” state,

so that one has  
0
⌧  , leading to P 0 0 ⌧ P  0 ⌧

P  . Merely considering the power spectrum and assum-

ing it to behave as a power law P  / k↵, we once again
obtain an expression of the type fNL / (k21/⌥)⇥S(x2, x3)

where this time S(x2, x3) is shown in the right panel of

Fig. 2, exhibiting a similar kind of behavior as in the left
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where the dots denote sub-leading terms in inverse powers of k and higher order in ⌥, "V and ⌘V . We also defined
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so that the non-Gaussianity parameter is of order k2/⌥.
In the folded configuration (k2 = k3 =

1
2k1), the first

non-vanishing term is given in the second line of Eq. (8)

and simplifies to
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The square of the wavenumber does not appear in the

numerator of Eq. (13) so that the folded configuration is

much below the equilateral and squeezed configuration.

Although the matrix P , and hence the functions K’s,

is unknown, some information on the dominant shapes

of non-Gaussianities can be extracted from Eq. (8) in

two obvious ways which also highlight the dependence of

the shapes of non-Gaussianities obtained on the initial

conditions before the bounce.

Let us first assume that K1(ki)K1,2(kj) '

K3(k1, k2, k3), an approximation that should be

roughly valid in the cosmologically relevant situation

for which the power spectra are scale-invariant. With

this simplifying assumption, one obtains from Eq. (8)

that fNL / (k21/⌥) ⇥ S(x2, x3) where S(x2, x3) is

a dimensionless characteristic shape function which

depends only on the ratios x2 = k2/k1 and x3 = k3/k1;
it is displayed in the left panel of Fig. 2 where, without

loss of generality, we have ordered the variables by

assuming x3  x2  1, with the triangle inequality

given by x2 � x3  1  x2 + x3. The plot suggests that

the non-Gaussianities produced in the bouncing phase

peak in the equilateral, take intermediate values in the

squeezed, and are small in the folded configuration.

Another way to determine the shapes of non-

Gaussianities produced in a bouncing phase in a largely

model-independent way consists in assuming the Bardeen

potential to have reached, at ⌘ = ⌘�, the “frozen” state,

so that one has  
0
⌧  , leading to P 0 0 ⌧ P  0 ⌧

P  . Merely considering the power spectrum and assum-

ing it to behave as a power law P  / k↵, we once again
obtain an expression of the type fNL / (k21/⌥)⇥S(x2, x3)

where this time S(x2, x3) is shown in the right panel of

Fig. 2, exhibiting a similar kind of behavior as in the left
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where the dots denote sub-leading terms in inverse powers of k and higher order in ⌥, "V and ⌘V . We also defined

K1(k) = 6P  (k) + 7P  0(k) + 2P 0 0(k) , K2(k) = 7P  (k) + 11P  0(k) + 4P 0 0(k) (9)
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denotes (i, j, `) 2 {(1, 2, 3), (1, 3, 2), (2, 3, 1)}, and �(i, j)
denotes (i, j) 2 {(1, 2), (1, 3), (2, 3)}. In the equilateral

(k1 = k2 = k3 = k) and squeezed (ki = kj = k and

k` = p ⌧ k) configurations and at leading order, Eq. (8)

simplifies to
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so that the non-Gaussianity parameter is of order k2/⌥.
In the folded configuration (k2 = k3 =

1
2k1), the first

non-vanishing term is given in the second line of Eq. (8)

and simplifies to

f fold
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=
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K1(k) [K1(k)� 16K1(2k)]

K3(k, k, 2k)
, (13)

The square of the wavenumber does not appear in the

numerator of Eq. (13) so that the folded configuration is

much below the equilateral and squeezed configuration.

Although the matrix P , and hence the functions K’s,

is unknown, some information on the dominant shapes

of non-Gaussianities can be extracted from Eq. (8) in

two obvious ways which also highlight the dependence of

the shapes of non-Gaussianities obtained on the initial

conditions before the bounce.

Let us first assume that K1(ki)K1,2(kj) '

K3(k1, k2, k3), an approximation that should be

roughly valid in the cosmologically relevant situation

for which the power spectra are scale-invariant. With

this simplifying assumption, one obtains from Eq. (8)

that fNL / (k21/⌥) ⇥ S(x2, x3) where S(x2, x3) is

a dimensionless characteristic shape function which

depends only on the ratios x2 = k2/k1 and x3 = k3/k1;
it is displayed in the left panel of Fig. 2 where, without

loss of generality, we have ordered the variables by

assuming x3  x2  1, with the triangle inequality

given by x2 � x3  1  x2 + x3. The plot suggests that

the non-Gaussianities produced in the bouncing phase

peak in the equilateral, take intermediate values in the

squeezed, and are small in the folded configuration.

Another way to determine the shapes of non-

Gaussianities produced in a bouncing phase in a largely

model-independent way consists in assuming the Bardeen

potential to have reached, at ⌘ = ⌘�, the “frozen” state,

so that one has  
0
⌧  , leading to P 0 0 ⌧ P  0 ⌧

P  . Merely considering the power spectrum and assum-

ing it to behave as a power law P  / k↵, we once again
obtain an expression of the type fNL / (k21/⌥)⇥S(x2, x3)

where this time S(x2, x3) is shown in the right panel of

Fig. 2, exhibiting a similar kind of behavior as in the left

3

B (k1, k2, k3) =
6

5
fNL [P  (k1)P  (k2) + P  (k2)P  (k3) + P  (k3)P  (k1)] . (7)

Using the results obtained in [12], we now proceed by calculating fNL at leading order in ⌥, "V and ⌘V and in the limit
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where the dots denote sub-leading terms in inverse powers of k and higher order in ⌥, "V and ⌘V . We also defined
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so that the non-Gaussianity parameter is of order k2/⌥.
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The square of the wavenumber does not appear in the
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Although the matrix P , and hence the functions K’s,

is unknown, some information on the dominant shapes
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two obvious ways which also highlight the dependence of

the shapes of non-Gaussianities obtained on the initial
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that fNL / (k21/⌥) ⇥ S(x2, x3) where S(x2, x3) is

a dimensionless characteristic shape function which

depends only on the ratios x2 = k2/k1 and x3 = k3/k1;
it is displayed in the left panel of Fig. 2 where, without

loss of generality, we have ordered the variables by

assuming x3  x2  1, with the triangle inequality

given by x2 � x3  1  x2 + x3. The plot suggests that

the non-Gaussianities produced in the bouncing phase

peak in the equilateral, take intermediate values in the

squeezed, and are small in the folded configuration.

Another way to determine the shapes of non-

Gaussianities produced in a bouncing phase in a largely

model-independent way consists in assuming the Bardeen

potential to have reached, at ⌘ = ⌘�, the “frozen” state,

so that one has  
0
⌧  , leading to P 0 0 ⌧ P  0 ⌧

P  . Merely considering the power spectrum and assum-

ing it to behave as a power law P  / k↵, we once again
obtain an expression of the type fNL / (k21/⌥)⇥S(x2, x3)

where this time S(x2, x3) is shown in the right panel of

Fig. 2, exhibiting a similar kind of behavior as in the left
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K1(k) = 6P  (k) + 7P  0(k) + 2P 0 0(k) , K2(k) = 7P  (k) + 11P  0(k) + 4P 0 0(k) (9)

and

K3(k1, k2, k3) = 81
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In Eqs. (8) and (10), the sums and products are taken

over all possible permutations of i, j and `: �(i, j, `)
denotes (i, j, `) 2 {(1, 2, 3), (1, 3, 2), (2, 3, 1)}, and �(i, j)
denotes (i, j) 2 {(1, 2), (1, 3), (2, 3)}. In the equilateral

(k1 = k2 = k3 = k) and squeezed (ki = kj = k and

k` = p ⌧ k) configurations and at leading order, Eq. (8)

simplifies to

f equi
NL

= �
15k2

⌥

K2
1 (k)

K3(k, k, k)
, (11)

f sq
NL

= �
20k2
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K2
1 (k) +K1(k)K1(p)

K3(k, k, p)
, (12)

so that the non-Gaussianity parameter is of order k2/⌥.
In the folded configuration (k2 = k3 =

1
2k1), the first

non-vanishing term is given in the second line of Eq. (8)

and simplifies to

f fold
NL

=
40

9⌥

K1(k) [K1(k)� 16K1(2k)]

K3(k, k, 2k)
, (13)

The square of the wavenumber does not appear in the

numerator of Eq. (13) so that the folded configuration is

much below the equilateral and squeezed configuration.

Although the matrix P , and hence the functions K’s,

is unknown, some information on the dominant shapes

of non-Gaussianities can be extracted from Eq. (8) in

two obvious ways which also highlight the dependence of

the shapes of non-Gaussianities obtained on the initial

conditions before the bounce.

Let us first assume that K1(ki)K1,2(kj) '

K3(k1, k2, k3), an approximation that should be

roughly valid in the cosmologically relevant situation

for which the power spectra are scale-invariant. With

this simplifying assumption, one obtains from Eq. (8)

that fNL / (k21/⌥) ⇥ S(x2, x3) where S(x2, x3) is

a dimensionless characteristic shape function which

depends only on the ratios x2 = k2/k1 and x3 = k3/k1;
it is displayed in the left panel of Fig. 2 where, without

loss of generality, we have ordered the variables by

assuming x3  x2  1, with the triangle inequality

given by x2 � x3  1  x2 + x3. The plot suggests that

the non-Gaussianities produced in the bouncing phase

peak in the equilateral, take intermediate values in the

squeezed, and are small in the folded configuration.

Another way to determine the shapes of non-

Gaussianities produced in a bouncing phase in a largely

model-independent way consists in assuming the Bardeen

potential to have reached, at ⌘ = ⌘�, the “frozen” state,

so that one has  
0
⌧  , leading to P 0 0 ⌧ P  0 ⌧

P  . Merely considering the power spectrum and assum-

ing it to behave as a power law P  / k↵, we once again
obtain an expression of the type fNL / (k21/⌥)⇥S(x2, x3)

where this time S(x2, x3) is shown in the right panel of

Fig. 2, exhibiting a similar kind of behavior as in the left
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FIG. 2: Shape functions derived from Eq. (8) showing the relative contributions of the various possible non-Gaussian configu-
rations. Left panel: estimate with K1(ki)K1,2(kj) ' K3(k1, k2, k3). Right panel: scale invariant (P  / k3/2) “frozen” state
approximation. In both panels fNL / (k2

1/⌥) ⇥ S(x2, x3) � 1, x2 = k2/k1 and x3 = k3/k1. The di↵erences in the amplitude
as a function of the configuration {k1, k2, k3} hightlights the dependence of S(x2, x3) on the details of P .

panel of the figure, but with, in this case, the squeezed

configuration slightly exceeding the equilateral one and

an overall amplitude reduced by a fac tor 2 to 3.

To conclude, let us discuss two interesting limiting be-

haviors of the model. The first is the quasi-de-Sitter ap-

proximation which, as mentioned before, is equivalent to

having ⌥ ⌧ 1. In this limit, and contrary to the single

field slow-roll inflationary situation, Eqs. (11-13) show

that large amounts of non-Gaussianities are produced in

all possible shapes, with fNL / ⌥
�1

� 1. Thus, although

large non-Gaussianities in inflation often stem from a vi-

olation of slow roll, in the bouncing case, the closer one is

to a de Sitter bounce, the more non-Gaussianities are pro-

duced. The second limiting behavior is perhaps more rel-

evant for comparison with observational data, as it is not

based on any pre-requisite regarding the structure of the

bounce. As seen from Eqs. (11) to (13), the parameter

fNL is scale-dependent, and in particular, is proportional

to k2 in the equilateral and squeezed configurations. In

a cosmological background with closed spatial sections

and with ⌦K as large as the conservative value 10
�2

to-

day, the mode numbers are, as discussed above, in the

range
⇥
10

2, 108
⇤
, so the expected non-Gaussianities are

predicted to be extremely large right after the bouncing

phase. In both limits, the amount of non-Gaussianity

produced greatly exceeds the current observational lim-

its and the validity of the perturbative expansion may be

brought into question. We conjecture that this is likely

to be a generic and potentially serious problem for non-

singular bouncing cosmologies.
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fNL [P  (k1)P  (k2) + P  (k2)P  (k3) + P  (k3)P  (k1)] . (7)

Using the results obtained in [12], we now proceed by calculating fNL at leading order in ⌥, "V and ⌘V and in the limit

of large wavenumbers k . This latter assumption is justified because the range of observationally accessible physical

wavenumbers today is 10
3hMpc

�1 . kphys . 10
3hMpc

�1
and corresponds to a range of comoving wavenumbers

10
2 . k . 10
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for a conservative value ⌦K  10
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[2]. We find
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where the dots denote sub-leading terms in inverse powers of k and higher order in ⌥, "V and ⌘V . We also defined

K1(k) = 6P  (k) + 7P  0(k) + 2P 0 0(k) , K2(k) = 7P  (k) + 11P  0(k) + 4P 0 0(k) (9)

and

K3(k1, k2, k3) = 81

X

�(i,j)

P  (ki)P  (kj) + 108

X

�(i,j)

P  (ki)P  0(kj) + 36

X

�(i,j)

P  (ki)P 0 0(kj) +

144

X

�(i,j)

P  0(ki)P  0(kj) + 48

X

�(i,j)

P  0(ki)P 0 0(kj) + 16

X

�(i,j)

P 0 0(ki)P 0 0(kj). (10)

In Eqs. (8) and (10), the sums and products are taken

over all possible permutations of i, j and `: �(i, j, `)
denotes (i, j, `) 2 {(1, 2, 3), (1, 3, 2), (2, 3, 1)}, and �(i, j)
denotes (i, j) 2 {(1, 2), (1, 3), (2, 3)}. In the equilateral

(k1 = k2 = k3 = k) and squeezed (ki = kj = k and

k` = p ⌧ k) configurations and at leading order, Eq. (8)

simplifies to

f equi
NL

= �
15k2

⌥

K2
1 (k)

K3(k, k, k)
, (11)

f sq
NL

= �
20k2

3⌥

K2
1 (k) +K1(k)K1(p)

K3(k, k, p)
, (12)

so that the non-Gaussianity parameter is of order k2/⌥.
In the folded configuration (k2 = k3 =

1
2k1), the first

non-vanishing term is given in the second line of Eq. (8)

and simplifies to

f fold
NL

=
40

9⌥

K1(k) [K1(k)� 16K1(2k)]

K3(k, k, 2k)
, (13)

The square of the wavenumber does not appear in the

numerator of Eq. (13) so that the folded configuration is

much below the equilateral and squeezed configuration.

Although the matrix P , and hence the functions K’s,

is unknown, some information on the dominant shapes

of non-Gaussianities can be extracted from Eq. (8) in

two obvious ways which also highlight the dependence of

the shapes of non-Gaussianities obtained on the initial

conditions before the bounce.

Let us first assume that K1(ki)K1,2(kj) '

K3(k1, k2, k3), an approximation that should be

roughly valid in the cosmologically relevant situation

for which the power spectra are scale-invariant. With

this simplifying assumption, one obtains from Eq. (8)

that fNL / (k21/⌥) ⇥ S(x2, x3) where S(x2, x3) is

a dimensionless characteristic shape function which

depends only on the ratios x2 = k2/k1 and x3 = k3/k1;
it is displayed in the left panel of Fig. 2 where, without

loss of generality, we have ordered the variables by

assuming x3  x2  1, with the triangle inequality

given by x2 � x3  1  x2 + x3. The plot suggests that

the non-Gaussianities produced in the bouncing phase

peak in the equilateral, take intermediate values in the

squeezed, and are small in the folded configuration.

Another way to determine the shapes of non-

Gaussianities produced in a bouncing phase in a largely

model-independent way consists in assuming the Bardeen

potential to have reached, at ⌘ = ⌘�, the “frozen” state,

so that one has  
0
⌧  , leading to P 0 0 ⌧ P  0 ⌧

P  . Merely considering the power spectrum and assum-

ing it to behave as a power law P  / k↵, we once again
obtain an expression of the type fNL / (k21/⌥)⇥S(x2, x3)

where this time S(x2, x3) is shown in the right panel of

Fig. 2, exhibiting a similar kind of behavior as in the left

with
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FIG. 2: Shape functions derived from Eq. (8) showing the relative contributions of the various possible non-Gaussian configu-
rations. Left panel: estimate with K1(ki)K1,2(kj) ' K3(k1, k2, k3). Right panel: scale invariant (P  / k3/2) “frozen” state
approximation. In both panels fNL / (k2

1/⌥) ⇥ S(x2, x3) � 1, x2 = k2/k1 and x3 = k3/k1. The di↵erences in the amplitude
as a function of the configuration {k1, k2, k3} hightlights the dependence of S(x2, x3) on the details of P .

panel of the figure, but with, in this case, the squeezed

configuration slightly exceeding the equilateral one and

an overall amplitude reduced by a fac tor 2 to 3.

To conclude, let us discuss two interesting limiting be-

haviors of the model. The first is the quasi-de-Sitter ap-

proximation which, as mentioned before, is equivalent to

having ⌥ ⌧ 1. In this limit, and contrary to the single

field slow-roll inflationary situation, Eqs. (11-13) show

that large amounts of non-Gaussianities are produced in

all possible shapes, with fNL / ⌥
�1

� 1. Thus, although

large non-Gaussianities in inflation often stem from a vi-

olation of slow roll, in the bouncing case, the closer one is

to a de Sitter bounce, the more non-Gaussianities are pro-

duced. The second limiting behavior is perhaps more rel-

evant for comparison with observational data, as it is not

based on any pre-requisite regarding the structure of the

bounce. As seen from Eqs. (11) to (13), the parameter

fNL is scale-dependent, and in particular, is proportional

to k2 in the equilateral and squeezed configurations. In

a cosmological background with closed spatial sections

and with ⌦K as large as the conservative value 10
�2

to-

day, the mode numbers are, as discussed above, in the

range
⇥
10

2, 108
⇤
, so the expected non-Gaussianities are

predicted to be extremely large right after the bouncing

phase. In both limits, the amount of non-Gaussianity

produced greatly exceeds the current observational lim-

its and the validity of the perturbative expansion may be

brought into question. We conjecture that this is likely

to be a generic and potentially serious problem for non-

singular bouncing cosmologies.
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sity ⌅) is dominant in the contracting phase3. Such an
equation of state can be realized by treating the dominant
form of matter as a scalar field with negative exponen-
tial potential. Since the energy density of the dominant
matter then scales with a�q with q ⇤ 6, anisotropies be-
come negligible and the BKL instability is avoided [37]4.
In a recent paper [38], a subset of the present authors
introduced a scalar field with an Ekpyrotic potential to
construct a matter bounce scenario which is free from the
BKL instability problem.

The Ekpyrotic scenario in its original formulation [32]
involves a singular bounce. In addition, the curvature
spectrum of ⇥ is an nS = 3 spectrum rather than a scale-
invariant nS = 1 one [39–42]. Hence, without non-trivial
matching of ⇥ across the bounce, one cannot obtain a
scale-invariant spectrum at late time5. To solve this
problem, a new and non-singular version of the Ekpyrotic
scenario [46] was proposed in which a second scalar field
is introduced which does not influence the background
dynamics but develops a scale-invariant spectrum which
starts out as an isocurvature mode but which is trans-
ferred to the adiabatic mode during the evolution. The
second field can also be given a “ghost condensate” La-
grangian [47] in which case it mediates a non-singular
bounce. However, as has been pointed out in [48], in
this “New Ekpyrotic” scenario the anisotropies which are
highly suppressed during the contracting phase again
raise their head and lead to a BKL instability.

In our previous work [38], we argued qualitatively that
in the model we considered the anisotropies remained
negligibly small during the bouncing phase. The reason
for the di�erence compared to what happens in the model
of [46] is that in our model the kinetic condensate which
grows as the bounce is approached does not need to de-
crease again by the time of the bounce point. This leads
to a shorter bounce time scale and to di�erent dynamics.

In this paper we carefully study the development of
anisotropies in the bouncing cosmology with an Ekpy-
rotic phase of contraction introduced in [38]. We work
in the context of a homogeneous but anisotropic Bianchi
cosmology in which the scale factors in each spatial di-
mension evolve independently. We are able to show that
no BKL type instability develops, in agreement with
what the study of [38] indicated. Our work thus shows
that the arguments against non-singular (as opposed to
singular) bouncing cosmologies put forwards in [48] do

3 There are other approaches to address the anisotropy prob-
lem. For example, nonlinear matter terms may smooth out the
anisotropies [33]. Adding quadratic R�⇥R�⇥ terms to the grav-
itational action can also prevent the BKL instability [34].

4 Note, however, that including anisotropic pressures may reintro-
duce instabilities towards anisotropy generation [35].

5 However, the spectrum of the Bardeen potential � is scale-
invariant [43], and, as argued in [10] and shown explicitly in some
examples [44, 45], it is this spectrum which may pass through
the bounce, thus yielding a scale-invariant spectrum of curva-
ture fluctuations at late times.

not apply to all non-singular bouncing cosmologies.
The outline of this paper is as follows. In the next sec-

tion we review the bounce model introduced in [38] and
derive the resulting equations of motion for a homoge-
neous but anisotropic universe. In Section 3 we analyt-
ically study the background dynamics in each phase of
the cosmological evolution from the initial matter phase
of contraction through the Ekpyrotic phase to the bounc-
ing phase and the subsequent fast-roll expanding period.
Specifically, we determine the decay or growth rates of
the anisotropy parameter in each phase. In Section 4 we
solve the dynamical system numerically and present our
final results. We close with a general discussion.

A word on notation: We define the reduced Planck
mass by MPl = 1/

�
8⇤GN where GN is Newton’s gravi-

tational constant. The sign of the metric is taken to be
(+,�,�,�). Note that we take the value of the mean
scale factor at the bounce point to be aB = 1 throughout
the paper.

II. A NONSINGULAR BOUNCE MODEL

We consider a nonsingular bounce model in which the
universe is filled with two matter components, a cosmic
scalar field ⇧ and a generic matter fluid, as proposed in
Ref. [38] (which, in turn, is based on the theory devel-
oped in [49]). The Lagrangian of ⇧ is given by

L [⇧ (x)] = K(⇧, X) + G(⇧, X)�⇧, (1)

where K and G are functions of ⇧ and its canonical ki-
netic term

X ⇥ 1
2
⌃µ⇧⌃µ⇧, (2)

while the other kinetic terms of ⇧ include the operator

�⇧ ⇥ gµ�⌅µ⌅�⇧. (3)

Variation of the above scalar field Lagrangian mini-
mally coupled to Einstein gravity leads to the following
corresponding energy momentum tensor

T⇤
µ� = (�K + 2XG,⇤ + G,X⌅⇥X⌅⇥⇧)gµ�

+(K,X + G,X�⇧� 2G,⇤)⌅µ⇧⌅�⇧

�G,X(⌅µX⌅�⇧ +⌅�X⌅µ⇧), (4)

in which we use the notation that F,⇤ and F,X denote
derivatives of whatever functional F(⇧, X) may be with
respect to ⇧ and X, respectively.

For the model under consideration we choose:

K(⇧, X) = M2
Pl

[1� g(⇧)]X + �X2 � V (⇧), (5)

where we introduce a positive-definite parameter � so
that the kinetic term is bounded from below at high en-
ergy scales. Note that the first term of K involves M2

Pl

Conclusions:

where the k dependence stems from the solution !78" and the
unknown matrices T?

! and T?
" refer to the unknown parts

sketched in Fig. 10. The coefficients one is interested in,
namely T11 and T12 , giving the amplitude of the growing
mode in the expanding phase as functions of the modes in
the contracting phase, accordingly can depend on k. In addi-
tion, it is important to notice that, as shown in Ref. #16$, this
mechanism does not violate causality; a similar statement
was also emphasized in Ref. #30$.
Paradoxically, obtaining a spectral modification at the

bounce is possible provided the bounce lasts the minimal
amount of conformal time compatible with the NEC preser-
vation. Nevertheless, the assumption of no effect can be jus-
tified provided the constraint %0#1$” 1 is satisfied, or in the
pure de Sitter case having %0%1 strictly. This last situation
is what happens in models in which the bounce takes place
for a vanishing value of the scalar field kinetic energy #5$,
whereas the former case implies a kinetic energy density !not
the scalar field itself" for the scalar field comparable to the
Planck scale, which may render the semi-classical field
theory dubious.
This can be particularly important in view of the string

motivated potential alternatives to inflation of the pre big
bang kind if it turns out that these models might lead to such
spectral corrections as discussed above. This condition needs

be verified in each particular situation. For instance, in the
pre big bang case, one would need to model the bounce
occurring in the Einstein frame, in which our formalism is
well suited, to see what the behavior of Vu is in this context.
Therefore, and unfortunately, one consequence of the failure
of any general argument preventing any alteration of the
spectrum is that one needs to explicitly model a regime in
which higher order string corrections are dominant. Avoiding
this was the main interest of the general argument in ques-
tion.
We also obtained that the relevant propagation variable is

not v , whose flat space equivalent is commonly used for
quantization, i.e. for setting up the initial conditions, but
rather the intermediate variable u, directly related to the
Bardeen potential. This is to be compared with what was
recently obtained in Ref. #6$, based on a completely different
theory of gravity, in which neither variable happens to be
bounded at the bounce.
The spectrum of gravitational wave cannot be affected by

propagating through these bounces. This exemplifies the fact
that there is no fundamental reason according to which scalar
and tensor modes should propagate similarly through a
bounce.
The picture that emerges for the construction of a com-

plete model of the universe is shown in Fig. 10 and consists
in a regime in which quantum field theory in a time-
dependent background is well suited, as is the case for in-
stance in many string motivated scenarios #7,8$; this first
phase allows an easy calculation of a spectrum of perturba-
tion that would be sort of pre-primordial. Then, unless the
curvature was always important in this first period, it is fol-
lowed by an unknown epoch which connects to the bounce
itself, which should also be followed by yet another un-
known epoch in order for the curvature to be negligible #16$.
This reveals the most important difference between bouncing
scenarios and inflation, namely the need for a high curvature
phase, which we have seen may drastically modify the physi-
cal predictions.
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FIG. 10. The effective potential Vu(%) for the perturbation vari-
ables u(%) for our bounce model when one connects this bounce
transition to both a previous contracting phase on one side and to

the usual radiation dominated phase later on the other side.
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