Lhéorie, Univers et Gravitation

Bubeuts tres illustres..

$\underline{\square}$ xpmes

Limitations and puzzles of the standard model

9 Singularity $\exists t_{(\pm \infty)} ; a(t) \rightarrow 0$

Q Horizon

Q Flatness

$$
\frac{\mathrm{d} \Omega_{\mathcal{K}}}{\mathrm{d} \ln a}=(3 w+1)\left(1-\Omega_{\mathcal{K}}\right) \Omega_{\mathcal{K}}
$$

Unstable fixed point!!

Q Monopoles $\left|\Omega\left(z_{\text {Planck }}\right)-1\right|<10^{-60}$

$$
\left|\Omega\left(z_{\mathrm{eq}}\right)-1\right|<3 \times 10^{-5}
$$

Q Validity of classical GR?

Standard paradigm: inflation!
Phase of accelerated expansion

Standard Model Failures and inflationary solutions

Singularity
 Not solved... actually not addressed!

Horizon $\quad d_{\mathrm{H}} \equiv a(t) \int_{t_{\mathrm{i}}}^{t} \frac{\mathrm{~d} \tau}{a(\tau)} \quad$ can be made as big as one wishes
Flatness $\quad \frac{\mathrm{d}}{\mathrm{d} t}|\Omega-1|=-2 \frac{\ddot{a}}{\dot{a}^{3}} \quad \ddot{a}>0 \quad \& \quad \dot{a}>0$

Homogeneity \& Isotropy

Initial Universe = very small patch
Accelerated expansion drives the shear to zero...

Perturbations
Bonus of the theory: superb predictions!!!solves cosmological puzzles

- uses GR + scalar fields [(semi-)classical]

Inflationcan be implemented in high energy theories???makes falsifiable predictions ...
... consistent with all known observations

Alternative model???

QSingularity $\exists t_{(\pm \infty)} ; a(t) \longrightarrow 0$Trans-Planckian

$$
\exists t ; \ell(t)=\ell_{0} \frac{a(t)}{a_{0}} \leq \ell_{\mathrm{P} 1}
$$

Q Hierarchy (amplitude)?

$$
\frac{V(\varphi)}{\Delta \varphi^{4}} \leq 10^{-12}
$$

© Classical GR?

$$
\frac{\Delta T}{T} \propto G_{\mathrm{N}} E_{\mathrm{inf}}^{2} \sim\left(\frac{E_{\mathrm{inf}}}{M_{\mathrm{Pl}}}\right)^{2} \longrightarrow E_{\mathrm{inf}} \simeq 10^{-3} M_{\mathrm{Pl}}
$$

- η problem \& Lyth bound
© Initial condition \& entropy
Q Eternal inflation \& measure (anthropic)solves cosmological puzzlesuses GR + scalar fields [(semi-)classical]
Inflationcan be implemented in high energy theories???makes falsifiable predictions consistent with all known observations

Alternative model???

- singularity, initial conditions \& homogeneity
- string based ideas (PBB, other brane models, string gas, ...)
- Quantum gravity / cosmology
- provide challengers / new ingredients!
- bouncing cosmology

A brief history of bouncing cosmology

\Rightarrow R. C. Tolman, "On the Theoretical Requirements for a Periodic Behaviour of the Universe", PRD 38, 1758 (1931)
\Rightarrow G. Lemaître, "L'Univers en expansion", Ann. Soc. Sci. Bruxelles (1933)

Singularity pb no solved

\Rightarrow A. A. Starobinsky, "On one non-singular isotropic cosmological model", Sov. Astron. Lett. 4, 82 (1978)
\Rightarrow V. N. Melnikov, S.V. Orlov, Phys. Lett. A 70, 263 (1979).
\Rightarrow M. Novello \& J. M. Salim, Phys. Rev. D20, 377 (1979).
\Rightarrow R. Durrer \& J. Laukerman, "The oscillating Universe: an alternative to inflation", Class. Quantum Grav. 13, 1069 (1996)
\Rightarrow Many new ideas, models...
\Rightarrow M. Novello \& S.E. Perez Bergliaffa, "Bouncing cosmologies", Phys. Rep. 463, 127 (2008)
\Rightarrow D. Battefeld \& PP, "A Critical Review of Classical Bouncing Cosmologies", Phys. Rep. 571, 1 (2015)
\Rightarrow R. Brandenberger \& PP, "Bouncing cosmologies: Progress and problems", Found. Phys. (2017)

Standard Model Failures and bouncing solutions

Singularity
Merely a non issue in the bounce case!
Horizon $\quad d_{\mathrm{H}} \equiv a(t) \int_{t_{\mathrm{i}}}^{t} \frac{\mathrm{~d} \tau}{a(\tau)} \quad$ can be made divergent easily if $\quad t_{\mathrm{i}} \rightarrow-\infty$
Flatness $\quad \frac{\mathrm{d}}{\mathrm{d} t}|\Omega-1|=-2 \frac{\ddot{a}}{\dot{a}^{3}}$
$\ddot{a}<0 \& \dot{a}<0$
accelerated expansion (inflation) or decelerated contraction (bounce)
Homogeneity Large \& flat Universe + low initial density + diffusion
$\frac{t_{\text {dissipation }}}{t_{\text {Hubble }}} \propto \frac{\lambda}{R_{\mathrm{H}}^{1 / 3}}\left(1+\frac{\lambda}{A R_{\mathrm{H}}^{2}}\right) \Longrightarrow$ enough time to dissipate any wavelength
IsOtropy Potentially problematic: model dependent
Others dark matter/energy, baryogenesis, ...

Standard Failures and bouncing solutions

Singularity

Merely a non issue in the bounce case!
Horizon $\quad d_{\mathrm{H}} \equiv a(t) \int_{t_{\mathrm{i}}}^{t} \frac{\mathrm{~d} \tau}{a(\tau)} \quad$ can be made divergent easily if $\quad t_{\mathrm{i}} \rightarrow-\infty$
Flatness $\quad \frac{\mathrm{d}}{\mathrm{d} t}|\Omega-1|=-2 \frac{\ddot{a}}{\dot{a}^{3}}$
$\ddot{a}<0 \& \dot{a}<0$
accelerated expansion (inflation) or decelerated contraction (bounce)
Homogeneity Large \& flat Universe + low initial density + diffusion
$\frac{t_{\text {dissipation }}}{t_{\text {Hubble }}} \propto \frac{\lambda}{R_{\mathrm{H}}^{1 / 3}}\left(1+\frac{\lambda}{A R_{\mathrm{H}}^{2}}\right)$
enough time to dissipate any wavelength \Longrightarrow quantum vacuum fluctuations...
Isotropy Potentially problematic: model dependent
Others dark matter/energy, baryogenesis, ...

$$
\begin{gathered}
d_{\mathrm{H}}^{\mathrm{cont}}=\frac{3(1+w)}{1+3 w} t_{\mathrm{end}}\left[1-\left(\frac{t_{\mathrm{ini}}}{t_{\mathrm{end}}}\right)^{(1+3 w) /[3(1+w)]}\right] \\
t_{\mathrm{ini}} \rightarrow-\infty
\end{gathered}
$$

Standard Failures and bouncing solutions

Singularity

Merely a non issue in the bounce case!
Horizon $\quad d_{\mathrm{H}} \equiv a(t) \int_{t_{\mathrm{i}}}^{t} \frac{\mathrm{~d} \tau}{a(\tau)} \quad$ can be made divergent easily if $\quad t_{\mathrm{i}} \rightarrow-\infty$
Flatness $\quad \frac{\mathrm{d}}{\mathrm{d} t}|\Omega-1|=-2 \frac{\ddot{a}}{\dot{a}^{3}}$
$\ddot{a}<0 \& \dot{a}<0$
accelerated expansion (inflation) or decelerated contraction (bounce)
Homogeneity Large \& flat Universe + low initial density + diffusion
$\frac{t_{\text {dissipation }}}{t_{\text {Hubble }}} \propto \frac{\lambda}{R_{\mathrm{H}}^{1 / 3}}\left(1+\frac{\lambda}{A R_{\mathrm{H}}^{2}}\right) \Longrightarrow$ enough time to dissipate any wavelength
Isotropy Potentially problematic: model dependent
Others dark matter/energy, baryogenesis, ...
$H^{2}=\frac{1}{3}\left[-\frac{3 \mathcal{K}}{a^{2}}+\frac{\rho_{\mathrm{m} 0}}{a^{3}}+\frac{\rho_{\mathrm{r} 0}}{a^{4}}+\frac{\rho_{\theta 0}}{a^{6}}+\ldots+\frac{\rho_{\phi 0}}{a^{3\left(1+w_{\phi}\right)}}\right]$

Critical density

$$
\rho_{\mathrm{c}} \equiv \frac{3 H^{2}}{8 \pi G_{\mathrm{N}}} \quad \Longrightarrow \quad \Omega \equiv \frac{\rho}{\rho_{\mathrm{c}}}
$$

Standard Failures and bouncing solutions

Singularity

Merely a non issue in the bounce case!
Horizon $\quad d_{\mathrm{H}} \equiv a(t) \int_{t_{\mathrm{i}}}^{t} \frac{\mathrm{~d} \tau}{a(\tau)} \quad$ can be made divergent easily if $\quad t_{\mathrm{i}} \rightarrow-\infty$
Flatness $\quad \frac{\mathrm{d}}{\mathrm{d} t}|\Omega-1|=-2 \frac{\ddot{a}}{\dot{a}^{3}}$
$\ddot{a}<0 \& \dot{a}<0$
accelerated expansion (inflation) or decelerated contraction (bounce)
Homogeneity Large \& flat Universe + low initial density + diffusion
$\frac{t_{\text {dissipation }}}{t_{\text {Hubble }}} \propto \frac{\lambda}{R_{\mathrm{H}}^{1 / 3}}\left(1+\frac{\lambda}{A R_{\mathrm{H}}^{2}}\right) \Longrightarrow$ enough time to dissipate any wavelength
Shear
Potentially problematic: model dependent

Standard Failures and bouncing solutions

Singularity

Merely a non issue in the bounce case!
Horizon $\quad d_{\mathrm{H}} \equiv a(t) \int_{t_{\mathrm{i}}}^{t} \frac{\mathrm{~d} \tau}{a(\tau)} \quad$ can be made divergent easily if $\quad t_{\mathrm{i}} \rightarrow-\infty$
Flatness $\quad \frac{\mathrm{d}}{\mathrm{d} t}|\Omega-1|=-2 \frac{\ddot{a}}{\dot{a}^{3}} \quad \ddot{a}<0 \& \dot{a}<0$
accelerated expansion (inflation) or decelerated contraction (bounce)
Homogeneity Large \& flat Universe + low initial density + diffusion
$\frac{t_{\text {dissipation }}}{t_{\text {Hubble }}} \propto \frac{\lambda}{R_{\mathrm{H}}^{1 / 3}}\left(1+\frac{\lambda}{A R_{\mathrm{H}}^{2}}\right) \Longrightarrow$ enough time to dissipate any wavelength
Shear
Potentially problematic: model dependent

Implementing a bounce

Quantized scalar field effect model:

Parker \& Fulling ' 73 : massive scalar field, if $\left\langle a^{\dagger} a\right\rangle \gg 1$, then solution ($\mathcal{K}>0$)

$$
a(t)=\left(\frac{\left|B_{2}\right|^{2}-\left|B_{1}\right|^{2}}{\left.\left\langle m^{2}\right| B_{2}\right|^{2}}+\frac{8 \pi G m^{2}\left|B_{2}\right|^{2} t^{2}}{3}\right)^{1 / 2} ;
$$

Coherence of the quantum state crucial

FIG. 1. Solution with $a(0)=0.2 m^{-1}$: time-symmetric expansion from the minimum radius.

FIG. 2. Solution with $a(0)=0.2 m^{-1}$ (solid curve): approach to a Friedmann solution (dashed curve). The horizontal and vertical scales are logarithmic, and the time origin has been shifted to the initial singularity of the Friedmann curve, so that the latter becomes a straight line of slope $\frac{2}{3}$. (The deviation of the Friedmann solution from the $a \propto t^{2 / 3}$ law due to the three-space curvature of the closed universe is negligible in the range of t plotted.)

Model listing:

Implementing a bounce

Quantum gravity

LQG \& LQC
Canonical quantum gravity (WdW)
String theory

Non relativistic quantum gravity

Model listing:

Implementing a bounce

Quantum gravity
LQG \& LQC
Canonical quantum gravity (WdW)
String theory

Non relativistic quantum gravity

M.Gasperini \& G. Veneziano, Phys. Rep. 373, 1 (2003), hep-th/0207130 \& hep-th/0703055

Pre Big Bang scenario:

quantum cosmology:

J. Acacio de Barros, N. Pinto-Neto \& M. Sagorio-Leal Phys. Lett. A241, 229 (1998)
S. Vitenti \& PP

Mod.Phys.Lett. A31, 1640006 (2016).

Model listing:

Quantum gravity

LQG \& LQC

Canonical quantum gravity (WdW)
String theory

Ekpyrotic \& cyclic Branes

Non relativistic quantum gravity

Ekpyrotic scenario:

$$
\mathcal{S}_{5} \propto \int_{\mathcal{M}_{5}} \mathrm{~d}^{5} x \sqrt{-g_{5}}\left[R_{(5)}-\frac{1}{2}(\partial \varphi)^{2}-\frac{3}{2} \frac{\mathrm{e}^{2 \varphi} \mathcal{F}^{2}}{5!}\right]
$$

$$
\begin{aligned}
& \mathcal{S}_{4}=\int_{\mathcal{M}_{4}} \mathrm{~d}^{4} x \sqrt{-g_{4}}\left[\frac{R_{(4)}}{2 \kappa}-\frac{1}{2}(\partial \phi)^{2}-V(\phi)\right] \\
& V(\varphi)=-V_{\mathrm{i}} \exp \left[-\frac{4 \sqrt{\pi \gamma}}{m_{\mathrm{P} 1}}\left(\varphi-\varphi_{\mathrm{i}}\right)\right]
\end{aligned}
$$

Singular...

Cyclic extension

Model listing:

Quantum gravity

> LQG \& LQC

Canonical quantum gravity (WdW)
String theory
Ekpyrotic \& cyclic Branes

String gas cosmology
Antigravity
Galileon
Massive gravity

Multiverse models
Strings \& AdS/CFT

Non relativistic quantum gravity

Horava-Lifshitz
Lee-Wick \& Quintom
$F(R), f(T)$, Gauss-Bonnet

Mimetic matter
Non-linear electromagnetic action
Spinors \& torsion

TUG - Montpellier / 5 octobre 2022

Implementing a bounce $=$ problem with GR!

$$
\dot{H}=\frac{\mathcal{K}}{a^{2}}-\frac{1}{2}(\rho+P)
$$

Violation of Null Energy Condition (NEC) $\quad \rho+P \leq 0$

Instabilities for perfect fluids

Implementing a bounce $=$ problem with GR!

Violation of Null Energy Condition (NEC)
$\rho+P \leq 0$

Positive spatial curvature + scalar field

Self consistent bounce:

$$
\mathrm{d} s^{2}=\mathrm{d} t^{2}-a^{2}(t)\left(\frac{\mathrm{d} r^{2}}{1-\mathcal{K} r^{2}}+r^{2} \mathrm{~d} \Omega^{2}\right)
$$

$\longrightarrow \quad$ One d.o.f. +4 dimensions G.R.

$$
\mathcal{S}=\int \mathrm{d}^{4} x \sqrt{-g}\left[\frac{R}{6 \ell_{\mathrm{P} 1}^{2}}-\frac{1}{2} \partial_{\mu} \varphi \partial^{\mu} \varphi-V(\varphi)\right]
$$

$$
H^{2}=\frac{1}{3}\left(\frac{1}{2} \dot{\varphi}^{2}+V\right)-\frac{\mathcal{K}}{a^{2}} \quad \text { Positive spatial curvature }
$$

J. Martin \& PP., Phys. Rev. D68, 103517 (2003)

Self consistent bounce:

$$
\mathrm{d} s^{2}=\mathrm{d} t^{2}-a^{2}(t)\left(\frac{\mathrm{d} r^{2}}{1-\mathcal{K} r^{2}}+r^{2} \mathrm{~d} \Omega^{2}\right)
$$

$\longrightarrow \quad$ One d.o.f. +4 dimensions G.R.

Implementing a bounce $=$ problem with GR! $\dot{H}=\frac{\mathcal{K}}{a^{2}}-\frac{1}{2}(\rho+P)$

$$
\text { Violation of Null Energy Condition (NEC) } \quad \rho+P \leq 0
$$

Positive spatial curvature + scalar field

Modify GR?
Add new terms?
K-bounce, Ghost condensates, Galileons...?
\longrightarrow Modify GR to non singular theories (curvature invariants)

$$
\begin{array}{cc}
\mathcal{S}=\frac{1}{16 \pi G_{\mathrm{N}}} \int \mathrm{~d}^{4} x \sqrt{-g}\left[R+\sum_{i=1}^{N} \varphi_{i} I^{(i)}-V(\varphi)\right]
\end{array} \quad \Longrightarrow \frac{\mathrm{d} V}{\mathrm{~d} \varphi}=I
$$

K-bounce: $\quad \mathcal{L}=p(X, \varphi)$

$$
\begin{gathered}
X \equiv \frac{1}{2} g^{\mu \nu} \partial_{\mu} \varphi \partial_{\nu} \varphi \\
\rho \equiv 2 X \frac{\partial p}{\partial X}-p \\
u_{\mu} \equiv \frac{\partial_{\mu} \varphi}{\sqrt{2} X}
\end{gathered}
$$

$$
\leadsto T^{\mu \nu}=(\rho+p) u^{\mu} u^{\nu}-p g^{\mu \nu}
$$

vanishing spatial curvature possible in 4 dimensions G.R.?

$$
\rho\left(t_{\text {bounce }}\right)=0 \Longrightarrow p\left(t_{\text {bounce }}\right)<0
$$

Implementing a bounce = problem with GR!

Violation of Null Energy Condition (NEC)

$$
\rho+P \leq 0
$$

Positive spatial curvature + scalar field

Modify GR?
Add new terms?
K-bounce, Ghost condensates, Galileons...?

Various instabilities may arise!
(e.g. radiation for matter bounce or curvature perturbations)

The problem with contraction: BKL/shear instability

$$
\begin{aligned}
& \mathrm{d} s^{2}=\mathrm{d} t^{2}-a^{2}(t) \sum_{i} \mathrm{e}^{2 \theta_{i}(t)} \sigma^{i} \sigma^{i} \\
& \text { Ricci flat: } \\
& \sigma^{i}=\mathrm{d} x^{i} \\
& \sum_{i} \theta_{i}=0 \\
& \text { Average scale factor } \\
& \text { Friedman equations } \\
& \left.\begin{array}{rl}
H^{2} & =\frac{\rho_{\mathrm{T}}}{3 M_{\mathrm{Pl}}^{2}}+\frac{1}{6} \sum_{i} \dot{\theta}_{i}^{2} \\
\dot{H} & =-\frac{\rho_{\mathrm{T}}+p_{\mathrm{T}}}{2 M_{\mathrm{Pl}}^{2}}-\frac{1}{2} \sum_{i} \dot{\theta}_{i}^{2}
\end{array}\right\} \ddot{\theta}_{i}+3 H \dot{\theta}_{i}=0
\end{aligned}
$$

slow contraction solution:
$w_{\text {ekp }} \gg 1 \Longrightarrow \rho_{\mathrm{ekp}} \propto a^{-3\left(1+w_{\mathrm{ekp}}\right)} \gg a^{-6}$ when $\quad a \rightarrow 0$

Problem: regular bounce $\neg \exists$ phase with $w_{\text {bounce }}<-1$
So finally...

$$
\rho_{\text {Shear }} \equiv \frac{M_{\mathrm{Pl}}^{2}}{2} \sum_{i} \dot{\theta}_{i}^{2} \propto a^{-6} \gg \rho_{\text {Fluid }}
$$

Singularity!

A nonsingular bounce model: ghost condensate \& Galileon

$$
\mathcal{L}[\phi(x)]=K(\phi, X)+G(\phi, X) \square \phi \text { with kinetic term } X \equiv \frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi \quad \text { + Fluid }
$$

Stress-energy tensor

$$
T_{\mu \nu}^{\phi}=\left(-K+2 X G_{, \phi}+G_{, X} \nabla_{\sigma} X \nabla^{\sigma} \phi\right) g_{\mu \nu}+\left(K_{, X}+G_{, X} \square \phi-2 G_{, \phi}\right) \nabla_{\mu} \phi \nabla_{\nu} \phi-G_{, X}\left(\nabla_{\mu} X \nabla_{\nu} \phi+\nabla_{\nu} X \nabla_{\mu} \phi\right)
$$

Energy density \& Pressure

$$
\begin{aligned}
\rho_{\phi} & =\frac{1}{2} M_{\mathrm{Pl}}^{2}(1-g) \dot{\phi}^{2}+\frac{3}{4} \beta \dot{\phi}^{4}+3 \gamma H \dot{\phi}^{3}+V(\phi) \\
p_{\phi} & =\frac{1}{2} M_{\mathrm{Pl}}^{2}(1-g) \dot{\phi}^{2}+\frac{1}{4} \beta \dot{\phi}^{4}-\gamma \dot{\phi}^{2} \ddot{\phi}-V(\phi) \\
& + \text { Fluid } \quad p=w \rho
\end{aligned}
$$

$$
\text { Einstein equation }+\nabla_{\mu} T_{\text {Fluid }}^{\mu \nu}=0
$$

$$
+ \text { modified Klein-Gordon } \mathcal{P} \ddot{\phi}+\mathcal{D} \dot{\phi}+V_{, \phi}=0
$$

with...

$$
\begin{aligned}
\mathcal{P}= & (1-g) M_{\mathrm{Pl}}^{2}+6 \gamma H \dot{\phi}+3 \beta \dot{\phi}^{2}+\frac{3 \gamma^{2}}{2 M_{\mathrm{Pl}}^{2}} \dot{\phi}^{4} \\
\mathcal{D}= & 3(1-g) M_{\mathrm{Pl}}^{2} H+\left(9 \gamma H^{2}-\frac{1}{2} M_{\mathrm{Pl}}^{2} g_{, \phi}\right) \dot{\phi}+3 \beta H \dot{\phi}^{2} \\
& -\frac{3}{2}(1-g) \gamma \dot{\phi}^{3}-\frac{9 \gamma^{2} H \dot{\phi}^{4}}{2 M_{\mathrm{Pl}}^{2}}-\frac{3 \beta \gamma \dot{\phi}^{5}}{2 M_{\mathrm{Pl}}^{2}} \\
& -\frac{3}{2} G, X \sum_{i} \dot{\theta}_{i}^{2} \dot{\phi}-\frac{3 G_{, X}}{2 M_{\mathrm{Pl}}^{2}}\left(\rho_{\mathrm{m}}+p_{\mathrm{m}}\right) \dot{\phi}
\end{aligned}
$$

explicit example...

$$
\begin{gathered}
V_{0}=10^{-7}, \quad g_{0}=1.1, \quad \beta=5, \quad \gamma=10^{-3} \\
b_{V}=5, \quad b_{g}=0.5, \quad p=0.01, \quad q=0.1 \\
\rho_{\mathrm{m}, \mathrm{~B}}=2.8 \times 10^{-10}, \quad M_{\theta, 1}=2.2 \times 10^{-6} \\
M_{\theta, 2}=3.4 \times 10^{-6}, \quad M_{\theta, 3}=-5.6 \times 10^{-6} \\
\phi_{\mathrm{ini}}=-2, \quad \dot{\phi}_{\mathrm{ini}}=7.8 \times 10^{-6}
\end{gathered}
$$

Hubble parameters

Energy densities

Anisotropies

Perturbations: $\quad \mathrm{d} s^{2}=a^{2}(\eta)\left\{(1+2 \Phi) \mathrm{d} \eta^{2}-\left[(1-2 \Phi) \gamma_{i j}+h_{i j}\right] \mathrm{d} x^{i} \mathrm{~d} x^{j}\right\}$

Initial conditions fixed in the contracting era

$$
a(\eta)
$$

Perturbations: $\quad \mathrm{d} s^{2}=a^{2}(\eta)\left\{(1+2 \Phi) \mathrm{d} \eta^{2}-\left[(1-2 \Phi) \gamma_{i j}+h_{i j}\right] \mathrm{d} x^{i} \mathrm{~d} x^{j}\right\}$

"central feature of bouncing cosmology $=$ the bounce $" . .$.

Geometric matching conditions?

Continuity of metric

$$
[a]_{ \pm}=0 \quad \text { OK }
$$

Continuity of extrinsic curvature $\quad[H]_{ \pm}=0 \quad ? ? ?$

Perturbations? $\quad[\zeta]_{ \pm}=0 \quad ? ? ?$

Perturbations: $\quad \mathrm{d} s^{2}=a^{2}(\eta)\left\{(1+2 \Phi) \mathrm{d} \eta^{2}-\left[(1-2 \Phi) \gamma_{i j}+h_{i j}\right] \mathrm{d} x^{i} \mathrm{~d} x^{j}\right\}$

$$
\Longleftrightarrow \Phi=\frac{3 \mathcal{H} u}{2 a^{2} \theta} \quad \theta \equiv \frac{1}{a} \sqrt{\frac{\rho_{\varphi}}{\rho_{\varphi}+p_{\varphi}}\left(1-\frac{3 \mathcal{K}}{\rho_{\varphi} a^{2}}\right)}
$$

$$
u^{\prime \prime}+\left[k^{2}-\frac{\theta^{\prime \prime}}{\theta}-3 \mathcal{K}\left(1-c_{\mathrm{s}}^{2}\right)\right] u=0
$$

$$
V_{u}(\eta) \equiv \frac{\theta^{\prime \prime}}{\theta}+3 \mathcal{K}\left(1-c_{S}^{2}\right)=\frac{P_{24}(\eta)}{Q_{24}(\eta)},
$$

Non trivial transfer matrix

$$
\boldsymbol{T}_{i j}(k)=\left[\begin{array}{cc}
A(k) & B(k) \\
C(k) & D(k)
\end{array}\right]
$$

Resulting spectrum: very much model dependent...

TUG - Montpellier / 5 octobre 2022

$$
\mathcal{P}_{\zeta}=\mathcal{A} k^{n_{\mathrm{S}}-1} \cos ^{2}\left(\omega \frac{k_{\mathrm{ph}}}{k_{\star}}+\psi\right)
$$

Perturbations in the K-bounce

$$
p=p_{0}+p_{X}\left(X-X_{0}\right)+p_{\varphi} \varphi+p_{X \varphi} \varphi(X-X 0)+\frac{1}{2} p_{X X}\left(X-X_{0}\right)^{2}+\frac{1}{2} p_{\varphi \varphi} \varphi^{2}+\cdots
$$

Another issue...

$$
\text { spectral index } \quad n_{3}<1
$$

Non gaussianities: \quad phenomenological description $\quad S=-\int \mathrm{d}^{4} x \sqrt{-g}\left[R+(\partial \phi)^{2}+V(\phi)\right]$

$$
\begin{gathered}
a(\eta)=a_{0}\left[1+\frac{1}{2}\left(\frac{\eta}{\eta_{c}}\right)^{2}+\lambda_{3}\left(\frac{\eta}{\eta_{c}}\right)^{3}+\frac{5}{24}\left(1+\lambda_{4}\right)\left(\frac{\eta}{\eta_{c}}\right)^{4}\right]+\text { scalar field } \\
\left\{\begin{array}{l}
\frac{\phi^{\prime 2}}{a^{2}}=\frac{2}{a^{2}}\left(\mathcal{H}^{2}-\mathcal{H}^{\prime}+\mathcal{K}\right) \\
-\frac{6}{a^{2}} \mathcal{H}^{\prime}=-2 V(\phi)\left[1-\frac{\phi^{\prime 2}}{a^{2} V(\phi)}\right] \\
\phi^{\prime \prime}+2 \mathcal{H} \phi^{\prime}+a^{2} V_{, \phi}= \\
\varepsilon_{V}=\frac{V_{0}^{\prime}}{V_{0}} \quad \text { "slow-roll", } \equiv \phi_{0}^{\prime 2} / 2 \longrightarrow \eta_{c}^{2}=\frac{1}{1-\Upsilon} \\
\eta_{V}=\frac{V_{0}^{\prime \prime}}{V_{0}}
\end{array}\right. \\
\text { complete set of parameters }
\end{gathered}
$$

$$
\text { perturbed metric } \mathrm{d} s^{2}=g_{\mu \nu} \mathrm{d} x^{\mu} \mathrm{d} x^{\nu}=a^{2}\left(-\mathrm{e}^{2 \Phi} \mathrm{~d} \eta^{2}+\mathrm{e}^{-2 \Psi} \gamma_{i j} \mathrm{~d} x^{i} \mathrm{~d} x^{j}\right)
$$

perturbations up to 2 nd order $X(\boldsymbol{x}, \eta)=X_{(1)}(\boldsymbol{x}, \eta)+\frac{1}{2} X_{(2)}(\boldsymbol{x}, \eta)+\cdots$
$\mathcal{D} \Psi_{(i)}=\mathcal{S}\left[\Psi_{(i-1)}\right]$
first order

$$
\begin{aligned}
& \Psi_{(1)}^{\prime \prime}+F(\eta) \Psi_{(1)}^{\prime}-\bar{\nabla}^{2} \Psi_{(1)}+W(\eta) \Psi_{(1)}=0 \\
& 2\left(\mathcal{H}-\frac{\overline{\phi^{\prime \prime}}}{\bar{\phi}^{\prime}}\right) \\
& 2\left(\mathcal{H}^{\prime}-\mathcal{H} \frac{\bar{\phi}^{\prime \prime}}{\bar{\phi}^{\prime}}-2 \mathcal{K}\right)
\end{aligned}
$$

positive spatial curvature: decomposition on the 3-sphere

$$
\begin{array}{cc}
\Psi_{(1)}(\boldsymbol{x}, \eta)=\sum_{\ell m n} \Psi_{\ell m n}(\eta) Q_{\ell m n}(\chi, \theta, \varphi) & \text { Legendre } \\
Q_{\ell m n}(\chi, \theta, \varphi)=R_{\ell n}(\chi) Y_{\ell m}(\theta, \varphi) & \text { hyperspherical harmonics }
\end{array} R_{n \ell(\chi)=\sqrt{\frac{(n+1)(n+\ell+1)!}{(n-\ell)!}} \sqrt{\frac{\mathcal{K}}{f_{\mathcal{K}}(\chi)}} P_{n+\frac{1}{2}}^{-\ell-\frac{1}{2}}[\cos (\sqrt{\mathcal{K}} \chi)]}
$$

effect of the bounce itself: initial conditions = classical gaussian fields

$$
\left[\begin{array}{ll}
\Psi_{(1)} & \left(\boldsymbol{k}, \eta_{-}\right) \\
\Psi_{(1)}^{\prime} & \left(\boldsymbol{k}, \eta_{-}\right)
\end{array}\right] \equiv\left[\begin{array}{l}
\hat{x}_{1}(\boldsymbol{k}) \\
\hat{x}_{2}(\boldsymbol{k})
\end{array}\right]
$$

$$
\left\langle\hat{x}_{i}(\boldsymbol{k}) \hat{x}_{j}\left(\boldsymbol{k}^{\prime}\right)\right\rangle \equiv \delta_{\boldsymbol{k}, \boldsymbol{k}^{\prime}} P_{i j}(k)
$$

$u \propto a \Psi_{(1)} / \phi^{\prime} \longrightarrow u_{k}^{\prime \prime}+\left[k^{2}-V_{u}(\eta)\right] u_{k}=0$

2nd order $\Psi_{(2)}^{\prime \prime}+2\left(\mathcal{H}-\frac{\bar{\phi}^{\prime \prime}}{\bar{\phi}^{\prime}}\right) \Psi_{(2)}^{\prime}-\bar{\nabla}^{2} \Psi_{(2)}+2\left(\mathcal{H}^{\prime}-2 \mathcal{K}-\mathcal{H} \frac{\bar{\phi}^{\prime \prime}}{\bar{\phi}^{\prime}}\right) \Psi_{(2)}=\mathcal{S}_{(2)}$

$$
\begin{array}{r}
\mathcal{S}_{(2)}=4\left(2 \mathcal{H}^{2}-\mathcal{H}^{\prime}+2 \mathcal{H} \frac{\bar{\phi}^{\prime \prime}}{\bar{\phi}^{\prime}}+6 \mathcal{K}\right) \Psi_{(1)}^{2}+8 \Psi_{(1)}^{\prime 2}+8\left(2 \mathcal{H}+\frac{\bar{\phi}^{\prime \prime}}{\bar{\phi}^{\prime}}\right) \Psi_{(1)} \Psi_{(1)}^{\prime}+8 \Psi_{(1)} \bar{\nabla}^{2} \Psi_{(1)}-\frac{4}{3}\left(\bar{\nabla}_{i} \Psi_{(1)}\right)^{2} \\
-\left[2\left(2 \mathcal{H}^{2}-\mathcal{H}^{\prime}\right)-\frac{\bar{\phi}^{\prime \prime \prime}}{\bar{\phi}^{\prime}}\right] \phi_{(1)}^{2}-\frac{2}{3}\left(\bar{\nabla}_{i} \phi(1)\right)^{2}-2\left(\frac{\bar{\phi}^{\prime \prime}}{\bar{\phi}^{\prime}}+2 \mathcal{H}\right) \bar{\nabla}^{-2} \bar{\nabla}^{i}\left(2 \Psi_{(1)}^{\prime} \bar{\nabla}_{i} \Psi_{(1)}+\phi_{(1)}^{\prime} \bar{\nabla}_{i} \phi_{(1)}\right) \\
+\left[2\left(\mathcal{H}^{\prime}-\mathcal{H} \frac{\bar{\phi}^{\prime \prime}}{\bar{\phi}^{\prime}}\right)+\frac{1}{3} \bar{\nabla}^{2}\right]\left[2 F\left(\Psi_{(1)}\right)+F\left(\phi_{(1)}\right)\right]+\mathcal{H}\left[2 F\left(\Psi_{(1)}\right)+F\left(\phi_{(1)}\right)\right]^{\prime} \\
F(X)=\left(\bar{\nabla}^{2} \bar{\nabla}^{2}+3 \mathcal{K} \bar{\nabla}^{2}\right)^{-1}\left[\bar{\nabla}_{i} \bar{\nabla}^{j}\left(3 \bar{\nabla}^{i} X \bar{\nabla}_{j} X-\delta_{j}^{i}\left(\bar{\nabla}_{k} X\right)^{2}\right)\right]
\end{array}
$$

general solution

$$
\begin{aligned}
& \mathcal{S}_{(2)}(\boldsymbol{k}, \eta)=\sum_{p_{1}, \boldsymbol{p}_{2}} \mathcal{G}_{\boldsymbol{k}, \boldsymbol{p}_{1}, \boldsymbol{p}_{2}} \tilde{\Sigma}_{i j}\left(k, p_{1}, p_{2} ; \eta\right) \hat{a}_{i}\left(\boldsymbol{p}_{1}\right) \hat{a}_{j}\left(\boldsymbol{p}_{2}\right) \\
& \Psi_{(2)}(\boldsymbol{k}, \eta)=\Psi_{(2)}^{(0)}(\boldsymbol{k}, \eta)+\sum_{\boldsymbol{p}_{1} \cdot \boldsymbol{p}_{\boldsymbol{\prime}}} \mathcal{G}_{\boldsymbol{k}, \boldsymbol{p}_{1}, \boldsymbol{p}_{2}} \Pi_{i j}\left(k, p_{1}, p_{2} ; \eta\right) \hat{x}_{i}\left(\boldsymbol{p}_{1}\right) \hat{x}_{j}\left(\boldsymbol{p}_{2}\right) \\
& \Pi_{i j}\left(k, p_{1}, p_{2} ; \eta\right) \equiv \int_{\eta_{-}}^{\eta} \mathrm{d} \eta^{\prime} G\left(k, \eta, \eta^{\prime}\right) \Sigma_{i j}\left(k, p_{1}, p_{2} ; \eta^{\prime}\right)
\end{aligned}
$$

Green

Bispectrum $\left\langle\Psi\left(\boldsymbol{k}_{1}, \eta\right) \Psi\left(\boldsymbol{k}_{2}, \eta\right) \Psi\left(\boldsymbol{k}_{3}, \eta\right)\right\rangle \equiv \frac{1}{2} \mathcal{G}_{\boldsymbol{k}_{1} \boldsymbol{k}_{2} \boldsymbol{k}_{3}} \mathcal{B}_{\Psi}\left(k_{1}, k_{2}, k_{3} ; \eta\right)$
$\delta\left(\boldsymbol{k}_{1}+\boldsymbol{k}_{2}+\boldsymbol{k}_{3}\right)$

$$
\mathcal{B}_{\Psi}\left(k_{1}, k_{2}, k_{3}\right)=\frac{6}{5} f_{\mathrm{NL}}\left[P_{\Psi \Psi}\left(k_{1}\right) P_{\Psi \Psi}\left(k_{2}\right)+P_{\Psi \Psi}\left(k_{2}\right) P_{\Psi \Psi}\left(k_{3}\right)+P_{\Psi \Psi}\left(k_{3}\right) P_{\Psi \Psi}\left(k_{1}\right)\right]
$$

$$
7 P_{\Psi \Psi}(k)+11 P_{\Psi \Psi^{\prime}}(k)+4 P_{\Psi^{\prime} \Psi^{\prime}}(k)
$$

$$
f_{\mathrm{NL}}=-\frac{5\left(k_{1}+k_{2}+k_{3}\right)}{3 \Upsilon K_{3}\left(k_{1}, k_{2}, k_{3}\right)}\left(\left[\prod_{\sigma(i, j, \ell)}\left(k_{i}+k_{j}-k_{\ell}\right)\right]\left\{\sum_{\sigma(i, j, \ell)} \frac{K_{1}\left(k_{i}\right) K_{1}\left(k_{j}\right)}{k_{\ell}^{2}}-4\left[\frac{K_{1}\left(k_{i}\right) K_{2}\left(k_{j}\right)}{k_{j}^{2} k_{\ell}^{2}}+\frac{K_{1}\left(k_{j}\right) K_{2}\left(k_{i}\right)}{k_{i}^{2} k_{\ell}^{2}}\right]\right\}\right.
$$

$$
\left.-\sum_{\sigma(i, j, \ell)}\left[\frac{7}{3}+\frac{2}{3}\left(\frac{k_{i}^{2}+k_{j}^{2}}{k_{\ell}^{2}}\right)-3\left(\frac{k_{i}^{2}-k_{j}^{2}}{k_{\ell}^{2}}\right)^{2}\right] K_{1}\left(k_{i}\right) K_{1}\left(k_{j}\right)\right)+\cdots,
$$

$$
81 \sum_{\sigma(i, j)} P_{\Psi \Psi}\left(k_{i}\right) P_{\Psi \Psi}\left(k_{j}\right)+108 \sum_{\sigma(i, j)} P_{\Psi \Psi}\left(k_{i}\right) P_{\Psi \Psi^{\prime}}\left(k_{j}\right)+36 \sum_{\sigma(i, j)} P_{\Psi \Psi}\left(k_{i}\right) P_{\Psi^{\prime} \Psi^{\prime}}\left(k_{j}\right)+
$$

$$
144 \sum_{\sigma(i, j)} P_{\Psi \Psi^{\prime}}\left(k_{i}\right) P_{\Psi \Psi^{\prime}}\left(k_{j}\right)+48 \sum_{\sigma(i, j)} P_{\Psi \Psi^{\prime}}\left(k_{i}\right) P_{\Psi^{\prime} \Psi^{\prime}}\left(k_{j}\right)+16 \sum_{\sigma(i, j)} P_{\Psi^{\prime} \Psi^{\prime}}\left(k_{i}\right) P_{\Psi^{\prime} \Psi^{\prime}}\left(k_{j}\right)
$$

equilateral $k_{1}=k_{2}=k_{3}=k$

$$
\text { squeezed } \quad k_{i}=k_{j}=k \quad \& \quad k_{\ell}=p \ll k
$$

$$
\begin{aligned}
& f_{\mathrm{NL}}^{\text {equi }}=-\frac{15 k^{2}}{\Upsilon} \frac{K_{1}^{2}(k)}{K_{3}(k, k, k)} \\
& f_{\mathrm{NL}}^{\mathrm{sq}}=--\frac{20 k^{2}}{3 \Upsilon} \frac{K_{1}^{2}(k)+K_{1}(k) K_{1}(p)}{K_{3}(k, k, p)}
\end{aligned}
$$

folded $\quad k_{2}=k_{3}=\frac{1}{2} k_{1}$

$10^{-2} h^{-1} \mathrm{Mpc} \leq k_{\text {phys }}^{-1} \leq 10^{3} h^{-1} \mathrm{Mpc}$ \qquad

$$
10^{2} \lesssim k \lesssim 10^{8} \text { with } \Omega_{\mathcal{K}} \leq 10^{-2}
$$

