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The gravitational waves landscape

[Moore&al 2014]



Consistency tests within GR

The gravitational chirp of binary black holes

merger phase
  inspiralling phase

ringdown phase

Time

G
W

 a
m

p
lit

u
d

e

Luc Blanchet (GR"CO) Tests of GR Journée ET-France 4 / 28

5

Gravitational waves and fundamental physics
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Figure 1: Probing gravity at all scales: Illustration of the reach in curvature scales vs potential scales
targeted by different, representative, past/current/future missions. In this figure, M and L are the characteristic
mass and length involved in the observable associated to each mission. For instance, in observables associated
to binary systems M is the total mass and L the binary’s separation, in this case M/L is related to v2/c2

through the virial theorem.

black holes and relativistic stars exhibit the largest curvature of spacetime accessible to us. They are,
therefore, ideal systems to observe the behavior of spacetimes under the most extreme gravitational
conditions. New physics indicative of departures from the basic tenants of General Relativity (GR)
could reveal itself in high fidelity waveforms expected to be observed in the next generation of
detectors.

Such signals would provide a unique access to extremely warped spacetimes and gain invaluable
insights on GR or what might replace it as the theory of gravity governing such systems. The
adjacent diagram provides a perspective of the reach of different missions/facilities and their target
regime with respect to characteristic spacetime curvature (R) and gravitational potential F (which
for binary systems can be traded with v2/c2, where v is the binary’s characteristic velocity and c the
speed of light).

New fields, particles and polarizations Lovelock’s uniqueness theorem in 4-dimensions [16]
implies that departures from GR that preserve locality necessarily require the presence of extra
degrees of freedom, which generically also arise from theories of quantum gravity in the low-
energy limit. This often leads to violations of the strong equivalence principle through the fields’
nonminimal coupling with matter. Among possible theories, those with an additional scalar field are
relatively simple [17, 18] yet could give rise to exciting new strong-field phenomenology [19, 20].
Together with examples of strong-field GW signatures in more complicated scenarios inspired by
the low-energy limit of quantum gravity theories [21, 22] they also serve as excellent proxies of
the type of new physics we can hope to detect. In addition, if a binary’s constituents can become

[Extreme Gravity White Paper 2020]

Open questions in fundamental physics: dark matter/
dark energy, quantum gravity, nature of compact objects

What gravitational waves science can bring:

• Confirming the GR prediction in the first 
place !

• GW inspiral, merger, ringdown probe 
gravity and compact objects in different 
regimes

• Explore different scales across the GW 
spectrum

• Extreme phenomena in strong-field GR

• A new, independent cosmological probe

• Stochastic GW backgrounds from the early 
universe
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FIG. 3: Modified gravity roadmap summarizing the possible extensions of GR described in Sec. II. The main gravitational
wave (GW) test of each theory is highlighted. For details in the di↵erent tests see the discussion in Sec. V (GW speed and
dispersion), VI (GW damping) and VII (GW oscillations). Theories constrained by the GW speed and GW oscillations can
also be tested with GW damping and GW dispersion respectively. Note in addition that many theories fall under di↵erent
categories of this classification (see text in Sec. II A).

of gravity. Another class of Lorentz-violating theories
is Einstein-Aether, in which a vector field with constant
norm introduces a preferred direction [53]. The special
case of Einstein-Aether theories in which the vector field
is the gradient of a scalar is known as Khronometric [54].
Khronometric theories describe the low-energy limit of
some extension of Hořava-gravity, linking the two frame-
works [55]. These ideas have been studied as cosmological
scenarios [56, 57].

c. Non-local theories Non-local theories include in-
verse powers of the Laplacian operator. These models
can involve general functions (e.g. R · f(2�1

R)) [58, 59]

or be linear (e.g. R
m

2

22 R) [60]. The latter class of models
lead to phantom dark energy [61, 62] and are compat-
ible with cosmological observations [63] (see [62] for a
review). However, their viability on the solar system is
disputed due to the time evolution of the e↵ective de-
grees of freedom and the lack of a screening mechanism
[64]. Non-local interactions have been also proposed as
a means to improve the ultra-violet behavior of gravity
[65–67]. Non-local models are constructed using the Ricci

scalar, since non-local terms involving contractions of the
Ricci tensor give rise to cosmological instabilities [68, 69].

2. Additional fields

Gravity can be extended by the inclusion of additional
fields that interact directly with the metric. These theo-
ries will vary by the type of field (scalar, vector, tensor)
and the interaction with gravity it has. Theories with
additional tensors (bigravity and multigravity) are ex-
tensions of massive gravity and will be described in Sec.
IIA 3. We will assume a minimal universal coupling of
matter to the metric. For a very complete review of grav-
ity theories containing additional fields, see Ref. [70].
a. Scalar field A scalar is the simplest field by which

gravity can be extended. Scalars do not have a preferred
orientation and thus a macroscopic, classical state can
exist in the universe without a↵ecting the isotropy of the
space-time if it depends only on time. Moreover, a poten-
tial term can mimic a cosmological constant very closely

[Ezquiaga&al 2018]
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Tests of general relativity with gravitational waves

What can we really test for from our observations ? No 1-to-1 mapping between theory 
space and data analysis space.

Waveform systematics

Consistency tests

Theory-agnostic tests Theory-specific tests

Tests of GR with GW

Cosmological probe

Data quality, confusion

Consistency of observations 
with GR prediction, non-
parametric: residuals, 
consistency betweeen parts 
of the signal, detecting all GR 
effects… Parametrized tests for 

specific physical effects 
(dispersion) or even purely 
phenomenological (inspiral), 
formulated for the 
convenience of the analysis. 
No consistency demanded 
between generation, 
propagation, polarizations.

Testing consistency between 
GW observations and other 
probes for LambdaCDM

Building consistent 
predictions across 
observables: scalar-tensor, 
NR for alternative theories, 
NR for ECO (boson stars)

Instrumental glitches directly 
affect analyses. Vetting data 
necessary, stacking events or 
choosing the best ? In the 
future superposition of GW 
signals will be important.

Can interfere with TGR.
Will become a challenge for 
future instruments.
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Ground based detectors: timeline

12

ral range, which quantifies the average distance at which
a fiducial 1.4M� + 1.4M� BNS could be detected with a
signal-to-noise ratio (SNR) of 8 [20–22]. During O3b the
median BNS inspiral range for LIGO Livingston, LIGO
Hanford and Virgo was 133 Mpc, 115 Mpc and 51 Mpc,
respectively. In Fig. 1 we show the growth in the num-
ber of candidates in the LVK catalog across observing
runs. Here, the search sensitivity is quantified by the
BNS time–volume, which should be approximately pro-
portional to the number of detections [3]. This is defined
as the observing time multiplied by the Euclidean sen-
sitive volume for the detector network [22]. For O1 and
O2, the observing time includes periods when at least
two detectors were observing, and the Euclidean sensi-
tive volume is the volume of a sphere with a radius equal
to the BNS inspiral range of the second most sensitive
detector in the network. For O3, to account for the po-
tential of single-detector triggers, the observing time also
includes periods when only one detector was observing,
and the radius of the Euclidean sensitive volume is the
greater of either (i) the BNS inspiral range of the second
most sensitive detector, or (ii) the BNS inspiral range of
the most sensitive detector divided by 1.5 (correspond-
ing to a SNR threshold of 12) [3]. As the sensitivity of
the detector network improves [23], the rate of discovery
increases.

Further searches for GW transients in O3b data have
been conducted focusing on: intermediate-mass black
hole (IMBH) binaries (with a component & 65M� and a
final BH & 100M�) [24], signals coincident with gamma-
ray bursts [25], cosmic strings [26], and both minimally
modeled short-duration (. O(1) s, such as from super-
novae explosions) [27] and long-duration (& O(1) s, such
as from deformed magnetars or from accretion-disk insta-
bilities) [28] signals. However, no high-significance can-
didates for types of signals other than the CBCs reported
here have yet been found.

We begin with an overview of the status of the Ad-
vanced LIGO and Advanced Virgo detectors during O3b
(Sec. II), and the properties and quality of the data used
in the analyses (Sec. III). We report the significance of
the candidates identified by template-based and mini-
mally modeled search analyses, and compare this set of
candidates to the low-latency public GW alerts issued
during O3b (Sec. IV). We describe the inferred astro-
physical parameters for the O3b candidates (Sec. V). Fi-
nally, we show the consistency of reconstructed wave-
forms with those expected for CBCs (Sec. VI). In the
Appendices, we review public alerts and their multimes-
senger follow-up (Appendix A); we describe commission-
ing of the observatories for O3b (Appendix B); we de-
tail data-analysis methods used to assess data quality
(Appendix C), search for signals (Appendix D) and in-
fer source properties (Appendix E), and we discuss the
di�culties in assuming a source type when performing a
minimally modeled search analyses (Appendix F). A data
release associated with this catalog is available from the
Gravitational Wave Open Science Center (GWOSC) [29];
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Figure 1. The number of CBC detection candidates with
a probability of astrophysical origin pastro > 0.5 versus the
detector network’s e↵ective surveyed time–volume for BNS
coalescences [3]. The colored bands indicate the di↵erent ob-
serving runs. The final data sets for O1, O2, O3a and O3b
consist of 49.4 days, 124.4 days, 149.8 days (177.2 days) and
125.5 days (142.0 days) with at least two detectors (one de-
tector) observing, respectively. The cumulative number of
probable candidates is indicated by the solid black line, while
the blue line, dark blue band and light blue band are the me-
dian, 50% confidence interval and 90% confidence interval for
a Poisson distribution fit to the number of candidates at the
end of O3b.

this includes calibrated strain time-series around signif-
icant candidates, detection-pipeline results, parameter-
estimation posterior samples, source localizations, and
tables of inferred source parameters.

II. INSTRUMENTS

The Advanced LIGO [1] and Advanced Virgo [2] in-
struments are kilometer-scale laser interferometers [30–
32]. The advanced generation of interferometers be-
gan operations in 2015, and observing periods have
been alternated with commissioning periods [23]. After
O1 [13, 33] and O2 [14], the sensitivity of the interfer-
ometers has improved significantly [3, 34]. The main im-
provements were the adjustment of in-vacuum squeezed-
light sources, or squeezers, for the LIGO Hanford and
LIGO Livingston interferometers and the increase of the
laser power in the Virgo interferometer. The instrumen-
tal changes leading to improved sensitivities during O3b
are discussed in Appendix B.

Figure 2 shows representative sensitivities during O3b
for LIGO Hanford, LIGO Livingston and Virgo, as char-

[LVK 2021]

[IGWN 2022]
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GWTC-1

GW170817
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GW170817: a GW signal with EM counterpart

expectation rates for joint BNS–SGRB detections in the light of
this discovery.

2. Observational Results

The observations of GW170817 and of GRB170817A are
described in detail in Abbott et al. (2017e), Goldstein et al.
(2017), and Savchenko et al. (2017b). Here we summarize the
observations relevant to the results presented in this Letter and
report the results of two fully coherent searches for GWs from
the sky location of GRB170817A. For convenience, all
measurements of time have been converted to their geocentric
equivalent.

2.1. LIGO–Virgo Observation of GW170817

GW170817 is a GW signal from the inspiral of two low-mass
compact objects and is the first GW observation consistent with
a BNS coalescence (Abbott et al. 2017e, 2017f). GW170817
was first observed by a low-latency search(Cannon et al. 2012;
Messick et al. 2017) on 2017 August 17 at 12:41:04 UTC as a
single-detector trigger in the LIGO-Hanford detector(Abbott
et al. 2017e; LIGO Scientific Collaboration & Virgo Collabora-
tion 2017a). The temporal proximity of GRB170817A was
immediately identified by automatic comparison of the Fermi-
GBM Gamma-ray Coordinates Network notice to the GW
trigger(Urban 2016). Rapid offline re-analysis(Usman et al.
2016; Nitz et al. 2017b) of data from the LIGO/Virgo network
confirmed the presence of a significant coincident signal in the
LIGO GW detectors with a combined signal-to-noise ratio (S/N)
of 32.4. The combination of observations from the LIGO and
Virgo detectors allowed a precise sky position localization to an
area of 28 deg2 at 90% probability shown in green in Figure 1
(Abbott et al. 2017e; LIGO Scientific Collaboration & Virgo
Collaboration 2017b). A time-frequency representation of the
LIGO data containing GW170817 is shown in the bottom panel
of Figure 2. The GPS time of the merger of GW170817 is
T 1187008882.4300

GW
0.002
0.002� �

� s(Abbott et al. 2017e). At the
observed signal strength, the false alarm rate of the all-sky search

for compact-object mergers is less than 1 in 80,000 years
(Abbott et al. 2017e). The offline searches target binaries with
(detector frame) total mass 2– M500 :. Signals are required to be
coincident in time and mass in the LIGO detectors, but Virgo
data are not used in the significance estimates of the all-sky
offline search(Abbott et al. 2017e).
We present the results of two offline targeted searches that

coherently combine the data from the LIGO and Virgo
detectors and restrict the signal offset time and sky-location
using information from the EM observation of GRB170817A.
The onset of gamma-ray emission from a BNS merger
progenitor is predicted to be within a few seconds after the
merger, given that the central engine is expected to form within
a few seconds and that the jet propagation delays are at most of
the order of the SGRB duration (see, e.g., Finn et al. 1999;
Abadie et al. 2012 and references therein). The gravitational
and EM waves are expected to travel at the same speed.
The first targeted search (Harry & Fairhurst 2011; Williamson

et al. 2014; Abbott et al. 2017b; Nitz et al. 2017a) assumes that
the source is a BNS or NS–BH binary merger and is located at
the sky-position observed for the optical counterpart to
GW170817 and GRB170817A (Coulter et al. 2017a, 2017b;
Abbott et al. 2017f) and that there is a 1, 5� �[ ] s time delay in
the arrival of gamma-rays (determined by the GBM trigger time)
compared to the binary merger time(Abbott et al. 2017b). At the
detection statistic value assigned to GW170817, this search has a
p-value of 9.4 10 4.26 T� q �� ( ), with this significance estimate
limited by computational resources used to estimate the noise
background. The second coherent search does not assume any
particular GW morphology or GRB model (Sutton et al. 2010;
Was et al. 2012; Abbott et al. 2017b) and uses the GBM
localization of GRB170817A to constrain the sky location of
the source. This search allows for a 60, 600� �[ ] s coincidence
between the gamma-rays and the GWs in order to include
potentially larger delays in collapsar models of long GRBs. At
the detection-statistic value observed for GW170817, this search
has a p-value of 1.3 10 4.25 Tq � ( ).

Figure 1. Final localizations. The 90% contour for the final sky-localization map from LIGO–Virgo is shown in green (LIGO Scientific Collaboration & Virgo
Collaboration 2017a, 2017b, 2017c). The 90% GBM targeted search localization is overlaid in purple (Goldstein et al. 2017). The 90% annulus determined with Fermi
and INTEGRAL timing information is shaded in gray (Svinkin et al. 2017). The zoomed inset also shows the position of the optical transient marked as a yellow star
(Abbott et al. 2017f; Coulter et al. 2017a, 2017b). The axes are R.A. and decl. in the Equatorial coordinate system.
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The Astrophysical Journal Letters, 848:L13 (27pp), 2017 October 20 Abbott et al.
∼100 s (calculated starting from 24 Hz) in the detectors’
sensitive band, the inspiral signal ended at 12∶41:04.4 UTC.
In addition, a γ-ray burst was observed 1.7 s after the
coalescence time [39–45]. The combination of data from
the LIGO and Virgo detectors allowed a precise sky
position localization to an area of 28 deg2. This measure-
ment enabled an electromagnetic follow-up campaign that
identified a counterpart near the galaxy NGC 4993, con-
sistent with the localization and distance inferred from
gravitational-wave data [46–50].
From the gravitational-wave signal, the best measured

combination of the masses is the chirp mass [51]
M ¼ 1.188þ0.004

−0.002M⊙. From the union of 90% credible
intervals obtained using different waveform models (see
Sec. IV for details), the total mass of the system is between
2.73 and 3.29 M⊙. The individual masses are in the broad
range of 0.86 to 2.26 M⊙, due to correlations between their
uncertainties. This suggests a BNS as the source of the
gravitational-wave signal, as the total masses of known
BNS systems are between 2.57 and 2.88 M⊙ with compo-
nents between 1.17 and ∼1.6 M⊙ [52]. Neutron stars in
general have precisely measured masses as large as 2.01#
0.04 M⊙ [53], whereas stellar-mass black holes found in
binaries in our galaxy have masses substantially greater
than the components of GW170817 [54–56].
Gravitational-wave observations alone are able to mea-

sure the masses of the two objects and set a lower limit on
their compactness, but the results presented here do not
exclude objects more compact than neutron stars such as
quark stars, black holes, or more exotic objects [57–61].
The detection of GRB 170817A and subsequent electro-
magnetic emission demonstrates the presence of matter.
Moreover, although a neutron star–black hole system is not
ruled out, the consistency of the mass estimates with the
dynamically measured masses of known neutron stars in
binaries, and their inconsistency with the masses of known
black holes in galactic binary systems, suggests the source
was composed of two neutron stars.

II. DATA

At the time of GW170817, the Advanced LIGO detec-
tors and the Advanced Virgo detector were in observing
mode. The maximum distances at which the LIGO-
Livingston and LIGO-Hanford detectors could detect a
BNS system (SNR ¼ 8), known as the detector horizon
[32,62,63], were 218 Mpc and 107 Mpc, while for Virgo
the horizon was 58 Mpc. The GEO600 detector [64] was
also operating at the time, but its sensitivity was insufficient
to contribute to the analysis of the inspiral. The configu-
ration of the detectors at the time of GW170817 is
summarized in [29].
A time-frequency representation [65] of the data from

all three detectors around the time of the signal is shown in
Fig 1. The signal is clearly visible in the LIGO-Hanford
and LIGO-Livingston data. The signal is not visible

in the Virgo data due to the lower BNS horizon and the
direction of the source with respect to the detector’s antenna
pattern.
Figure 1 illustrates the data as they were analyzed to

determine astrophysical source properties. After data col-
lection, several independently measured terrestrial contribu-
tions to the detector noise were subtracted from the LIGO
data usingWiener filtering [66], as described in [67–70]. This
subtraction removed calibration lines and 60 Hz ac power
mains harmonics from both LIGO data streams. The sensi-
tivity of the LIGO-Hanford detector was particularly
improved by the subtraction of laser pointing noise; several
broad peaks in the 150–800 Hz region were effectively
removed, increasing the BNS horizon of that detector
by 26%.

FIG. 1. Time-frequency representations [65] of data containing
the gravitational-wave event GW170817, observed by the LIGO-
Hanford (top), LIGO-Livingston (middle), and Virgo (bottom)
detectors. Times are shown relative to August 17, 2017 12∶41:04
UTC. The amplitude scale in each detector is normalized to that
detector’s noise amplitude spectral density. In the LIGO data,
independently observable noise sources and a glitch that occurred
in the LIGO-Livingston detector have been subtracted, as
described in the text. This noise mitigation is the same as that
used for the results presented in Sec. IV.

PRL 119, 161101 (2017) P HY S I CA L R EV I EW LE T T ER S week ending
20 OCTOBER 2017

161101-2

[LIGO-Virgo 2017]

[LIGO-Virgo 2017]

[Santa Cruz and Carnegie Observatories/Ryan Foley]
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GW170817: measuring the speed of gravitational waves

The 90% credible intervals(Veitch et al. 2015; Abbott et al.
2017e) for the component masses (in the m m1 2. convention)
are m M1.36, 2.261 � :( ) and m M0.86, 1.362 � :( ) , with total
mass M2.82 0.09

0.47
�
�

:, when considering dimensionless spins with

magnitudes up to 0.89 (high-spin prior, hereafter). When the
dimensionless spin prior is restricted to 0.05- (low-spin prior,
hereafter), the measured component masses are m 1.36,1 � (

M1.60 :) and m M1.17, 1.362 � :( ) , and the total mass is

Figure 2. Joint, multi-messenger detection of GW170817 and GRB170817A. Top: the summed GBM lightcurve for sodium iodide (NaI) detectors 1, 2, and 5 for
GRB170817A between 10 and 50 keV, matching the 100 ms time bins of the SPI-ACS data. The background estimate from Goldstein et al. (2016) is overlaid in red.
Second: the same as the top panel but in the 50–300 keV energy range. Third: the SPI-ACS lightcurve with the energy range starting approximately at 100 keV and
with a high energy limit of least 80 MeV. Bottom: the time-frequency map of GW170817 was obtained by coherently combining LIGO-Hanford and LIGO-
Livingston data. All times here are referenced to the GW170817 trigger time T0

GW.

3

The Astrophysical Journal Letters, 848:L13 (27pp), 2017 October 20 Abbott et al.

[LIGO-Virgo, Fermi, INTEGRAL 2017]

GRB signal received with 
~1.7s delay

Assuming a ~10s delay in 
the original emission:

(Longer emissions delays are 
possible but not favored)

of 5.3T. This unambiguous association confirms that BNS
mergers are progenitors of (at least some) SGRBs.

4. Implications for Fundamental Physics

Little or no arrival delay between photons and GWs over
cosmological distances is expected as the intrinsic emission
times are similar and the propagation speeds of EM and GWs
are thought to be identical. In this Section we discuss the
implications on fundamental physics of the temporal offset of

1.74 0.05 s� o( ) measured between GW170817 and
GRB170817A.

Standard EM theory minimally coupled to general relativity
predicts that GWs and light propagate with identical speeds.
The refractive index of vacuum is expected to be unity, and
both waves are expected to be affected by background
gravitational potentials in the same way. The arrival delay of
only a few seconds across a distance greater than one hundred
million light years places stringent constraints on deviations
from fundamental principles. We use the observed temporal
offset, the distance to the source, and the expected emission-
time difference to place constraints on the deviation of the
speed of gravity from the speed of light, and on violations of
Lorentz invariance and the equivalence principle.

4.1. Speed of Gravity

Assuming a small difference in travel time t% between
photons and GWs, and the known travel distance D, the
fractional speed difference during the trip can be written

v v v t DEM EM% x % , where v v vGW EM% � � is the differ-
ence between the speed of gravity vGW and the speed of light
vEM. This relation is less constraining for small distances, hence
we conservatively use here D 26 Mpc� , the lower bound of
the 90% credible interval on luminosity distance derived from
the GW signal (Abbott et al. 2017e). If we conservatively
assume that the peak of the GW signal and the first photons
were emitted simultaneously, attributing the entire

1.74 0.05 s� o( ) lag to faster travel by the GW signal, this
time difference provides an upper bound on v% . To obtain a
lower bound on v% , one can assume that the two signals were
emitted at times differing by more than 1.74 0.05 s� o( ) with
the faster EM signal making up some of the difference. As a
conservative bound relative to the few second delays discussed
in Section 2.1, we assume the SGRB signal was emitted 10 s
after the GW signal. The resulting constraint on the fractional
speed difference is

v
v

3 10 7 10 . 115

EM

16- -� q
%

� q� � ( )

The intergalactic medium dispersion has negligible impact on
the gamma-ray photon speed, with an expected propagation
delay many orders of magnitude smaller than our errors
on vGW.

Lags much longer than 10 s are proposed in alternative
models (e.g., Ciolfi & Siegel 2015; Rezzolla & Kumar 2015),
and emission of photons before the merger is also possible
(Tsang et al. 2012). Hence, certain exotic scenarios can extend
this time difference window to (−100 s, 1000 s), yielding a 2
orders of magnitude broadening of the allowed velocity range
on either side. While the emission times of the two messengers
are inherently model dependent, conservative assumptions
yield dramatic improvements over existing indirect (Kostelecky

& Russell 2017) and direct (Cornish et al. 2017) constraints,
which allow for time differences of more than 1000 years.
Future joint GW–GRB detection should allow disentangling
the emission time difference from the relative propagation time,
as only the latter is expected to depend on distance.

4.2. Lorentz Invariance Violation Limits

Within a comprehensive effective field theory description of
Lorentz violation (Colladay & Kostelecký 1997, 1998;
Kostelecký 2004; Tasson 2014), the relative group velocity
of GWs and EM waves, is controlled by differences in
coefficients for Lorentz violation in the gravitational sector and
the photon sector at each mass dimension d (Kostelecký &
Mewes 2016, 2009, 2008; Wei et al. 2017). We focus here on
the non-birefringent, non-dispersive limit at mass dimension
d=4, as it yields by far the most impressive results. In this
case, the difference in group velocities for the two sectors takes
the form
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The result is presented in a spherical harmonic, Yℓm, basis, sℓm
4( )

and c I ℓm
4

( )
( ) being spherical-basis coefficients for Lorentz violation

in the gravitational and EM sectors, respectively. The direction n̂
refers to the sky position (provided in Coulter et al. 2017a,
2017b).
For ease of comparison with the many existing sensitivities

(Shao 2014a, 2014b; Shao et al. 2017; Kostelecký & Tasson
2015; Bourgoin et al. 2016; Le Poncin-Lafitte et al. 2016;
Kostelecky & Russell 2017) to the d=4 gravity-sector
coefficients (Bailey & Kostelecký 2006; Hees et al. 2016), an
analysis in which the coefficients are constrained one at a time
is useful (Flowers et al. 2016), with all other coefficients,
including the EM sector ones, set to zero. These results are
presented in Table 1 along with the best constraints for each
coefficient prior to this work. These results can be compared
with the isotropic A, LVB Lorentz violation parametrization
(Mirshekari et al. 2012) used by Abbott et al. (2017c) in
dispersive GW tests. The 2LVB � limit of this parametrization
is equivalent to the isotropic limit of the framework discussed
above, with s A400

4 Ql( ) . Constraints on A for 2LVB � can
be obtained from the first line of Table 1; these cannot be
established within the analysis carried out in Abbott et al.
(2017c).

4.3. Test of the Equivalence Principle

Probing whether EM radiation and GWs are affected by
background gravitational potentials in the same way is a test of
the equivalence principle (Will 2014). One way to achieve this
is to use the Shapiro effect (Shapiro 1964), which predicts that
the propagation time of massless particles in curved spacetime,
i.e., through gravitational fields, is slightly increased with
respect to the flat spacetime case. We will consider the
following simple parametrized form of the Shapiro delay
(Krauss & Tremaine 1988; Longo 1988; Gao et al. 2015;
Kahya & Desai 2016):
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cg = c cg 6= c

General Relativity quartic/quintic Galileons [13, 14]

quintessence/k-essence [46] Fab Four [15]

Brans-Dicke/f(R) [47, 48] de Sitter Horndeski [49]

Kinetic Gravity Braiding [50] Gµ⌫�
µ�⌫ [51], f(�)·Gauss-Bonnet [52]

Derivative Conformal (19) [17] quartic/quintic GLPV [18]

Disformal Tuning (21) quadratic DHOST [20] with A1 6= 0

quadratic DHOST with A1 = 0 cubic DHOST [23]
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FIG. 2: Summary of the viable (left) and non-viable (right) scalar-tensor theories after GW170817. Only simple Horndeski
theories, G4,X ⇡ 0 and G5 ⇡ constant, and specific beyond Horndeski models, conformally related to cg = 1 Horndeski or
disformally tuned, remain viable.

classes include some interesting models, such as acceler-
ating solutions due to the weakening of the gravitational
force [53] and self-tuning theories that attempt to solve
the cosmological constant problem, and which rely on
non-minimal derivative couplings to curvature [15].

Despite the strong constraints, theories remain that
avoid this constraint and thus can still be used to ex-
plain DE (see Fig. 2). Within Horndeski’s theory these
include only the simplest modifications of gravity. Be-
yond Horndeski theory, viable gravities can be obtained
in two ways. One can apply a derivative-dependent con-
formal transformation to those Horndeski models with
cg = 1, since it does not a↵ect their causal structure. Al-
ternatively, one can implement a disformal transforma-
tion, which does alter the GW-cone, designed to precisely
compensate the original anomalous speed of the theory.

The constraints of GW 170817 extends further into
the landscape of gravity theories. In the case of vector-
tensor and scalar-vector-tensor theories, there are several
couplings to the curvature that now will be extremely
constrained because they modify the speed of GWs, e.g.
Rµ⌫v

µ
v
⌫ in vector DE [54]. In particular, this test has an

impact on Einstein-Aether theories [25], including some
sectors of Hořava gravity [55], and more general frame-
works such as Generarlized Proca theories [56]. TeVeS
[27] and MOND-like theories [57, 58] are as well critically
a↵ected by this bound. Massive gravity [24], bigravity
[59] and multi-gravity [60] remain viable as long as the
graviton mass is small and matter couples minimally to
one of the metrics.

In summary, multi-messenger GW astronomy has
proven to be a powerful tool in the quest of the origin
of cosmic acceleration and GW170817 sets a landmark
in dark energy research. New DE models and theories of
gravity will have to satisfy this strong constraint on the
GWs speed. Future GW-EM detections will be as well
determinant for the search of dynamical DE by better

constraining the presence of additional polarizations.
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of 5.3T. This unambiguous association confirms that BNS
mergers are progenitors of (at least some) SGRBs.

4. Implications for Fundamental Physics

Little or no arrival delay between photons and GWs over
cosmological distances is expected as the intrinsic emission
times are similar and the propagation speeds of EM and GWs
are thought to be identical. In this Section we discuss the
implications on fundamental physics of the temporal offset of

1.74 0.05 s� o( ) measured between GW170817 and
GRB170817A.

Standard EM theory minimally coupled to general relativity
predicts that GWs and light propagate with identical speeds.
The refractive index of vacuum is expected to be unity, and
both waves are expected to be affected by background
gravitational potentials in the same way. The arrival delay of
only a few seconds across a distance greater than one hundred
million light years places stringent constraints on deviations
from fundamental principles. We use the observed temporal
offset, the distance to the source, and the expected emission-
time difference to place constraints on the deviation of the
speed of gravity from the speed of light, and on violations of
Lorentz invariance and the equivalence principle.

4.1. Speed of Gravity

Assuming a small difference in travel time t% between
photons and GWs, and the known travel distance D, the
fractional speed difference during the trip can be written

v v v t DEM EM% x % , where v v vGW EM% � � is the differ-
ence between the speed of gravity vGW and the speed of light
vEM. This relation is less constraining for small distances, hence
we conservatively use here D 26 Mpc� , the lower bound of
the 90% credible interval on luminosity distance derived from
the GW signal (Abbott et al. 2017e). If we conservatively
assume that the peak of the GW signal and the first photons
were emitted simultaneously, attributing the entire

1.74 0.05 s� o( ) lag to faster travel by the GW signal, this
time difference provides an upper bound on v% . To obtain a
lower bound on v% , one can assume that the two signals were
emitted at times differing by more than 1.74 0.05 s� o( ) with
the faster EM signal making up some of the difference. As a
conservative bound relative to the few second delays discussed
in Section 2.1, we assume the SGRB signal was emitted 10 s
after the GW signal. The resulting constraint on the fractional
speed difference is

v
v

3 10 7 10 . 115

EM

16- -� q
%

� q� � ( )

The intergalactic medium dispersion has negligible impact on
the gamma-ray photon speed, with an expected propagation
delay many orders of magnitude smaller than our errors
on vGW.

Lags much longer than 10 s are proposed in alternative
models (e.g., Ciolfi & Siegel 2015; Rezzolla & Kumar 2015),
and emission of photons before the merger is also possible
(Tsang et al. 2012). Hence, certain exotic scenarios can extend
this time difference window to (−100 s, 1000 s), yielding a 2
orders of magnitude broadening of the allowed velocity range
on either side. While the emission times of the two messengers
are inherently model dependent, conservative assumptions
yield dramatic improvements over existing indirect (Kostelecky

& Russell 2017) and direct (Cornish et al. 2017) constraints,
which allow for time differences of more than 1000 years.
Future joint GW–GRB detection should allow disentangling
the emission time difference from the relative propagation time,
as only the latter is expected to depend on distance.

4.2. Lorentz Invariance Violation Limits

Within a comprehensive effective field theory description of
Lorentz violation (Colladay & Kostelecký 1997, 1998;
Kostelecký 2004; Tasson 2014), the relative group velocity
of GWs and EM waves, is controlled by differences in
coefficients for Lorentz violation in the gravitational sector and
the photon sector at each mass dimension d (Kostelecký &
Mewes 2016, 2009, 2008; Wei et al. 2017). We focus here on
the non-birefringent, non-dispersive limit at mass dimension
d=4, as it yields by far the most impressive results. In this
case, the difference in group velocities for the two sectors takes
the form
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The result is presented in a spherical harmonic, Yℓm, basis, sℓm
4( )

and c I ℓm
4

( )
( ) being spherical-basis coefficients for Lorentz violation

in the gravitational and EM sectors, respectively. The direction n̂
refers to the sky position (provided in Coulter et al. 2017a,
2017b).
For ease of comparison with the many existing sensitivities

(Shao 2014a, 2014b; Shao et al. 2017; Kostelecký & Tasson
2015; Bourgoin et al. 2016; Le Poncin-Lafitte et al. 2016;
Kostelecky & Russell 2017) to the d=4 gravity-sector
coefficients (Bailey & Kostelecký 2006; Hees et al. 2016), an
analysis in which the coefficients are constrained one at a time
is useful (Flowers et al. 2016), with all other coefficients,
including the EM sector ones, set to zero. These results are
presented in Table 1 along with the best constraints for each
coefficient prior to this work. These results can be compared
with the isotropic A, LVB Lorentz violation parametrization
(Mirshekari et al. 2012) used by Abbott et al. (2017c) in
dispersive GW tests. The 2LVB � limit of this parametrization
is equivalent to the isotropic limit of the framework discussed
above, with s A400

4 Ql( ) . Constraints on A for 2LVB � can
be obtained from the first line of Table 1; these cannot be
established within the analysis carried out in Abbott et al.
(2017c).

4.3. Test of the Equivalence Principle

Probing whether EM radiation and GWs are affected by
background gravitational potentials in the same way is a test of
the equivalence principle (Will 2014). One way to achieve this
is to use the Shapiro effect (Shapiro 1964), which predicts that
the propagation time of massless particles in curved spacetime,
i.e., through gravitational fields, is slightly increased with
respect to the flat spacetime case. We will consider the
following simple parametrized form of the Shapiro delay
(Krauss & Tremaine 1988; Longo 1988; Gao et al. 2015;
Kahya & Desai 2016):
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Tests with the speed of GWs

Test of the strong equivalence principle [Desai & Kahya 2016]

The test involves the cumulative Shapiro time delay due to
the gravitational potential of the dark matter distribution

The violation of the equivalence principle is quantified by a
PPN like parameter �a depending on the type of radiation
a = GW,EM. For a spherical mass distribution
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where re and ro denote emission and observation positions,
respectively, rU ( ) is the gravitational potential, and the integral
is computed along the wave path. γ parametrizes a deviation
from the Einstein–Maxwell theory, which minimally couples
classical electromagnetism to general relativity. We allow for
different values of γ for the propagation of EM and GWs ( EMH
and GWH , respectively, with 1EM GWH H� � in the Einstein–
Maxwell theory).

While obtaining the best bound on the difference between
the Shapiro time delays requires modeling the potential rU ( )
along the entire line of sight, we determine a conservative
bound on GW EMH H� by considering only the effect of the
Milky Way outside a sphere of 100 kpc, and by using a
Keplerian potential with a mass of M2.5 1011q : (the lowest
total mass within a sphere of radius 100 kpc quoted in Bland-
Hawthorn & Gerhard 2016, from Gibbons et al. 2014, taking
the 95% confidence lower bound) (Krauss & Tremaine 1988;
Longo 1988; Gao et al. 2015). Using the same time bounds as
Equation (1) we find

2.6 10 1.2 10 . 47
GW EM

6- -H H� q � q� � ( )
The best absolute bound on EMH is 1 2.1 2.3EMH � � o q( )
10 5� , from the measurement of the Shapiro delay (at radio
wavelengths) with the Cassini spacecraft (Bertotti et al. 2003).

5. Astrophysical Implications

The joint GW–GRB detection provides us with unprece-
dented information about the central engine of SGRBs. The
delay between the GW and the GRB trigger times allows us to
examine some basic GRB physics. This delay could be intrinsic
to the central engine, reflecting the time elapsed from the
moment the binary components come into contact to the
formation of a remnant BH and the resulting jet. This
interpretation includes the case of a relatively long-lived
massive NS remnant, which has been suggested to survive from
seconds to minutes after merger(see Faber & Rasio 2012;
Baiotti & Rezzolla 2017 and references therein). The delay
could also be due to the propagation time of the relativistic jet,

including the time it takes for the jet to break out of the dense
gaseous environment produced by non-relativistic merger
ejecta(Nagakura et al. 2014; Moharana & Piran 2017) and/
or the emitting region to become transparent to gamma-
rays(Mészáros & Rees 2000).
We first discuss the implications that the time delay between

the GW and EM emission has on the physical properties of the
emitting region when considering the jet propagation and
transparency scenarios. Here we assume that the entire delay is
due to the expansion of the emitting region and neglect any
intrinsic delays between the moment of binary coalescence and
the launching of the resulting jet, thus placing limits on the
physical properties of the system. Then we consider the impact
of SGRB emission from an NS merger on the EOS of dense
matter.

5.1. GRB Physics

The main hard peak observed for GRB170817A lasted
roughly half a second. This peak is consistent with a single
intrinsic emission episode as it is well described by a single
pulse (Goldstein et al. 2017), showing no evidence for
significant substructure (spikes). This interpretation is consis-
tent with the SPI-ACS observation of a single peak (Savchenko
et al. 2017b). The GBM detection of GRB170817A also
shows no evidence for photons with energy >511 keV,
implying that the outflow does not require a high bulk Lorentz
factor Γ to overcome photon–photon absorption at the source.
Explanations for the extreme energetics and short timescales

observed in GRBs invoke a near instantaneous release of a
large amount of energy in a compact volume of space(Goodman
1986; Paczynski 1986). This is commonly referred to as the
fireball model, and it is the framework that we will assume for
the remainder of this section. The fireball model is largely
independent of the burst progenitor and focuses on the dynamics
of such a system after this sudden release of energy. The
resulting pair-plasma is optically thick and quickly expands
under its own pressure to produce a highly relativistic outflow
that coasts asymptotically with a constant Lorentz factor
Γ. Within the fireball, kinetic energy is imparted to particles

Table 1
Constraints on the Dimensionless Minimal Gravity Sector Coefficients

ℓ Previous Lower This Work Lower Coefficient This Work Upper Previous Upper

0 −3×10−14 −2×10−14 s00
4( ) 5×10−15 8×10−5

1 −1×10−13 −3×10−14 s10
4( ) 7×10−15 7×10−14

−8×10−14 −1×10−14 sRe 11
4� ( ) 2×10−15 8×10−14

−7×10−14 −3×10−14 sIm 11
4( ) 7×10−15 9×10−14

2 −1×10−13 −4×10−14 s20
4� ( ) 8×10−15 7×10−14

−7×10−14 −1×10−14 sRe 21
4� ( ) 2×10−15 7×10−14

−5×10−14 −4×10−14 sIm 21
4( ) 8×10−15 8×10−14

−6×10−14 −1×10−14 sRe 22
4( ) 3×10−15 8×10−14

−7×10−14 −2×10−14 sIm 22
4� ( ) 4×10−15 7×10−14

Note. Constraints on the dimensionless minimal gravity sector coefficients obtained in this work via Equations (1) and (2) appear in columns 3 and 5. The
corresponding limits that predate this work and are reported in columns 2 and 6; all pre-existing limits are taken from Kostelecký & Tasson (2015), with the exception
of the upper limit on s00

4( ) from Shao (2014a, 2014b). The isotropic upper bound in the first line shows greater than 10 orders of magnitude improvement. The gravity
sector coefficients are constrained one at a time, by setting all other coefficients, including those from the EM sector, to zero.
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Shapiro time delay: 
propagation delay

For a spherical mass distribution, in terms of the PPN coefficient     :

For GR, 
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�GW = �EM = 1

Contribution of the mass of NGC4993 and the Milky Way:

Taking into account dark matter profile: [Boran&al 2017]
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|�GW � �EM| < 9.8⇥ 10�8

Best absolute bound so far from Cassini:
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[Bertotti&al 2003]
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3

The measurement of the GW polarization is cru-
cial for inferring the binary inclination. This in-
clination, ◆, is defined as the angle between the
line of sight vector from the source to the detec-
tor and the orbital angular momentum vector of
the binary system. For electromagnetic (EM) phe-
nomena it is typically not possible to tell whether a
system is orbiting clockwise or counter-clockwise
(or, equivalently, face-on or face-off), and sources
are therefore usually characterized by a viewing
angle: min (◆, 180� � ◆). By contrast, GW mea-
surements can identify the sense of the rotation,
and thus ◆ ranges from 0 (counter-clockwise) to
180 deg (clockwise). Previous GW detections by
LIGO had large uncertainties in luminosity dis-
tance and inclination (Abbott et al. 2016a) because
the two LIGO detectors that were involved are
nearly co-aligned, preventing a precise polariza-
tion measurement. In the present case, thanks to
Virgo as an additional detector, the cosine of the
inclination can be constrained at 68.3% (1�) con-
fidence to the range [�1.00,�0.81] corresponding
to inclination angles between [144, 180] deg. This
implies that the plane of the binary orbit is almost,
but not quite, perpendicular to our line of sight
to the source (◆ ⇡ 180 deg), which is consistent
with the observation of a coincident GRB (LVC,
GBM, & INTEGRAL 2017 in prep.; Goldstein et
al. 2017, ApJL, submitted; Savchenko et al. 2017,
ApJL, submitted). We report inferences on cos ◆
because our prior for it is flat, so the posterior is
proportional to the marginal likelihood for it from
the GW observations.

EM follow-up of the GW sky localization re-
gion (Abbott et al. 2017c) discovered an opti-
cal transient (Coulter et al. 2017; Soares-Santos
et al. 2017; Valenti et al. 2017; Arcavi et al. 2017;
Tanvir et al. 2017; Lipunov et al. 2017) in close
proximity to the galaxy NGC 4993. The location
of the transient was previously observed by the
Distance Less Than 40 Mpc (DLT40) survey on
2017 July 27.99 UT and no sources were found
(Valenti et al. 2017). We estimate the probability

Figure 1. GW170817 measurement of H0. Marginal-
ized posterior density for H0 (blue curve). Constraints
at 1- and 2� from Planck (Planck Collaboration et al.
2016) and SHoES (Riess et al. 2016) are shown in
green and orange. The maximum a posteriori value
and minimal 68.3% credible interval from this PDF is
H0 = 70.0+12.0

�8.0 km s�1Mpc�1. The 68.3% (1�) and
95.4% (2�) minimal credible intervals are indicated by
dashed and dotted lines.

of a random chance association between the opti-
cal counterpart and NGC 4993 to be 0.004% (see
the Methods section for details). In what follows
we assume that the optical counterpart is associ-
ated with GW170817, and that this source resides
in NGC 4993.

To compute H0 we need to estimate the back-
ground Hubble flow velocity at the position of
NGC 4993. In the traditional electromagnetic cal-
ibration of the cosmic “distance ladder” (Freed-
man et al. 2001), this step is commonly carried
out using secondary distance indicator informa-
tion, such as the Tully-Fisher relation (Sakai et al.
2000), which allows one to infer the background
Hubble flow velocity in the local Universe scaled
back from more distant secondary indicators cal-
ibrated in quiet Hubble flow. We do not adopt
this approach here, however, in order to preserve
more fully the independence of our results from
the electromagnetic distance ladder. Instead we
estimate the Hubble flow velocity at the position
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Figure 2. Inference on H0 and inclination. Pos-
terior density of H0 and cos ◆ from the joint GW-EM
analysis (blue contours). Shading levels are drawn at
every 5% credible level, with the 68.3% (1�, solid) and
95.4% (2�, dashed) contours in black. Values of H0 and
1- and 2� error bands are also displayed from Planck
(Planck Collaboration et al. 2016) and SHoES (Riess
et al. 2016). As noted in the text, inclination angles
near 180 deg (cos ◆ = �1) indicate that the orbital an-
gular momentum is anti-parallel with the direction from
the source to the detector.

of NGC 4993 by correcting for local peculiar mo-
tions.

NGC 4993 is part of a collection of galaxies,
ESO-508, whose center-of-mass recession veloc-
ity relative to the frame of the CMB (Hinshaw et al.
2009) is (Crook et al. 2007) 3327± 72 km s�1. We
correct the group velocity by 310 km s�1 due to
the coherent bulk flow (Springob et al. 2014; Car-
rick et al. 2015) towards The Great Attractor (see
Methods section for details). The standard error on
our estimate of the peculiar velocity is 69 km s�1,
but recognizing that this value may be sensitive
to details of the bulk flow motion that have been
imperfectly modelled, in our subsequent analysis
we adopt a more conservative estimate (Carrick
et al. 2015) of 150km s�1 for the uncertainty on
the peculiar velocity at the location of NGC 4993,
and fold this into our estimate of the uncertainty
on vH . From this, we obtain a Hubble velocity
vH = 3017± 166 km s�1.

Once the distance and Hubble velocity distribu-
tions have been determined from the GW and EM
data, respectively, we can constrain the value of
the Hubble constant. The measurement of the dis-
tance is strongly correlated with the measurement
of the inclination of the orbital plane of the bi-
nary. The analysis of the GW data also depends on
other parameters describing the source, such as the
masses of the components (Abbott et al. 2016a).
Here we treat the uncertainty in these other vari-
ables by marginalizing over the posterior distribu-
tion on system parameters (Abbott et al. 2017a),
with the exception of the position of the system on
the sky which is taken to be fixed at the location of
the optical counterpart.

We carry out a Bayesian analysis to infer
a posterior distribution on H0 and inclination,
marginalized over uncertainties in the recessional
and peculiar velocities; see the Methods sec-
tion for details. Figure 1 shows the marginal
posterior for H0. The maximum a posteri-
ori value with the minimal 68.3% credible in-
terval is H0 = 70.0+12.0

�8.0 km s�1 Mpc�1. Our
estimate agrees well with state-of-the-art de-
terminations of this quantity, including CMB
measurements from Planck (Planck Collabora-
tion et al. 2016) (67.74 ± 0.46 km s�1 Mpc�1,
“TT,TE,EE+lowP+lensing+ext”) and Type Ia su-
pernova measurements from SHoES (Riess et al.
2016) (73.24 ± 1.74 km s�1 Mpc�1), as well as
baryon acoustic oscillations measurements from
SDSS (Aubourg et al. 2015), strong lensing mea-
surements from H0LiCOW (Bonvin et al. 2017),
high-l CMB measurements from SPT (Henning
et al. 2017), and Cepheid measurements from the
HST key project (Freedman et al. 2001). Our mea-
surement is a new and independent determination
of this quantity. The close agreement indicates
that, although each method may be affected by dif-
ferent systematic uncertainties, we see no evidence
at present for a systematic difference between GW
and established EM-based estimates. As has been
much remarked upon, the Planck and SHoES re-

Distance-inclination degeneracy

Gravitational waves as standard sirens: 
direct access to the luminosity distance.
Different systematics !
Bright siren: presence of an EM 
counterpart measuring z

[LIGO-Virgo 2017]



20

GW170817: constraining leakage in extra dimensions

Phenomenological ansatz:

GW170817 constraints in D,n

11

complete, unique GW model in higher-dimensional grav-
ity, we use a phenomenological ansatz for the GW am-
plitude scaling and neglect all other effects of modified
gravity in the GW phase and amplitude. This approach
requires that gravity be asymptotically GR in the strong-
field regime, while modifications due to leakage into extra
dimensions start to appear at large distances from the
source. We therefore consider gravity modifications with
a screening mechanism, i.e., a phenomenological model
with a characteristic length scale Rc beyond which the
propagating GWs start to leak into higher dimensions.
In this model, the strain scales as

h /
1

d
GW
L

=
1

d
EM
L


1 +

✓
d
EM
L

Rc

◆n��(D�4)/(2n)

(2)

where D denotes the number of spacetime dimensions,
and where Rc and n are the distance scale of the screen-
ing and the transition steepness, respectively. Eq. (2)
reduces to the standard GR scaling at distances much
shorter than Rc, and the model is consistent with tests
of GR performed in the Solar System or with binary pul-
sars. Unlike the scaling relation considered in [70, 71],
notice that Eq. (2) reduces to the GR limit for D = 4
spacetime dimensions. An independent measurement of
the source luminosity distance from EM observations of
GW170817 allows us to infer the number of spacetime di-
mensions from a comparison of the GW and EM distance
estimates, for given values of model parameters Rc and
n. Constraints on the number of spacetime dimensions
are derived in a framework of Bayesian analysis, from the
joint posterior probability for D, d

GW
L

and d
EM
L

, given the
two statistically independent measurements of EM data
xEM and GW data xGW. The posterior for D is then
given by:

p(D|xGW, xEM) =

Z
p(dGW

L
|xGW)p(dEM

L
|xEM)�(D � D(dGW

L
, d

EM
L

, Rc, n)) dd
GW
L

dd
EM
L

. (3)

As in [19], we use a measurement of the surface brightness
fluctuation distance to the host galaxy NGC 4993 from
[73] to constrain the EM distance, assuming a Gaussian
distribution for the posterior probability p(dEM

L
|xEM),

with the mean value and standard deviation given by
40.7 ± 2.4 Mpc [73]. Contrary to [71], our analysis relies
on a direct measurement of d

EM
L

and is independent of
prior information on H0 or any other cosmological pa-
rameter. For the measurement of the GW distance, the
posterior distribution p(dGW

L
|xGW) was inferred from the

GW data assuming general relativity and fixing the sky
position to the optical counterpart while marginalizing
over all other waveform parameters [19]. Our analysis
imposes a prior on the GW luminosity distance that is
consistent with a four-dimensional Universe, but we have
checked that other reasonable prior choices do not signif-
icantly modify the results. We invert the scaling relation
in Eq. (2) to compute D(dGW

L
, d

EM
L

, Rc, n) in Eq. (3).
Fig. 3 shows the 90% upper bounds on the number of di-
mensions D, for theories with a certain transition steep-
ness n and distance scale Rc. Shading indicates the ex-
cluded regions of parameter space. Our results are con-
sistent with the GR prediction of D = 4.

Additionally, the data allows us to infer constraints on
the characteristic distance scale Rc of higher-dimensional
theories with a screening mechanism, while fixing D to
5, 6 or 7. The posterior for p(Rc|xGW, xEM) is ob-
tained from the joint posterior probability of Rc, d

GW

L

and d
EM

L
, fixing D instead of Rc in Eq. (3) and comput-

ing Rc(dGW
L

, d
EM
L

, D, n) by inverting the scaling relation

FIG. 3. 90% upper bounds on the number of spacetime di-
mensions D, assuming fixed transition steepness n and dis-
tance scale Rc. Shading indicates the regions of parameter
space excluded by the data.

in Eq. (2). Since we consider higher-dimensional mod-
els that allow only for a relative damping of the GW
signal, we select posterior samples with d

GW
L

> d
EM
L

,
leading to an additional step function ✓(dGW

L
� d

EM
L

) in
p(Rc|xGW, xEM). In Fig. 4, we show 10% lower bounds
on the screening radius Rc, for theories with a certain
fixed transition steepness n and number of dimensions
D > 4. Shading indicates the excluded regions of pa-
rameter space. For higher-dimensional theories of grav-
ity with a characteristic length scale Rc of the order of
the Hubble radius RH ⇠ 4 Gpc, such as the well known
Dvali-Gabadadze-Porrati (DGP) models of dark energy
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FIG. 4. 10% lower limits on the distance scale Rc (in Mpc), as-
suming fixed transition steepness n and number of spacetime
dimensions D. Shading indicates the regions of parameter
space excluded by the data.

[74, 75], small transition steepnesses (n ⇠ O(0.1)) are
excluded by the data. Our analysis cannot conclusively
rule out DGP models that provide a sufficiently steep
transition (n > 1) between GR and the onset of gravi-
tational leakage. Future LIGO-Virgo observations of bi-
nary neutron star mergers, especially at higher redshifts,
have the potential to place stronger constraints on higher-
dimensional gravity.

CONSTRAINTS ON THE POLARIZATION OF
GRAVITATIONAL WAVES

Generic metric theories of gravity predict up to six
polarization modes for metric perturbations: two tensor
(helicity ±2), two vector (helicity ±1), and two scalar
(helicity 0) modes [76, 77]. GWs in GR, however, have
only the two tensor modes regardless of the source prop-
erties; any detection of a non-tensor mode would be un-
ambiguous indication of physics beyond GR. The GW
strain measured by a detector can be written in general
as h(t) = F

A
hA, where hA are the 6 independent polar-

ization modes and F
A represent the detector responses

to the different modes A = (+, ⇥, x, y, b, l). The an-
tenna response functions depend only on the detector
orientation and GW helicity, i.e. they are independent of
the intrinsic properties of the source. We can therefore
place bounds on the polarization content of GW170817
by studying which combination of response functions is
consistent with the signal observed [78–82].

The first test on the polarization of GWs was per-
formed for GW150914 [13]. The number of GR polariza-
tion modes expected was equal to the number of detectors
in the network that observed GW150914, rendering this
test inconclusive. The addition of Virgo to the network of
GW detectors allowed for the first informative test of po-
larization for GW170814 [17]. This analysis established
that the GW data was better described by pure tensor

modes than pure vector or pure scalar modes with Bayes
factors in favor of tensor modes of more than 200 and
1000 respectively.

We here carry out a test similar to [17] by performing a
coherent Bayesian analysis of the signal properties with
the three interferometer outputs, using either the ten-
sor or the vector or the scalar response functions. (Note
that although the SNR in Virgo was significantly lower
than in the two LIGO detectors, the Virgo data stream
still carries information about the signal.) We assume
that the phase evolution of the GW can be described
by GR templates, but the polarization content can vary
[83]. The phase evolution is modeled with the GR wave-
form model IMRPhenomPv2 and the analysis is carried out
with LALInference [38]. Tidal effects are not included
in this waveform model, but this is not expected to affect
the results presented below, since the polarization test is
sensitive to the antenna pattern functions of the detec-
tors and not the phase evolution of the signal, as argued
above. The analysis described above tests for the pres-
ence of pure tensor, vector, or scalar modes. We leave
the analysis of mixed-mode content to future work.

If the sky location of GW170817 is constrained to NGC
4993, we find overwhelming evidence in favor of pure
tensor polarization modes in comparison to pure vec-
tor and pure scalar modes with a (base ten) logarithm
of the Bayes factor of +20.81 ± 0.08 and +23.09 ± 0.08
respectively. This result is many order of magnitudes
stronger than the GW170814 case both due to the sky po-
sition of GW170817 relative to the detectors and the fact
that the sky position is determined precisely by electro-
magnetic observations. Indeed if the sky location is un-
constrained we find evidence against scalar modes with
+5.84 ± 0.09, while the test is inconclusive for vector
modes with +0.72 ± 0.09.

CONCLUSIONS

Using the binary neutron star coalescence signal
GW170817, and in some cases also its associated elec-
tromagnetic counterpart, we have subjected general rel-
ativity to a range of tests related to the dynamics of the
source (putting bounds on deviations of PN coefficients),
the propagation of gravitational waves (constraining lo-
cal Lorentz invariance violations, as well as large extra
dimensions), and the polarization content of gravitational
waves. In all cases we find agreement with the predictions
of GR.

The upcoming observing runs of the LIGO and Virgo
detectors are expected to result in more detections of bi-
nary neutron star coalescences [84]. Along with electro-
magnetic observations, combining information from grav-
itational wave events (including binary black hole merg-
ers) will lead to increasingly more stringent constraints
on deviations from general relativity [25, 26], or conceiv-

[LIGO-Virgo 2018]

transition distance
transition index

Motivation: consider the propagation of gravitational degrees of freedom in extra 
dimensions D>4 on large scales
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Dipolar radiation: present in particular for scalar-tensor theories

CLIFFORD M. %ILL

where TT denotes the transverse-traceless projection.
Note that the full gravitational wave form is transverse
but not traceless because of the presence of the scalar
contribution.
For quasicircular orbits, the wave form becomes

From Eq. (1.3), the number of cycles observed in a given
bandwidth can be written 4Giv = (2/M) f„"*(&/&)«,
glvlng
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where n = x/r, and A = v/v.

III. TESTING SCALAR- TENSOR GRAVITY
USING MATCHED FILTERING OF
GRAVITATIONAL WAVE FORMS

A. Phase-shift estimate

Because broadband detectors such as the Bee-mass
laser-interferometric systems detect the gravitational
wave form h'~ (t) superimposed on the noise, and because
hundreds to tens of thousands of cycles may be observed
in the bandwidth, the observations are especially sensi-
tive to the evolution of the frequency and phase of the
wave. By combining Eqs. (2.2), (2.4), and (2.5), one
can show that the &equency of the wave form evolves
according to

Demanding that the phase contribution of the di-
pole term be no more than ~, we obtain 6
(112m/5)rI 2/su, , where we assume that f „q» f;„
(1000Hz vs 10 Hz). To lowest order in 1/uBD, K = g = 1,
KD ——2/urnD, and thus b (5/48)8 /uBD, resulting in
the bound given in Eq. (1.4).

B.Matched-Biter analysis

To obtain a more accurate estimate of the bound that
can be placed on the dipole parameter 6, we carry out
a full matched-filter analysis, following the method de-
scribed by Chernoff and Finn [6] and Cutler and Flana-
gan [7]. To the accuracy needed, we approximate the ob-
served gravitational wave form, Eq. (2.10), in a given de-
tector by h(t) —R(ho(t)e'@~'lf, where ho(t) is the slowly
varying Newtonian-order contribution to the wave form
amplitude, dependent upon the distance to the source,
its location on the sky, the orientation of the detector,
and on the source parameters M, g, and r; O(t) is the
gravitational-wave phase, dominantly at twice the orbital
phase, and R denotes the real part. The phase includes
the dipole and higher order post-Newtonian corrections,
in principle. Calculating the Fourier transform of h(t) in
the stationary phase approximation, we obtain

5 rm72qrp I 96 g m (3.1)
h(f) — +f e 0 + f + fmaxy

0, f & fmax
(3.7)

JH:—(K / /g / )rJ / m,
b —= (5/96)(r / g / )K~8 (3.2)

Defining u = vrM f, we put Eq. (3.1) into the form

u = M (96/5)u / (1+bg / u ) .

Integrating, we get

u / [1—(4/5)brI / u / ] = (256/5)(t, —t)/M, (3.4)

We define the Brans-Dicke chirp mass M and the dipole
parameter 6 according to

where A oc B its/sx [function of angles and detec-
tor orientation], and f = O(m ) corresponds to the
&equency when the inspiral turns into a plunge toward
coalescence, and

4(f) = 27rft, —I, —vr/4
u-'/'

~

1 — b'/' -'/' ~-
128 ( 7

where 4 formally is the gravitational-wave phase at time

With a given noise spectrum S (f), one defines the
inner product of signals hl and h2, by

where t is the time at which u —+ oo. We have expanded
the expression (3.4) to first order in bg /su 2/s, using the
fact that

o S-(f) (3.9)

5 10 E~») &0.5J
M,. )'"I'30H.&"'

E
(3.5)

The signal-to-noise ratio for a given signal 6 is given by

p[h]—:S/N[h] = (h[h) / (3.1o)
If the signal depends on a set of parameters 0 which are
to be estimated by the matched filter, then the rms error

[Will 1994]

-1PN term in the phasing 

Fourier-domain phasing modified by the energy flux emitted in dipolar radiation:

8

FIG. 1. Posterior density functions on deviations of PN coefficients �'̂n obtained using two different waveform models
(PhenomPNRT and SEOBNRT); see the main text for details. The �1PN and 0.5PN corrections correspond to absolute devi-
ations, whereas all others represent fractional deviations from the PN coefficient in GR. The horizontal bars indicate 90%
credible regions.
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FIG. 2. 90% upper bounds on deviations |�'̂n| in the PN co-
efficients following from the posterior density functions shown
in Fig. 1.

evolution parameterized by �p̂n to any frequency domain
waveform model [39]. We conduct independent tests of
GR using inspiral-merger-ringdown models that incorpo-
rate deviations from GR using each of these two prescrip-
tions; by comparing these analyses, we are able to esti-
mate the magnitude of systematic modeling uncertainty
in our results.

The merger and ringdown regimes of binary neutron
stars differ from those of binary black holes, and tidal
effects not present in binary black holes need to be in-
cluded in the description of the inspiral. Significant work
has been done to understand and model the dynamics of
binary neutron stars analytically using the PN approxi-
mation to general relativity [40]. This includes modeling
the non-spinning [30, 31] and spinning radiative/inspiral
dynamics [32–37] as well as finite size effects [41–43] for
binary neutron star systems. Frequency domain wave-
forms based on the stationary phase approximation [44]
have been developed incorporating the abovementioned
effects [45–47] and have been successfully employed for

the data analysis of compact binaries. A combination of
these analytical results with the results from numerical
relativity simulations of binary neutron star mergers (see
[48] for a review) have led to the development of efficient
waveform models which account for tidal effects [49–51].

We employ the NRTidal models introduced in [51, 52]
as the basis of our binary neutron star waveforms: fre-
quency domain waveform models for binary black holes
are converted into waveforms for inspiraling neutron stars
that undergo tidal deformations by adding to the phase
an appropriate expression �T (f) and windowing the am-
plitude such that the merger and ringdown are smoothly
removed from the model; see [52] for details. The closed-
form expression for �T (f) is built by combining PN infor-
mation, the tidal effective-one-body (EOB) model of [49],
and input from numerical relativity (NR). The form of
�T (f) was originally obtained in a setting where the neu-
tron stars were irrotational or had their spins aligned
to the angular momentum. Nevertheless, a waveform
model that includes both tides and precessing spins can
be constructed by first applying �T (f) to an aligned-spin
waveform, and then performing the twisting-up proce-
dure that introduces spin precession [53]. We consider
two waveform models that use this description of tidal
effects.

The first binary neutron star model we consider is con-
structed by applying this procedure to IMRPhenomPv2

waveforms. Following the nomenclature of [19], we refer
to the resulting waveform model as PhenomPNRT. Param-
eterized deformations �p̂n are then introduced as shifts
in parameters describing the phase in precisely the same
way as was done for binary black holes. This will allow
us to naturally combine PDFs for the �p̂n from measure-
ments on binary black holes and binary neutron stars,
arriving at increasingly sharper results in the future. Be-
cause of the unknown merger-ringdown behavior in the
case of binary neutron stars, which in any case gets re-
moved from the waveform model, in practice only devia-
tions �'̂n in the PN parameters 'n can be bounded. The

Binary pulsar constraints:
<latexit sha1_base64="A1d+qmqQv0OhugEZfC7cX+iguZI=">AAACG3icbVA9SwNBEN2L3/ErammzGASbhLsYNIVFwMZSwUQhF8PcZpMs2ftgdy4QLvc/bPwrNhaKWAkW/hs3H4UmPhh4vDfDzDwvkkKjbX9bmaXlldW19Y3s5tb2zm5ub7+uw1gxXmOhDNW9B5pLEfAaCpT8PlIcfE/yO69/OfbvBlxpEQa3OIx404duIDqCARqplSuN3DaXCNTtASbuAFTUE2krKZRSOqIX9LRYpi4Kn2vq2A9JoZLSVi5vF+0J6CJxZiRPZrhu5T7ddshinwfIJGjdcOwImwkoFEzyNOvGmkfA+tDlDUMDMNuayeS3lB4bpU07oTIVIJ2ovycS8LUe+p7p9AF7et4bi/95jRg7lWYigihGHrDpok4sKYZ0HBRtC8UZyqEhwJQwt1LWAwUMTZxZE4Iz//IiqZeKzlmxfFPOVyuzONbJITkiJ8Qh56RKrsg1qRFGHskzeSVv1pP1Yr1bH9PWjDWbOSB/YH39AAiSn3Q=</latexit>
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GWTC-3: tests of GR from LVK GW detections

[LVK 2021]
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TABLE II. List of O3b events considered in this paper. The first block of columns gives the names of the events and lists the instruments (LIGO
Hanford, LIGO Livingston, Virgo) involved in each detection, as well as some relevant properties obtained assuming GR: luminosity distance
DL, redshifted total mass (1 + z)M, redshifted chirp mass (1 + z)M, redshifted final mass (1 + z)Mf, dimensionless final spin �f = c|~S f |/(GM2

f ),
and network signal-to-noise ratio SNR. Reported quantities correspond to the median and 90% symmetric credible intervals, as computed in
Table IV in GWTC-3 [81]. The final mass and final spin quantities are inferred from analysis of the entire signal and are for the remnant long
after the coalescence and ringdown are complete, as described in [99]. The last block of columns indicates which analyses are performed on a
given event according to the selection criteria in Sec. II: RT = residuals test (Sec. IV A); IMR = inspiral–merger–ringdown consistency test
(Sec. IV B); PAR = parametrized tests of GW generation (Sec. V A); SIM = spin-induced moments (Sec. V B); MDR = modified GW dispersion
relation (Sec. VI); POL = polarization content (Sec. VII); RD = ringdown (Sec. VIII A); ECH = echoes searches (Sec. VIII B).

Event Inst. Properties SNR Tests performed
DL (1 + z)M (1 + z)M (1 + z)Mf �f RT IMR PAR SIM MDR POL RD ECH

[Gpc] [M�] [M�] [M�]

GW191109 010717 HL 1.29+1.13
�0.65 140+21

�17 60.1+9.8
�9.3 135+19

�15 0.61+0.18
�0.19 17.3+0.5

�0.5 3 – – – – 3 3 3

GW191129 134029 HL 0.79+0.26
�0.33 20.10+2.94

�0.64 8.49+0.06
�0.05 19.19+3.07

�0.67 0.69+0.03
�0.05 13.1+0.2

�0.3 3 – 3 3 3 – – 3

GW191204 171526 HL 0.65+0.19
�0.25 22.74+1.94

�0.48 9.70+0.05
�0.05 21.60+2.05

�0.50 0.73+0.03
�0.03 17.5+0.2

�0.2 3 – 3 3 3 3 – 3

GW191215 223052 HLV 1.93+0.89
�0.86 58.4+4.8

�3.7 24.9+1.5
�1.4 55.8+4.8

�3.3 0.68+0.07
�0.07 11.2+0.3

�0.4 3 – – – 3 3 – 3

GW191216 213338 HV 0.34+0.12
�0.13 21.17+2.93

�0.66 8.94+0.05
�0.05 20.18+3.06

�0.70 0.70+0.03
�0.04 18.6+0.2

�0.2 3 – 3 3 3 3 – 3

GW191222 033537 HL 3.0+1.7
�1.7 119+16

�13 51.0+7.2
�6.5 114+14

�12 0.67+0.08
�0.11 12.5+0.2

�0.3 3 – – – 3 3 3 3

GW200115 042309 HLV 0.29+0.15
�0.10 7.8+1.9

�1.8 2.58+0.01
�0.01 7.7+1.9

�1.8 0.42+0.09
�0.05 11.3+0.3

�0.5 3 – 3 – – – – 3

GW200129 065458 HLV 0.90+0.29
�0.38 74.6+4.5

�3.8 32.1+1.8
�2.6 70.9+4.2

�3.4 0.73+0.06
�0.05 26.8+0.2

�0.2 3 3 3 3 3 3 3 3

GW200202 154313 HLV 0.41+0.15
�0.16 19.01+1.99

�0.34 8.15+0.05
�0.05 18.12+2.09

�0.35 0.69+0.03
�0.04 10.8+0.2

�0.4 3 – 3 – 3 – – 3

GW200208 130117 HLV 2.23+1.00
�0.85 91+11

�10 38.8+5.2
�4.8 87.5+10.3

�9.1 0.66+0.09
�0.13 10.8+0.3

�0.4 3 3 – – 3 3 – 3

GW200219 094415 HLV 3.4+1.7
�1.5 103+14

�12 43.7+6.3
�6.2 98+13

�11 0.66+0.10
�0.13 10.7+0.3

�0.5 3 – – – 3 3 – 3

GW200224 222234 HLV 1.71+0.49
�0.64 94.9+8.3

�7.2 40.9+3.5
�3.8 90.2+7.5

�6.4 0.73+0.07
�0.07 20.0+0.2

�0.2 3 3 – – 3 3 3 3

GW200225 060421 HL 1.15+0.51
�0.53 41.2+3.0

�4.0 17.65+0.98
�1.97 39.4+2.9

�3.6 0.66+0.07
�0.13 12.5+0.3

�0.4 3 3 3 3 3 3 – 3

GW200311 115853 HLV 1.17+0.28
�0.40 75.9+6.2

�5.7 32.7+2.7
�2.8 72.4+5.6

�5.1 0.69+0.07
�0.08 17.8+0.2

�0.2 3 3 3 – 3 3 3 3

GW200316 215756 HLV 1.12+0.47
�0.44 25.5+8.7

�1.1 10.68+0.12
�0.12 24.3+9.0

�1.1 0.70+0.04
�0.04 10.3+0.4

�0.7 3 – 3 3 – – – 3

[81], unless otherwise stated.

When combining results obtained from multiple events, we
employ two methods. The first method relies on the multi-
plication of the individual likelihoods corresponding to the
deformation parameters that are inferred from the data. This
method assumes that the deformation parameters take the same
value across events [146]. This is a restrictive assumption for
all the tests we consider except for the modified dispersion test.
In order to address this, wherever possible, we combine the
information from the tests for di↵erent events hierarchically
using a model that does not make this restrictive assumption
and hence provides bounds which are qualitatively more robust
[147].

We quantify the agreement of our results with GR using
several statistical indicators. In Section IV B we present GR
quantiles Q2D

GR for joint distributions, which denote the fraction
of the likelihood contained within the isoprobability contour
passing through the GR value, with a smaller GR quantile indi-
cating a better agreement with GR. In Sections V A and VI, we
report instead quantiles on one-dimensional distributions QGR.
When error bars are reported, they denote 90% confidence in-
tervals and, likewise, we show 90% credible regions (intervals)
when presenting joint (individual) posterior distributions.

IV. CONSISTENCY TESTS

A. Residuals test

Measuring the remnant coherent power in the network data
after the subtraction of the best-fit GR template can be used
to quantify consistency of GR waveform model with the data.
The random noise in di↵erent detectors can be taken to be
incoherent. The presence of consistent noise in the network
after removing the GW signal from the data indicates an in-
consistency between the signal present in the data and the GR
template used. The residual analysis is designed to detect such
discrepancies of the data with GR [6, 10, 148, 149].

A residual data set is obtained by subtracting the waveform
corresponding to maximum likelihood parameters from indi-
vidual detector data with a window size of one second around
the trigger time. The window size of one second is used due to
the relatively short length of the signal. Then the residual SNR,
or SNR90, is computed as the 90% credible upper limit on
the remnant coherent network SNR in the residual data using
the BAYESWAVE pipeline [83, 145, 150]. BAYESWAVE uses a
template-independent model to characterize any excess power
in the residual compared to the detector noise.

We follow the method used in the previous analyses per-
formed in GWTC-1 [10] and GWTC-2 [11]. However, we
use the new phenomenological waveform model PhenomX-
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TABLE II. List of O3b events considered in this paper. The first block of columns gives the names of the events and lists the instruments (LIGO
Hanford, LIGO Livingston, Virgo) involved in each detection, as well as some relevant properties obtained assuming GR: luminosity distance
DL, redshifted total mass (1 + z)M, redshifted chirp mass (1 + z)M, redshifted final mass (1 + z)Mf, dimensionless final spin �f = c|~S f |/(GM2

f ),
and network signal-to-noise ratio SNR. Reported quantities correspond to the median and 90% symmetric credible intervals, as computed in
Table IV in GWTC-3 [81]. The final mass and final spin quantities are inferred from analysis of the entire signal and are for the remnant long
after the coalescence and ringdown are complete, as described in [99]. The last block of columns indicates which analyses are performed on a
given event according to the selection criteria in Sec. II: RT = residuals test (Sec. IV A); IMR = inspiral–merger–ringdown consistency test
(Sec. IV B); PAR = parametrized tests of GW generation (Sec. V A); SIM = spin-induced moments (Sec. V B); MDR = modified GW dispersion
relation (Sec. VI); POL = polarization content (Sec. VII); RD = ringdown (Sec. VIII A); ECH = echoes searches (Sec. VIII B).

Event Inst. Properties SNR Tests performed
DL (1 + z)M (1 + z)M (1 + z)Mf �f RT IMR PAR SIM MDR POL RD ECH

[Gpc] [M�] [M�] [M�]

GW191109 010717 HL 1.29+1.13
�0.65 140+21

�17 60.1+9.8
�9.3 135+19

�15 0.61+0.18
�0.19 17.3+0.5

�0.5 3 – – – – 3 3 3

GW191129 134029 HL 0.79+0.26
�0.33 20.10+2.94

�0.64 8.49+0.06
�0.05 19.19+3.07

�0.67 0.69+0.03
�0.05 13.1+0.2

�0.3 3 – 3 3 3 – – 3

GW191204 171526 HL 0.65+0.19
�0.25 22.74+1.94

�0.48 9.70+0.05
�0.05 21.60+2.05

�0.50 0.73+0.03
�0.03 17.5+0.2

�0.2 3 – 3 3 3 3 – 3

GW191215 223052 HLV 1.93+0.89
�0.86 58.4+4.8

�3.7 24.9+1.5
�1.4 55.8+4.8

�3.3 0.68+0.07
�0.07 11.2+0.3

�0.4 3 – – – 3 3 – 3

GW191216 213338 HV 0.34+0.12
�0.13 21.17+2.93

�0.66 8.94+0.05
�0.05 20.18+3.06

�0.70 0.70+0.03
�0.04 18.6+0.2

�0.2 3 – 3 3 3 3 – 3

GW191222 033537 HL 3.0+1.7
�1.7 119+16

�13 51.0+7.2
�6.5 114+14

�12 0.67+0.08
�0.11 12.5+0.2

�0.3 3 – – – 3 3 3 3

GW200115 042309 HLV 0.29+0.15
�0.10 7.8+1.9

�1.8 2.58+0.01
�0.01 7.7+1.9

�1.8 0.42+0.09
�0.05 11.3+0.3

�0.5 3 – 3 – – – – 3

GW200129 065458 HLV 0.90+0.29
�0.38 74.6+4.5

�3.8 32.1+1.8
�2.6 70.9+4.2

�3.4 0.73+0.06
�0.05 26.8+0.2

�0.2 3 3 3 3 3 3 3 3

GW200202 154313 HLV 0.41+0.15
�0.16 19.01+1.99

�0.34 8.15+0.05
�0.05 18.12+2.09

�0.35 0.69+0.03
�0.04 10.8+0.2

�0.4 3 – 3 – 3 – – 3

GW200208 130117 HLV 2.23+1.00
�0.85 91+11

�10 38.8+5.2
�4.8 87.5+10.3

�9.1 0.66+0.09
�0.13 10.8+0.3

�0.4 3 3 – – 3 3 – 3

GW200219 094415 HLV 3.4+1.7
�1.5 103+14

�12 43.7+6.3
�6.2 98+13

�11 0.66+0.10
�0.13 10.7+0.3

�0.5 3 – – – 3 3 – 3

GW200224 222234 HLV 1.71+0.49
�0.64 94.9+8.3

�7.2 40.9+3.5
�3.8 90.2+7.5

�6.4 0.73+0.07
�0.07 20.0+0.2

�0.2 3 3 – – 3 3 3 3

GW200225 060421 HL 1.15+0.51
�0.53 41.2+3.0

�4.0 17.65+0.98
�1.97 39.4+2.9

�3.6 0.66+0.07
�0.13 12.5+0.3

�0.4 3 3 3 3 3 3 – 3

GW200311 115853 HLV 1.17+0.28
�0.40 75.9+6.2

�5.7 32.7+2.7
�2.8 72.4+5.6

�5.1 0.69+0.07
�0.08 17.8+0.2

�0.2 3 3 3 – 3 3 3 3

GW200316 215756 HLV 1.12+0.47
�0.44 25.5+8.7

�1.1 10.68+0.12
�0.12 24.3+9.0

�1.1 0.70+0.04
�0.04 10.3+0.4

�0.7 3 – 3 3 – – – 3

[81], unless otherwise stated.

When combining results obtained from multiple events, we
employ two methods. The first method relies on the multi-
plication of the individual likelihoods corresponding to the
deformation parameters that are inferred from the data. This
method assumes that the deformation parameters take the same
value across events [146]. This is a restrictive assumption for
all the tests we consider except for the modified dispersion test.
In order to address this, wherever possible, we combine the
information from the tests for di↵erent events hierarchically
using a model that does not make this restrictive assumption
and hence provides bounds which are qualitatively more robust
[147].

We quantify the agreement of our results with GR using
several statistical indicators. In Section IV B we present GR
quantiles Q2D

GR for joint distributions, which denote the fraction
of the likelihood contained within the isoprobability contour
passing through the GR value, with a smaller GR quantile indi-
cating a better agreement with GR. In Sections V A and VI, we
report instead quantiles on one-dimensional distributions QGR.
When error bars are reported, they denote 90% confidence in-
tervals and, likewise, we show 90% credible regions (intervals)
when presenting joint (individual) posterior distributions.

IV. CONSISTENCY TESTS

A. Residuals test

Measuring the remnant coherent power in the network data
after the subtraction of the best-fit GR template can be used
to quantify consistency of GR waveform model with the data.
The random noise in di↵erent detectors can be taken to be
incoherent. The presence of consistent noise in the network
after removing the GW signal from the data indicates an in-
consistency between the signal present in the data and the GR
template used. The residual analysis is designed to detect such
discrepancies of the data with GR [6, 10, 148, 149].

A residual data set is obtained by subtracting the waveform
corresponding to maximum likelihood parameters from indi-
vidual detector data with a window size of one second around
the trigger time. The window size of one second is used due to
the relatively short length of the signal. Then the residual SNR,
or SNR90, is computed as the 90% credible upper limit on
the remnant coherent network SNR in the residual data using
the BAYESWAVE pipeline [83, 145, 150]. BAYESWAVE uses a
template-independent model to characterize any excess power
in the residual compared to the detector noise.

We follow the method used in the previous analyses per-
formed in GWTC-1 [10] and GWTC-2 [11]. However, we
use the new phenomenological waveform model PhenomX-
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PHM [104, 105] as the GR waveform model. For each gravita-
tional wave event, in addition to calculating SNR90, additional
BAYESWAVE runs are done on two hundred randomly selected
time segments on a time window of 4096s symmetric around
the event time. This allows us to calculate p-values of residual
SNRs for individual events, which is equal to the probability
of obtaining a background value of SNR90 higher than that of
the event. We perform the analysis on all the events listed in
Table II.

The results from the residual analysis are summarized in
Table III. For each event, we have presented the SNR of
the best-fit waveform SNRGR, SNR90, fitting factor FF90 =
SNRGR /(SNR2

90 + SNR2
GR)1/2, and p-values calculated from

the background analysis. To analyze the trends between
SNR90 and SNRGR, in Fig. 1 we present the scatter of SNR90
and SNRGR. The absence of correlation between SNR90
and SNRGR in the figure indicates that data is consistent
with GR templates and the values of SNR90 depend purely
on the noise levels in the detectors at the detection of in-
dividual events. GW191222 033537 shows the highest p-
value = 1.0 with SNR90 = 4.87 and FF90 = 0.93. Even though,
GW200219 094415 has the lowest fitting factor FF90 = 0.74
with SNR90 = 10.23, its p-value = 0.1 is slightly above
the lowest p-value = 0.05 which corresponds to the event
GW200225 060421.

If the left-over coherent network SNR were purely from
detector noise, we should expect the SNR90 p-values to be
uniformly distributed within [0, 1]. To demonstrate the consis-
tency of the observed p-values with the noise (null) hypothesis,
in Fig. 2, we present a probability–probability (PP) plot of
the p-values 2. To produce the PP plot, we have considered
all the events in GWTC-3 that pass the FAR threshold. The
measurement of p-values is subjected to uncertainty due to
the finite size of background runs. If N is the total number of
background trials around an event, and if n of them produce
SNR90 greater than that of the event, then the likelihood of the
estimated p-value p̂ = n/N is a binomial function,

L ( p̂) =
 
N
n

!
pn (1 � p)N�n, (1)

where p is the true p-value [11]. Assuming uniform prior, we
can obtain posterior distribution of p-value as a Beta distribu-
tion,

P(p|N, n) = Beta(n + 1,N � n + 1) . (2)

In Fig. 2, the light-blue band around the PP curve represents
the 90% uncertainty region of the p-value posteriors. The diag-
onal dashed line denotes the prior hypothesis with surrounding
light-gray band representing 90% uncertainty region of the null
hypothesis due to the finite number of events [151, 152].

The PP plot is well with in the 90% credible region of the
null hypothesis indicating no significant deviation in the resid-
ual data from the expected incoherent noise distribution in the
individual instruments.

2 Note, however, that in [11], the equivalent plot was between the observed
p-values and the predicted p-values. See Appendix A of [11] for details.

FIG. 1. Results of the residuals analysis (Sec. IV A). Scatter plot of
the maximum-likelihood template (SNRGR) and the upper limit on the
residual network SNR (SNR90) for each event. The colorbar denotes
the p-values of individual events. Solid (empty) circles represent the
O3b (pre-O3b) events. The O3b events with highest (lowest) p-values
are highlighted by green (purple) diamonds.

0.0 0.2 0.4 0.6 0.8 1.0
p-value

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

fr
ac

ti
on

of
ev

en
ts

Null hypothesis

GWTC-3 Measurement

FIG. 2. Results of the residuals analysis (Sec. IV A). The blue curve
shows the fraction of events with p-values of the residual SNR less
than or equal to the abscissa (PP plot). The light-blue band represents
the 90% credible interval of the observed p-values. The diagonal
dashed line denotes the null hypothesis with the surrounding light-
grey area denoting the 90% uncertainty region of the null hypothesis
due to the finite number of events.

B. Inspiral–merger–ringdown consistency test

The IMR consistency test checks the consistency of the mass
and spin of the remnant BH inferred from the low- and high-
frequency parts of the signal. To achieve this, we divide the
GW signal into two parts in the frequency domain at the cuto↵
frequency f IMR

c which is the dominant mode GW frequency
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B. Inspiral–merger–ringdown consistency test

The IMR consistency test checks the consistency of the mass
and spin of the remnant BH inferred from the low- and high-
frequency parts of the signal. To achieve this, we divide the
GW signal into two parts in the frequency domain at the cuto↵
frequency f IMR

c which is the dominant mode GW frequency

Method:

• Subtract maximum-likelihood 
waveform (now with 
IMRPhenomXPHM)

• Build SNR90, measure of the 
SNR of the residual

• Compute the same SNR90 on 
noise time segments drawn 
from 4096s of data

• Check that the residuals p-
value with respect to noise is 
uniform 

Likelihood:
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TABLE III. Results of the residuals analysis (Sec. IV A). For indi-
vidual events we list the SNR of the best-fit waveform (SNRGR), 90%
credible upper limit on the remnant coherent network SNR (SNR90),
fitting factor FF90, and p-values calculate from the background analy-
sis.

Events SNRGR Residual SNR90 FF90 p-value

GW191109 010717 17.99 7.05 0.93 0.55
GW191129 134029 14.10 6.35 0.91 0.60
GW191204 171526 17.31 6.53 0.94 0.63
GW191215 223052 12.39 6.01 0.90 0.91
GW191216 213338 19.06 5.56 0.96 0.92
GW191222 033537 12.11 4.87 0.93 1.00
GW200115 042309 12.06 8.65 0.82 0.16
GW200129 065458 26.79 9.67 0.94 0.25
GW200202 154313 12.08 7.49 0.85 0.35
GW200208 130117 11.35 6.26 0.88 0.97
GW200219 094415 10.72 10.23 0.74 0.10
GW200224 222234 19.63 7.89 0.93 0.52
GW200225 060421 14.15 8.25 0.86 0.05
GW200311 115853 16.99 7.11 0.92 0.93
GW200316 215756 11.63 7.17 0.85 0.51

of the innermost stable circular orbit (ISCO) of the remnant
Kerr BH [153, 154]. The mass and spin of the remnant BH
are estimated by applying NR-calibrated fits [99, 155–158] to
the median values of the redshifted component masses, dimen-
sionless spins, and spin angles obtained using the full IMR
signal and the waveform model IMRPhenomXPHM. The low-
and high-frequency regimes roughly correspond to the inspiral
and postinspiral, respectively, of the dominant mode of the
waveform. To make sure that the two regimes of the signal
have enough information, we calculate the SNR of the inspiral
and the postinspiral parts of the waveform for each event using
their maximum a posteriori parameter values obtained from
the full IMR signal.

We analyze only those signals which have SNRs greater
than 6 in both the inspiral and the postinspiral parts. This
constraint was also used in previous studies [10, 11]. We also
impose an extra mass constraint (1 + z)M < 100 M� as in our
previous analysis of GWTC-2 events [11] to ensure enough
inspiral signal for heavier BBHs. The SNRs for the inspiral
and the postinspiral regimes of the events analyzed are given
in Table IV.

We independently estimate the posterior distributions of the
mass Mf and the dimensionless spin �f of the remnant BH from
both the inspiral and the postinspiral parts of the signal. To
constrain possible deviations from GR, two fractional deviation
parameters �Mf/M̄f and ��f/�̄f are defined, where

�Mf

M̄f
= 2

Minsp
f � Mpostinsp

f

Minsp
f + Mpostinsp

f

,
��f

�̄f
= 2
�insp

f � �postinsp
f

�insp
f + �postinsp

f

, (3)

and M̄f and �̄f denote the mean values of final mass and final
spin obtained from analyzing the inspiral and postinspiral parts
of the signal, respectively. Here the superscripts denote the
inspiral (insp) and the postinspiral (postinsp) portions of the
signal. The 2D posterior distribution of these fractional de-
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FIG. 3. Combined results of the IMR consistency test for BBH events
which satisfy the selection criteria (see Table IV and Appendix B).
The combined bounds are obtained assuming the same deviation
for all events. The main panel shows the 90% credible regions of
the 2D posteriors on (�Mf/M̄f ,��f/�̄f ) assuming a uniform prior,
with (0, 0) being the expected value for GR. The side panels show
the marginalized posterior on �Mf/M̄f and ��f/�̄f . The gray distri-
butions correspond to posteriors obtained by combining individual
results. The other colored traces correspond to the O3b events given
in Table IV where the color encodes the median redshifted total mass.

TABLE IV. Results from the IMR consistency test (Sec. IV B). f IMR
c

denotes the cuto↵ frequency between the inspiral and postinspiral
regimes; ⇢IMR, ⇢insp, and ⇢postinsp are the SNR in the full signal, the
inspiral part, and the postinspiral part respectively; and the GR quan-
tile Q2D

GR denotes the fraction of the reweighted posterior enclosed
by the isoprobability contour that passes through the GR value, with
smaller values indicating better consistency with GR. The results are
given only for O3b events which satisfy the selection criteria. See
Appendix B for the updated results on GWTC-2 events.

Event f IMR
c [Hz] ⇢IMR ⇢insp ⇢postinsp Q2D

GR [%]

GW200129 065458 136 25.7 20.1 16.0 1.5
GW200208 130117 98 9.9 7.2 6.8 10.5
GW200224 222234 107 19.4 14.3 13.1 20.7
GW200225 060421 213 12.9 11.1 6.6 1.3
GW200311 115853 122 17.5 13.5 11.0 15.2

viation parameters should peak around (0, 0) when the test is
applied to a signal from a quasi-circular BBH coalescence in
GR, given that we use a waveform model for such signals to
analyze the data.

The parameter estimation runs employed the IMRPhenomX-
PHM waveform with uniform priors on the redshifted com-
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FIG. 4. Distributions on the remnant mass (blue) and spin (red)
fractional deviation parameters obtained by hierarchically combining
the GWTC-3 events (solid trace). For comparison, we also show the
results obtained using GWTC-2 (dot dashed traces) and GWTC-1
(dashed) events. The vertical dashed line shows the GR prediction.
Triangles mark the GWTC-3 medians, and vertical bars the symmetric
90%-credible intervals.
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FIG. 5. Posteriors on the hyperparameters µ and � of ��f/�̄f distri-
bution. The GWTC-2 and GWTC-3 posteriors on � show a marked
deviation from zero primarily due to GW190814 posterior on ��f/�̄f
peaking away from zero. The black trace shows the posteriors for
GWTC-3 events excluding GW190814. See Appendix B for more in-
formation about these deviations. The corresponding hyperparameters
of the �Mf/M̄f distribution do not show any such deviation.

ponent masses and spins. These priors translate into nontriv-
ial priors on �Mf/M̄f and ��f/�̄f . Thus, as in the previous
analysis [11], we reweight the posteriors to obtain uniform
priors on the deviation parameters. We provide our results in
Fig. 3, where we show the 90% credible regions of the two-
dimensional posteriors on the fractional deviation parameters
for the O3b events which satisfy our selection criteria.

The reweighted posteriors on the fractional deviation param-
eters �Mf/M̄f and ��f/�̄f of individual events are interpolated
on a grid with bounds [�2, 2] for both the parameters, and

the interpolated posteriors are then multiplied to obtain the
combined posteriors. Here we assume the same deviation for
all events to obtain the combined results. As shown in gray
in Fig. 3, the combined posteriors on the fractional deviation
parameters of GWTC-3 events are consistent with the GR pre-
diction with �Mf/M̄f = �0.02+0.07

�0.06 and ��f/�̄f = �0.06+0.10
�0.07.

The two-dimensional GR quantile valuesQ2D
GR for the events are

given in Table IV.Q2D
GR is defined as the fraction of the posterior

enclosed by the isoprobabilty contour that passes through (0, 0),
the GR value. Smaller values indicate better consistency with
GR. The GR quantile of the combined distribution is 79.6%
which is similar to the value obtained for GWTC-2 (78.7%).
Among the O3b events, GW200225 060421 has the lowest
Q2D

GR value of 1.3% and GW200224 222234 has the highest
value of 20.7%.

We can also combine the results hierarchically, as discussed
in Sec. III B of our previous analysis [11]. Fig. 4 presents the
results where the fractional mass (blue) and spin (red) deviation
parameters for events from multiple observing runs are plotted
with �Mf/M̄f = 0.03+0.14

�0.13 and ��f/�̄f = �0.05+0.37
�0.38, which are

consistent with the expected values in GR. Treating �Mf/M̄f
and ��f/�̄f independently, we find that the Gaussian model pa-
rameters are constrained to (µ, �) = (0.04+0.08

�0.07, 0.05+0.10
�0.04) and

(�0.04+0.12
�0.12, 0.19+0.17

�0.13) for �Mf/M̄f and ��f/�̄f respectively,
with 90% credibility. These bounds are not significantly di↵er-
ent from the ones reported in GWTC-2 [11], except for that of
� for ��f/�̄f . It peaks significantly away from zero as shown
in Fig. 5 due to GW190814 whose updated posteriors (see
Appendix B for more details related to the updated GWTC-2
results) show marked deviation from GR. We also show the
posteriors excluding GW190814 which peak at � = 0.

V. TESTS OF GRAVITATIONAL WAVE GENERATION

A. Generic modifications

Deviations from GR, such as additional fields or higher-
curvature corrections, may alter the binary’s binding energy
and angular momentum, and its energy and angular momen-
tum flux [15, 16, 19, 20, 22, 23, 159–161]. This in turn would
result in modifications to the binary motion and, hence, to the
GW signal emitted by the system. A practical approach to
quantifying such e↵ects entails introducing a finite number of
parameters that encapsulate possible deviations of a waveform
from its GR prediction. We will focus here on parametrizations
of the frequency-domain GW phase evolution since observa-
tions are in general most sensitive to it (as opposed to changes
in the amplitude).

Small modifications to the GW phase could accumulate for
events with many detectable GW cycles and thus parametrized
tests initially focussed on the inspiral part of the waveform,
whose duration in the detector band grows for low mass bi-
naries. The inspiral can be treated perturbatively within the
post-Newtonian framework [34, 162–172], which expands ob-
servables in powers of v/c, with each O([v/c]2n) being referred
to as of nPN order. With the intrinsic parameters of the bi-
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in Sec. III B of our previous analysis [11]. Fig. 4 presents the
results where the fractional mass (blue) and spin (red) deviation
parameters for events from multiple observing runs are plotted
with �Mf/M̄f = 0.03+0.14

�0.13 and ��f/�̄f = �0.05+0.37
�0.38, which are

consistent with the expected values in GR. Treating �Mf/M̄f
and ��f/�̄f independently, we find that the Gaussian model pa-
rameters are constrained to (µ, �) = (0.04+0.08

�0.07, 0.05+0.10
�0.04) and

(�0.04+0.12
�0.12, 0.19+0.17

�0.13) for �Mf/M̄f and ��f/�̄f respectively,
with 90% credibility. These bounds are not significantly di↵er-
ent from the ones reported in GWTC-2 [11], except for that of
� for ��f/�̄f . It peaks significantly away from zero as shown
in Fig. 5 due to GW190814 whose updated posteriors (see
Appendix B for more details related to the updated GWTC-2
results) show marked deviation from GR. We also show the
posteriors excluding GW190814 which peak at � = 0.

V. TESTS OF GRAVITATIONAL WAVE GENERATION

A. Generic modifications

Deviations from GR, such as additional fields or higher-
curvature corrections, may alter the binary’s binding energy
and angular momentum, and its energy and angular momen-
tum flux [15, 16, 19, 20, 22, 23, 159–161]. This in turn would
result in modifications to the binary motion and, hence, to the
GW signal emitted by the system. A practical approach to
quantifying such e↵ects entails introducing a finite number of
parameters that encapsulate possible deviations of a waveform
from its GR prediction. We will focus here on parametrizations
of the frequency-domain GW phase evolution since observa-
tions are in general most sensitive to it (as opposed to changes
in the amplitude).

Small modifications to the GW phase could accumulate for
events with many detectable GW cycles and thus parametrized
tests initially focussed on the inspiral part of the waveform,
whose duration in the detector band grows for low mass bi-
naries. The inspiral can be treated perturbatively within the
post-Newtonian framework [34, 162–172], which expands ob-
servables in powers of v/c, with each O([v/c]2n) being referred
to as of nPN order. With the intrinsic parameters of the bi-

Method:
• Separate inspiral and MR signal after Kerr ISCO 

(must have enough SNR in both)
• Perform PE on both
• Compute final mass and spin from NR fits for 

both
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TABLE III. Results of the residuals analysis (Sec. IV A). For indi-
vidual events we list the SNR of the best-fit waveform (SNRGR), 90%
credible upper limit on the remnant coherent network SNR (SNR90),
fitting factor FF90, and p-values calculate from the background analy-
sis.

Events SNRGR Residual SNR90 FF90 p-value

GW191109 010717 17.99 7.05 0.93 0.55
GW191129 134029 14.10 6.35 0.91 0.60
GW191204 171526 17.31 6.53 0.94 0.63
GW191215 223052 12.39 6.01 0.90 0.91
GW191216 213338 19.06 5.56 0.96 0.92
GW191222 033537 12.11 4.87 0.93 1.00
GW200115 042309 12.06 8.65 0.82 0.16
GW200129 065458 26.79 9.67 0.94 0.25
GW200202 154313 12.08 7.49 0.85 0.35
GW200208 130117 11.35 6.26 0.88 0.97
GW200219 094415 10.72 10.23 0.74 0.10
GW200224 222234 19.63 7.89 0.93 0.52
GW200225 060421 14.15 8.25 0.86 0.05
GW200311 115853 16.99 7.11 0.92 0.93
GW200316 215756 11.63 7.17 0.85 0.51

of the innermost stable circular orbit (ISCO) of the remnant
Kerr BH [153, 154]. The mass and spin of the remnant BH
are estimated by applying NR-calibrated fits [99, 155–158] to
the median values of the redshifted component masses, dimen-
sionless spins, and spin angles obtained using the full IMR
signal and the waveform model IMRPhenomXPHM. The low-
and high-frequency regimes roughly correspond to the inspiral
and postinspiral, respectively, of the dominant mode of the
waveform. To make sure that the two regimes of the signal
have enough information, we calculate the SNR of the inspiral
and the postinspiral parts of the waveform for each event using
their maximum a posteriori parameter values obtained from
the full IMR signal.

We analyze only those signals which have SNRs greater
than 6 in both the inspiral and the postinspiral parts. This
constraint was also used in previous studies [10, 11]. We also
impose an extra mass constraint (1 + z)M < 100 M� as in our
previous analysis of GWTC-2 events [11] to ensure enough
inspiral signal for heavier BBHs. The SNRs for the inspiral
and the postinspiral regimes of the events analyzed are given
in Table IV.

We independently estimate the posterior distributions of the
mass Mf and the dimensionless spin �f of the remnant BH from
both the inspiral and the postinspiral parts of the signal. To
constrain possible deviations from GR, two fractional deviation
parameters �Mf/M̄f and ��f/�̄f are defined, where

�Mf

M̄f
= 2

Minsp
f � Mpostinsp

f

Minsp
f + Mpostinsp

f

,
��f

�̄f
= 2
�insp

f � �postinsp
f

�insp
f + �postinsp

f

, (3)

and M̄f and �̄f denote the mean values of final mass and final
spin obtained from analyzing the inspiral and postinspiral parts
of the signal, respectively. Here the superscripts denote the
inspiral (insp) and the postinspiral (postinsp) portions of the
signal. The 2D posterior distribution of these fractional de-

FIG. 3. Combined results of the IMR consistency test for BBH events
which satisfy the selection criteria (see Table IV and Appendix B).
The combined bounds are obtained assuming the same deviation
for all events. The main panel shows the 90% credible regions of
the 2D posteriors on (�Mf/M̄f ,��f/�̄f ) assuming a uniform prior,
with (0, 0) being the expected value for GR. The side panels show
the marginalized posterior on �Mf/M̄f and ��f/�̄f . The gray distri-
butions correspond to posteriors obtained by combining individual
results. The other colored traces correspond to the O3b events given
in Table IV where the color encodes the median redshifted total mass.

TABLE IV. Results from the IMR consistency test (Sec. IV B). f IMR
c

denotes the cuto↵ frequency between the inspiral and postinspiral
regimes; ⇢IMR, ⇢insp, and ⇢postinsp are the SNR in the full signal, the
inspiral part, and the postinspiral part respectively; and the GR quan-
tile Q2D

GR denotes the fraction of the reweighted posterior enclosed
by the isoprobability contour that passes through the GR value, with
smaller values indicating better consistency with GR. The results are
given only for O3b events which satisfy the selection criteria. See
Appendix B for the updated results on GWTC-2 events.

Event f IMR
c [Hz] ⇢IMR ⇢insp ⇢postinsp Q2D

GR [%]

GW200129 065458 136 25.7 20.1 16.0 1.5
GW200208 130117 98 9.9 7.2 6.8 10.5
GW200224 222234 107 19.4 14.3 13.1 20.7
GW200225 060421 213 12.9 11.1 6.6 1.3
GW200311 115853 122 17.5 13.5 11.0 15.2

viation parameters should peak around (0, 0) when the test is
applied to a signal from a quasi-circular BBH coalescence in
GR, given that we use a waveform model for such signals to
analyze the data.

The parameter estimation runs employed the IMRPhenomX-
PHM waveform with uniform priors on the redshifted com-

Check whether fractional deviations 
are compatible with 0:
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nary given, the coe�cients at di↵erent orders of v/c in the PN
series are uniquely determined, and so is the perturbative ex-
pansion of the early-inspiral phasing within GR. Treating such
PN coe�cients as measurable parameters of the waveform is
therefore a sensible consistency test of GR [173–180]. While
these parameterized waveforms could capture a wide variety
of beyond-GR e↵ects, the abrupt onset of waveform modifi-
cations, possible when nonperturbative phenomena such as
dynamical scalarization are at play, may not be fully captured
by them [181, 182]. However, in the spirit of null tests, these
di↵erences may still appear as apparent violations of GR.

This approach can be applied by directly modifying co-
e�cients in a specific waveform model that encodes PN in-
formation [32] or by adding corrections that correspond to
deformations of a given inspiral PN coe�cient at low frequen-
cies and tapering the corrections to zero at a specific cuto↵
frequency [9]. Corrections are applied in both cases at the
level of the aligned-spin phasing; however, the first method
can be leveraged to perform parametrized tests with precessing
phenomenological templates, as these automatically inherit
non-GR corrections introduced in the aligned-spin phase by
virtue of the twisting-up construction [10, 11].

Here we present results obtained with the second method,
which we apply to the frequency domain model SEOB-
NRv4 ROM [115, 117], a reduced-order model of the time-
domain aligned-spin approximant SEOBNRv4. We do not
include results obtained with the first method, for which an
upgrade to the precessing IMRPhenomXP model is under devel-
opment. Due to time constraints, these results will be presented
elsewhere. Past analyses [10, 11] showed good consistency
between the two approaches, despite the di↵erences in the
waveform models being used and the physics content included.
Dedicated studies would be needed to thoroughly assess the
e↵ect of waveform systematics on parametrized tests across
parameter space and quantify the e↵ects of specific approxi-
mations, such as the omission of precession and higher-order
multipole moments.

Fractional deviations are applied to the full phase as cor-
rections scaling with f (�5+n)/3 at each n/2-th PN order. Fol-
lowing previous works [10, 11], we reweight the posteriors to
reparametrize the results as fractional deviations applied to the
nonspinning terms of a 3.5PN TaylorF2 phase [183], which is
obtained by applying the stationary phase approximation [184]
to time-domain post-Newtonian waveforms:

'PN( f ) = 2⇡ f tc � 'c �
⇡

4

+
3

128⌘

⇣
⇡ f̃
⌘�5/3

7X

i=0

h
'i + 'i l log(⇡ f̃ )

i ⇣
⇡ f̃
⌘i/3
. (4)

Here, f̃ = GM(1 + z) f /c3, with M(1 + z) being the redshifted
total mass of the binary, 'c, tc are the coalescence phase and
time, and ⌘ the symmetric mass ratio. This parametrization
has the advantage of avoiding potentially singular behavior
of the deviation coe�cients, which might occur as a result
of cancellations between the nonspinning and spin-dependent
phasing coe�cients.

Phasing corrections to the inspiral phase are tapered o↵
at the same cuto↵ frequency used in previous analyses, i.e.,

TABLE V. Parametrized test event selection for all binaries meeting
the FAR < 10�3 yr�1 threshold. Here f PAR

c denotes the cuto↵ fre-
quency at which non-GR corrections to the inspiral phase are tapered
away (see main text for details); ⇢IMR and ⇢insp are the optimal SNRs
computed on the full signal or on the region f  f PAR

c respectively.
The last column denotes if the event is included in parametrized tests
on the PN deviation coe�cients.

Event f PAR
c [Hz] ⇢IMR ⇢insp Insp

GW191109 010717 27 20.2 0.8 �
GW191129 134029 174 14.1 12.8 3
GW191204 171526 183 18.0 16.3 3
GW191215 223052 68 10.6 5.5 �
GW191216 213338 151 17.9 15.6 3
GW191222 033537 35 13.1 3.1 �
GW200115 042309 364 12.3 12.2 3
GW200129 065458 57 25.7 10.4 3
GW200202 154313 216 11.1 10.5 3
GW200208 130117 42 9.9 3.0 �
GW200219 094415 39 11.2 2.8 �
GW200224 222234 42 19.4 4.7 �
GW200225 060421 91 12.9 6.8 3
GW200311 115853 54 17.5 6.5 3
GW200316 215756 153 11.5 10.7 3

f PAR
c = 0.35 f 22

peak, where f 22
peak is the GW frequency of the

(2,2)-mode at the peak of the amplitude as defined in the model
SEOBNRv4.

We introduce the following parametric deviations to GW
inspiral phasing:

{�'̂�2, �'̂0, �'̂1, �'̂2, �'̂3, �'̂4, �'̂5l, �'̂6, �'̂6l, �'̂7} , (5)

where each �'̂i represents the fractional deviation from the GR
PN coe�cient at the i/2-th PN order, following the parametriza-
tion adopted in previous analyses [7, 9, 10, 185, 186]. The sub-
script l is used to denote coe�cients of logarithmic-in- f terms.
We do not present bounds for the 2.5PN non-logarithmic term,
as this is degenerate with the coalescence phase, as can be seen
from Eq. (4). As predicted in GR, the coe�cients correspond-
ing to �1PN and 0.5PN are identically zero, so we parametrize
�'̂�2 and �'̂1 as absolute deviations, with a prefactor equal to
the 0PN coe�cient (3/128⌘); all other coe�cients represent
fractional deviations from the GR value.

As detailed in Sec. I, we consider all binaries that meet the
significance threshold of FAR < 10�3 yr�1 and impose the
additional requirement that SNR � 6 in the inspiral regime, as
defined with respect to f PAR

c . Eligible events are summarized
in Table V. The parametrization presented above recovers GR
in the limit �'̂i ! 0, thus consistency with GR can be claimed
if 0 is included within a given confidence interval and, in
what follows, we will report 90% credible intervals for the
posteriors of �'̂i. We adopt uniform priors on �'̂i that are
symmetric about zero and compute their posterior distributions
using LALInference.

As in previous analyses, we only allow the coe�cients �'̂i to
vary one at a time. It has been shown that this procedure is ef-
fective at picking up the deviations from GR that modify more

Set of coefficients: known PN coefficients + dipolar term

PN phasing coeffs (GR: functions of mass ratio, spin)
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nary given, the coe�cients at di↵erent orders of v/c in the PN
series are uniquely determined, and so is the perturbative ex-
pansion of the early-inspiral phasing within GR. Treating such
PN coe�cients as measurable parameters of the waveform is
therefore a sensible consistency test of GR [173–180]. While
these parameterized waveforms could capture a wide variety
of beyond-GR e↵ects, the abrupt onset of waveform modifi-
cations, possible when nonperturbative phenomena such as
dynamical scalarization are at play, may not be fully captured
by them [181, 182]. However, in the spirit of null tests, these
di↵erences may still appear as apparent violations of GR.

This approach can be applied by directly modifying co-
e�cients in a specific waveform model that encodes PN in-
formation [32] or by adding corrections that correspond to
deformations of a given inspiral PN coe�cient at low frequen-
cies and tapering the corrections to zero at a specific cuto↵
frequency [9]. Corrections are applied in both cases at the
level of the aligned-spin phasing; however, the first method
can be leveraged to perform parametrized tests with precessing
phenomenological templates, as these automatically inherit
non-GR corrections introduced in the aligned-spin phase by
virtue of the twisting-up construction [10, 11].

Here we present results obtained with the second method,
which we apply to the frequency domain model SEOB-
NRv4 ROM [115, 117], a reduced-order model of the time-
domain aligned-spin approximant SEOBNRv4. We do not
include results obtained with the first method, for which an
upgrade to the precessing IMRPhenomXP model is under devel-
opment. Due to time constraints, these results will be presented
elsewhere. Past analyses [10, 11] showed good consistency
between the two approaches, despite the di↵erences in the
waveform models being used and the physics content included.
Dedicated studies would be needed to thoroughly assess the
e↵ect of waveform systematics on parametrized tests across
parameter space and quantify the e↵ects of specific approxi-
mations, such as the omission of precession and higher-order
multipole moments.

Fractional deviations are applied to the full phase as cor-
rections scaling with f (�5+n)/3 at each n/2-th PN order. Fol-
lowing previous works [10, 11], we reweight the posteriors to
reparametrize the results as fractional deviations applied to the
nonspinning terms of a 3.5PN TaylorF2 phase [183], which is
obtained by applying the stationary phase approximation [184]
to time-domain post-Newtonian waveforms:
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Here, f̃ = GM(1 + z) f /c3, with M(1 + z) being the redshifted
total mass of the binary, 'c, tc are the coalescence phase and
time, and ⌘ the symmetric mass ratio. This parametrization
has the advantage of avoiding potentially singular behavior
of the deviation coe�cients, which might occur as a result
of cancellations between the nonspinning and spin-dependent
phasing coe�cients.

Phasing corrections to the inspiral phase are tapered o↵
at the same cuto↵ frequency used in previous analyses, i.e.,

TABLE V. Parametrized test event selection for all binaries meeting
the FAR < 10�3 yr�1 threshold. Here f PAR

c denotes the cuto↵ fre-
quency at which non-GR corrections to the inspiral phase are tapered
away (see main text for details); ⇢IMR and ⇢insp are the optimal SNRs
computed on the full signal or on the region f  f PAR

c respectively.
The last column denotes if the event is included in parametrized tests
on the PN deviation coe�cients.

Event f PAR
c [Hz] ⇢IMR ⇢insp Insp

GW191109 010717 27 20.2 0.8 �
GW191129 134029 174 14.1 12.8 3
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c = 0.35 f 22

peak, where f 22
peak is the GW frequency of the

(2,2)-mode at the peak of the amplitude as defined in the model
SEOBNRv4.

We introduce the following parametric deviations to GW
inspiral phasing:

{�'̂�2, �'̂0, �'̂1, �'̂2, �'̂3, �'̂4, �'̂5l, �'̂6, �'̂6l, �'̂7} , (5)

where each �'̂i represents the fractional deviation from the GR
PN coe�cient at the i/2-th PN order, following the parametriza-
tion adopted in previous analyses [7, 9, 10, 185, 186]. The sub-
script l is used to denote coe�cients of logarithmic-in- f terms.
We do not present bounds for the 2.5PN non-logarithmic term,
as this is degenerate with the coalescence phase, as can be seen
from Eq. (4). As predicted in GR, the coe�cients correspond-
ing to �1PN and 0.5PN are identically zero, so we parametrize
�'̂�2 and �'̂1 as absolute deviations, with a prefactor equal to
the 0PN coe�cient (3/128⌘); all other coe�cients represent
fractional deviations from the GR value.

As detailed in Sec. I, we consider all binaries that meet the
significance threshold of FAR < 10�3 yr�1 and impose the
additional requirement that SNR � 6 in the inspiral regime, as
defined with respect to f PAR

c . Eligible events are summarized
in Table V. The parametrization presented above recovers GR
in the limit �'̂i ! 0, thus consistency with GR can be claimed
if 0 is included within a given confidence interval and, in
what follows, we will report 90% credible intervals for the
posteriors of �'̂i. We adopt uniform priors on �'̂i that are
symmetric about zero and compute their posterior distributions
using LALInference.

As in previous analyses, we only allow the coe�cients �'̂i to
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FIG. 6. 90% upper bounds on the magnitude of the parametrized test coe�cients discussed in Sec. V A. The bounds were obtained with a
pipeline based on the model SEOBNRv4 ROM, combining all eligible GWTC-3 events, under the assumption that deviations take the same
value for all the events. Filled gray diamonds mark analogous results obtained with GWTC-2 data [11]; in this case, we also show bounds
obtained with a pipeline based on IMRPhenomPv2, that are marked by unfilled black diamonds. Horizontal stripes indicate constraints obtained
with individual events, with cold (warm) colors representing low (high) total mass events. The left and right panel show constraints on PN
deformation coe�cients, from �1PN to 3.5PN order. The best improvement with respect to the GWTC-2 bounds is achieved for the �1PN term,
thanks ot the inclusion of the NSBH candidate GW200115 042309.

FIG. 7. Combined GWTC-3 results for the parametrized deviation coe�cients of Sec. V A. Filled distributions represent the results obtained
hierarchically combining all events. This method allows the deviation coe�cients to assume di↵erent values for di↵erent events. Unfilled black
curves represent the distributions obtained in Fig. 6, by assuming the same value of the deviation parameters across all events. Horizontal ticks
and dashed white lines mark the 90% credible intervals and median values obtained with the hierarchical analysis.

Along with this leading-order e↵ect, we have included higher-
order PN terms that appear through the inspiral phase [167,
204] of gravitational waveform.

While Kerr BHs have  = 1 [201–203], compact stars have
a value of  that di↵ers from the BH value, determined by the
star’s mass and internal composition. Numerical simulations
of spinning neutron stars show that the value of  can vary be-
tween ⇠2 and ⇠14 for these systems [205–207]. Moreover, for
currently available models of spinning boson stars,  can have
values ⇠10–150 [208–211]. More exotic stars like gravastars
can even take negative values for  [212]. Hence, an indepen-
dent measurement of  from gravitational-wave observations
can be used to distinguish black holes from other exotic ob-

jects [213–216]. However, to fully understand the nature of
compact objects, one may also include e↵ects such as the tidal
deformations that arise due to the external gravitational field
[217–220] and tidal heating [221–226] along with the spin-
induced deformations, an extensive study of these e↵ects is not
in the scope of this paper.

For a spinning compact binary system, the coe�cients i,
i = 1, 2 represent the primary and secondary components’
spin-induced quadrupole moment parameters. The correlation
of i with the masses and spin parameters of the binary are
evident from Eq. (6), which makes the simultaneous estima-
tion of 1 and 2 hard. The higher-order terms present at the
3PN order help break this degeneracy, but are not enough to
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FIG. 9. The posterior probability distribution on the spin-induced
quadrupole moment parameter, �s from the events listed in the SIM
column of Table II, passing the selection criteria described in Sec-
tion V B. The black dashed vertical line indicates the BBH value
(�s = 0). The colored vertical lines show the 90% symmetric bounds
on �s calculated from the individual events assuming a uniform prior
ranging between [�500, 500] on �s.

FIG. 10. Joint posterior probability distribution on the spin-induced
quadrupole moment parameter �s from the GWTC-3 events. Bounds
obtained by multiplying the likelihoods (restricted) and by hierarchi-
cally combining events (generic) are shown. The analysis is performed
assuming uniform prior ranging between [-500, 500] on �s.

the combined posterior and the 90% bounds are expected to
show this feature.

We also consider a case where the analysis is restricted to
only positive �s as is well motivated in the case of neutron
stars [205, 206, 215] and boson stars [208], in this case the
event provides the tightest upper limits is GW191216 213338,
with 90% credible bounds of �s < 10.65.

We show the combined posterior distribution on �s from
all the GW events passing the selection criteria in Fig. 10.
The red curve draws the posterior distribution obtained by
multiplying the likelihoods of each individual signal. In
contrast, the population-marginalized posterior from the hi-
erarchical analysis is shown in the blue curve. Dotted lines
show the 90% symmetric credible intervals, and a dashed line
marks the BBH value (�s = 0). We estimate the combined
symmetric 90% bound on �s considering GWTC-3 events
to be �s = �16.0+13.6

�16.7 and, conditional on positive values,
�s < 6.66 from the joint likelihood analysis. With 90% credi-
bility, we find �s = �26.3+45.8

�52.9 from the hierarchical analysis.

The generic population results constrain �s < 51.85 when
we restrict to positive prior region. Also, we find the hyperpa-
rameters to be consistent with the Kerr BBH hypothesis with
90% credible bounds with µ = �26.8+26.3

�34.1 and � < 41.8. Com-
pared to the previous bounds reported in [11], µ = �24.6+30.7

�35.3
and � < 52.7, the � estimate improves, meaning tighter con-
straints on �s, while the peak of the distribution is shifted
more towards the negative prior region. The shift in the peak
or µ omits the BBH value with the 90% credibility and can
be associated to the poor �s constraints on the negative side
of the prior region from the individual events, emerging from
waveform degeneracies at �s < 0 with a certain region of
the spin parameter space. A future study employing wave-
form models including higher harmonics may help break those
degeneracies and hence to improve our overall parameter es-
timation [228, 230]. Moreover, a more generic approach has
been recently proposed [230] that uses a hierarchical mixture-
likelihood formalism to estimate the fraction of events in the
population that deviated from BBH nature. With the increased
number of detections in the future, it would be more natural to
employ generic approaches that considers the population to be
comprised of BBH and non-BBH subpopulations.

The combined log Bayes factor of log10 BKerr
�s , 0 = 0.9 is

obtained supporting the BBH hypothesis over the hypothesis
of all events being non-BBH. This changes to log Bayes factor
of log10 BKerr

�s > 0 = 2.2 if we only allow �s � 0. The findings
here are all consistent with the results reported in GWTC-2 [11]
although the combined constraints are not directly compatible
due to the di↵erent selection of events.

VI. TESTS OF GRAVITATIONAL WAVE PROPAGATION

GR predicts that GWs propagate nondispersively and hence
they are described by the dispersion relation E2 = p2c2, where
E and p are the energy and momentum of the wave. Detection
of dispersion of GWs can be seen as a signature of modifica-
tions to GR. For example, some of the Lorentz violating theo-
ries of gravity predict a modified dispersion relation [45, 231–
234]. We use a parameterized model [41, 49] for dispersion of
GWs that helps search for the presence of dispersion using the
data without referring to the details of the modified theory.

Our parameterized dispersion relation reads [41]

E2 = p2c2 + A↵p↵c↵ , (9)

where A↵ and ↵ are two phenomenological parameters charac-
terizing dispersion. The modified dispersion relation causes
frequency modes of GWs to propagate at di↵erent speeds,
changing the overall phase morphology of the GW that are
observed with respect to the GR predictions. This can be incor-
porated in the waveform as frequency-dependent corrections
to its phase evolution [10, 41]. Here we assume that the wave-
form obtained in the local wave zone [235] of the system is
consistent with GR [10].

For di↵erent choices of ↵, the modified dispersion leads to
a deviation in the GR phasing formula. For example, ↵ = 0
with A↵ > 0 corresponds to the dispersion e↵ect of a massive
graviton with mass mgc2 =

p
A0 [49]. We choose to test

22

FIG. 9. The posterior probability distribution on the spin-induced
quadrupole moment parameter, �s from the events listed in the SIM
column of Table II, passing the selection criteria described in Sec-
tion V B. The black dashed vertical line indicates the BBH value
(�s = 0). The colored vertical lines show the 90% symmetric bounds
on �s calculated from the individual events assuming a uniform prior
ranging between [�500, 500] on �s.
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FIG. 10. Joint posterior probability distribution on the spin-induced
quadrupole moment parameter �s from the GWTC-3 events. Bounds
obtained by multiplying the likelihoods (restricted) and by hierarchi-
cally combining events (generic) are shown. The analysis is performed
assuming uniform prior ranging between [-500, 500] on �s.

the combined posterior and the 90% bounds are expected to
show this feature.

We also consider a case where the analysis is restricted to
only positive �s as is well motivated in the case of neutron
stars [205, 206, 215] and boson stars [208], in this case the
event provides the tightest upper limits is GW191216 213338,
with 90% credible bounds of �s < 10.65.

We show the combined posterior distribution on �s from
all the GW events passing the selection criteria in Fig. 10.
The red curve draws the posterior distribution obtained by
multiplying the likelihoods of each individual signal. In
contrast, the population-marginalized posterior from the hi-
erarchical analysis is shown in the blue curve. Dotted lines
show the 90% symmetric credible intervals, and a dashed line
marks the BBH value (�s = 0). We estimate the combined
symmetric 90% bound on �s considering GWTC-3 events
to be �s = �16.0+13.6

�16.7 and, conditional on positive values,
�s < 6.66 from the joint likelihood analysis. With 90% credi-
bility, we find �s = �26.3+45.8

�52.9 from the hierarchical analysis.

The generic population results constrain �s < 51.85 when
we restrict to positive prior region. Also, we find the hyperpa-
rameters to be consistent with the Kerr BBH hypothesis with
90% credible bounds with µ = �26.8+26.3

�34.1 and � < 41.8. Com-
pared to the previous bounds reported in [11], µ = �24.6+30.7

�35.3
and � < 52.7, the � estimate improves, meaning tighter con-
straints on �s, while the peak of the distribution is shifted
more towards the negative prior region. The shift in the peak
or µ omits the BBH value with the 90% credibility and can
be associated to the poor �s constraints on the negative side
of the prior region from the individual events, emerging from
waveform degeneracies at �s < 0 with a certain region of
the spin parameter space. A future study employing wave-
form models including higher harmonics may help break those
degeneracies and hence to improve our overall parameter es-
timation [228, 230]. Moreover, a more generic approach has
been recently proposed [230] that uses a hierarchical mixture-
likelihood formalism to estimate the fraction of events in the
population that deviated from BBH nature. With the increased
number of detections in the future, it would be more natural to
employ generic approaches that considers the population to be
comprised of BBH and non-BBH subpopulations.

The combined log Bayes factor of log10 BKerr
�s , 0 = 0.9 is

obtained supporting the BBH hypothesis over the hypothesis
of all events being non-BBH. This changes to log Bayes factor
of log10 BKerr

�s > 0 = 2.2 if we only allow �s � 0. The findings
here are all consistent with the results reported in GWTC-2 [11]
although the combined constraints are not directly compatible
due to the di↵erent selection of events.

VI. TESTS OF GRAVITATIONAL WAVE PROPAGATION

GR predicts that GWs propagate nondispersively and hence
they are described by the dispersion relation E2 = p2c2, where
E and p are the energy and momentum of the wave. Detection
of dispersion of GWs can be seen as a signature of modifica-
tions to GR. For example, some of the Lorentz violating theo-
ries of gravity predict a modified dispersion relation [45, 231–
234]. We use a parameterized model [41, 49] for dispersion of
GWs that helps search for the presence of dispersion using the
data without referring to the details of the modified theory.

Our parameterized dispersion relation reads [41]

E2 = p2c2 + A↵p↵c↵ , (9)

where A↵ and ↵ are two phenomenological parameters charac-
terizing dispersion. The modified dispersion relation causes
frequency modes of GWs to propagate at di↵erent speeds,
changing the overall phase morphology of the GW that are
observed with respect to the GR predictions. This can be incor-
porated in the waveform as frequency-dependent corrections
to its phase evolution [10, 41]. Here we assume that the wave-
form obtained in the local wave zone [235] of the system is
consistent with GR [10].

For di↵erent choices of ↵, the modified dispersion leads to
a deviation in the GR phasing formula. For example, ↵ = 0
with A↵ > 0 corresponds to the dispersion e↵ect of a massive
graviton with mass mgc2 =

p
A0 [49]. We choose to test
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than one PN coe�cient [187–189]. Allowing multiple devia-
tions in the same template is bound to produce less informative
posteriors, due to correlations among di↵erent parameters and
also with GR coe�cients. Such correlations can be e↵ectively
reduced with alternative choices of the deformation parame-
ters, which can be guided by a principal component analysis
[190, 191], thus increasing the e↵ectiveness of multiparameter
tests. It was also shown that synergies between third-generation
detectors and space-based interferometry might dramatically
improve the precision of multiparameter tests [73].

In Fig. 6, we present the 90% upper bounds on the deviation
coe�cients obtained from the combined distribution of events
from GWTC-3, under the assumption that deviations take the
same value for all the events. While the combined bounds
are fully consistent with GR, we do note that for a number of
events �'̂i = 0 falls outside the 90% credible interval of the
deviation coe�cients distributions. We find that the addition
of an extra degree of freedom can enhance the weight of sec-
ondary modes observed in GR parameter estimation runs, as
can be seen for GW191216 213338 and GW200316 215756,
where a secondary mode in mass ratio present in the GR pa-
rameter estimation runs dominates the results when inspiral
deviation parameters are included. This is partly due to the
singular behavior of the parametrization employed here, and
indeed the application of reweighting alleviates the problem.
Still, the presence of a secondary mode remains and so do the
broad posteriors for the deviation coe�cients. Appendix A
contains a more extended discussion on the impact of noise
properties and waveform systematics on our bounds.

We find that there is no uniform improvement over the
GWTC-2 results [11] across all deviation coe�cients. This is
consistent with the modest improvement factor due to the in-
creased number of events, which can be estimated to be ⇠ 1.2.
We find that this factor is comparable to fluctuations in the final
bounds determined by individual events. The most striking
di↵erence with respect to the GWTC-2 analysis is the new
constraint obtained for �'̂�2, for which we obtain an upper
bound |�'̂�2|  7.3 ⇥ 10�4 at the 90% credible level. This
result improves upon the GWTC-2 bound by a factor ⇠ 2. The
improvement is driven by the inclusion of GW200115 042309,
due to its long duration. The presence of a non-zero �1PN term
can be associated to the emission of dipolar radiation, which
is forbidden in GR but can be excited in alternative theories
of gravity and is related to energy and momentum being trans-
ferred from the binary to additional fields. This result is less
stringent than the one obtained with combined measurements
of binary pulsars [192] or with the observation of GW170817
[9].

We also computed hierarchically combined posteriors for
all the deviation coe�cients introduced above, where we allow
the deviation coe�cients to take independent values for each
event. These are shown in Fig. 7, plotted against the combined
posteriors employed to obtain the upper bounds of Fig. 6. All
results are consistent with the GR prediction with at least 90%
credibility. In Fig. 8, we show the joint distribution of the mean
µ and standard deviation � of the population-marginalized pos-
terior for the deviation coe�cients of Eq. (5). All distributions
are consistent with the GR prediction for which µ = � = 0,

with deviations occurring at �1PN being the most tightly con-
strained.

In Table VI, we report the medians, 90% credible inter-
vals, and GR quantiles QGR = P(�'̂i < 0) for both the
hierarchical and the joint-likelihood approaches. Values of
QGR significantly di↵erent from 50% indicate that the null
hypothesis falls in the tails of the combined distribution. In
the hierarchical analysis the most constrained parameter is
�'̂�2 = �0.05+0.99

�1.25 ⇥ 10�3 at the 90% credible level, while devi-
ations in the 3.5PN order coe�cient are the least constrained,
with �'̂7 = 0.14+1.05

�1.16. For the majority of the PN coe�cients,
the hierarchical analysis of GWTC-3 data obtains tighter con-
straints than the ones obtained with GWTC-2 events [11].

Results for the shifts to inspiral phase can also be mapped
onto constraints on specific theories, in particular via the
parametrized post-Einstein (ppE) framework [71, 177]. For
instance, bounds on the coupling constant of Einstein–dilaton–
Gauss–Bonnet and dynamical Chern–Simons gravity were ob-
tained using GWTC-2 events [72, 193, 194]. However, the
upper bounds reported here depend on the parametrization be-
ing used and on specific details of the analysis, such as the
frequency at which non-GR corrections are being tapered o↵.
The priors we impose on the deviation coe�cients are not de-
signed to suit any specific theory and, depending on the theory
that is being considered, di↵erent sampling parameters and
prior bounds might be preferable to the ones adopted here.
Furthermore, in alternative theories of gravity multiple inspiral
coe�cients will be subject to deviations from GR; our bounds
refer to single-coe�cient deviations, that might capture at once
deviations at several PN orders, so the mapping would be am-
biguous. Likewise, one would also need a robust estimate of
the error caused by neglecting currently unknown higher-order
PN corrections and deviations in the merger–ringdown phase,
which will also di↵er from the GR one [195, 196]. Finally,
it is not clear whether some of these theories, such as Love-
lock, Chern–Simons or Horndeski gravity, of which Einstein–
dilaton–Gauss–Bonnet gravity is a special case, would admit
at all a well-posed initial value problem in their most general
form [197], although well-posed formulations are possible in
the weak-coupling limit [198–200].

B. Spin-induced quadrupole moment

Spinning objects have quadrupole and higher contributions
to the multipole decomposition of their gravitational field due
to their rotational deformations. Following the no-hair conjec-
ture, the spin-induced multipole moments take unique values
for black holes given their mass and spin [201–203]. Gravita-
tional waveforms describing spinning compact binary systems
encode information about these spin-induced multipole mo-
ment e↵ects. The leading order term can be schematically
represented as,

Q = �  �2m3. (6)

Here Q is the quadrupole moment scalar and is the leading
order term in the gravitational wave phase at 2 PN order. m and
� are the mass and the dimensionless spin of the compact object.

Test of the multipolar structure of compact objects, as a modification of the inspiral phasing

Leading order contribution at 2PN in the phasing, weak constraints for small spins.
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• For a Kerr black hole:
• For a neutron star:
• Exotic compact objects (ECOs) ?
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the dispersion relation for a set of eight discrete values of ↵
between 0 and 4 with a step of 0.5 excluding ↵ = 2. When
↵ = 2, the speeds of all the frequency components are modified
in the same way; therefore, the GW signal remains unchanged
from the GR prediction except for an overall change in the
time of arrival of the signal.

Our method is identical to the previous analyses performed
in GWTC-1 and GWTC-2 [10, 11], except for the use of a more
up-to-date IMRPhenomXP [105] waveform model as opposed
to the PhenomPv2 [236] waveform employed in GWTC-1
and GWTC-2 [10, 11]. We perform parameter estimation
using the nested sampling algorithm [140] as implemented
in the LALInference package [138] and obtain bounds on
the phenomenological parameters A↵ for each event. As in
the case of preceding analyses, we perform the sampling for
A↵ < 0 and A↵ > 0 separately [10, 11], and then combine the
posterior to produce the joint A↵ posterior. We choose uniform
priors for the phenomenological parameters A↵. However,
while computing the bound on the graviton mass mg, which
is derived from A0, we re-weight the posteriors such that the
prior on mg is uniform.

Propagation e↵ects are independent of the source proper-
ties. Therefore we can combine the results from individual
events to compute overall constraints over the phenomenologi-
cal dispersion parameters. We obtain the combined posterior
distributions of A↵ by multiplying the likelihoods from individ-
ual events and weighting the product with the prior.

We perform the analysis on the 12 BBH candidate events
in the catalog that are listed in Table II. Though we analyzed
GW191109 010717, the posteriors obtained were too wide to
be informative, and following the study regarding this event re-
ported in Appendix A, which finds that nonstationarities in the
detector noise could dominate over the signal, we exclude this
event from further analysis. Analysis of another BBH event,
GW200316 215756 has sampling issues and is thus excluded
from the analysis. Further, we do not include NSBH event
GW200115 042309 in this analysis due to the computational
constraints. Nonetheless, this is among the closest events in
the catalog and would have a negligible impact on the joint
bounds.

Fig. 11 shows the violin plots of joint posteriors on the
phenomenological parameters A↵ for various values of ↵,
which are obtained by combining posteriors from analysis
of individual events. The red violin plots represent the poste-
riors obtained from all 43 selected events (31 events from
pre-O3b and 12 O3b events). For some of the ↵ values,
the posteriors show biases with respect to the previous re-
sults [11] due to the inclusion of O3b events. We have identi-
fied the events GW200219 094415 and GW200225 060421 as
having the strongest impact in biasing the combined pos-
terior. These are the events with the lowest residual
SNR p-values among all the O3b events (see Table III).
GW200225 060421 shows p-value of 0.05 with fitting fac-
tor FF90 = 0.86 and GW200219 094415 has p-value = 0.1
with FF90 = 0.74. These events require detailed analysis to
understand the reasons for the observed deviations, which we
leave for follow-up work. For comparison, in Fig. 11, we
also plot the combined posteriors from all the events exclud-
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FIG. 11. Results for the modified dispersion analysis (Sec. VI). The
red violin plots show the combined posteriors of the parameter A↵
calculated from the GWTC-3 events with the error bars denoting the
90% credible intervals. For comparison, we also present the com-
bined posteriors after excluding the events GW200219 094415 and
GW200225 060421 using blue violin plots. The gray plots in the
background are the combined posteriors corresponding to GWTC-
2 [11].

ing GW200219 094415 and GW200225 060421 (blue violin
plots). These are consistent with the GWTC-2 [11] results
(gray plots in the background) and show an average improve-
ment of 1.3 over the previous results, which is in agreement
with the Gaussian expectation for improvement from 41 events
compared to 31 of GWTC-2 [11].

In Fig. 12, we present the scatter plot of 90% credible up-
per bounds on |A↵|, for A↵ > 0 and A↵ < 0 separately. In
the figure, red-filled diamond markers represent the GWTC-3
bounds. We also show the bounds from the analysis excluding
the events GW200219 094415 and GW200225 060421 in the
blue diamond markers. For quantitative comparison, we list
|A↵| bounds, including bounds on the graviton mass mg, in Ta-
ble VII. To demonstrate the level of bias in the posteriors with
respect to the GR hypothesis, we included the GR quantiles
QGR = P(A↵ < 0) in Table VII.

The updated 90% credible bound on the graviton mass
obtained by combining posteriors of 43 GWTC-3 events is
mg  1.27 ⇥ 10�23eV/c2, which is 2.5 times better than the
Solar System bound of 3.16 ⇥ 10�23 eV/c2 [237]. Compared
to the previous GWTC-2 bound 1.76 ⇥ 10�23 eV/c2 [11], the
improvement is a factor of 1.4.

VII. POLARIZATIONS

Measuring the polarization content of GWs is a way of con-
straining possible deviations from GR, as the theory allows
only two of the six polarization states predicted by generic
metric theories of gravity [50, 51]. Assuming M generic polar-
ization modes, the frequency-domain strain data d̃( f ) measured
by a network of D detectors can be written as the combination
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FIG. 9. The posterior probability distribution on the spin-induced
quadrupole moment parameter, �s from the events listed in the SIM
column of Table II, passing the selection criteria described in Sec-
tion V B. The black dashed vertical line indicates the BBH value
(�s = 0). The colored vertical lines show the 90% symmetric bounds
on �s calculated from the individual events assuming a uniform prior
ranging between [�500, 500] on �s.

FIG. 10. Joint posterior probability distribution on the spin-induced
quadrupole moment parameter �s from the GWTC-3 events. Bounds
obtained by multiplying the likelihoods (restricted) and by hierarchi-
cally combining events (generic) are shown. The analysis is performed
assuming uniform prior ranging between [-500, 500] on �s.

the combined posterior and the 90% bounds are expected to
show this feature.

We also consider a case where the analysis is restricted to
only positive �s as is well motivated in the case of neutron
stars [205, 206, 215] and boson stars [208], in this case the
event provides the tightest upper limits is GW191216 213338,
with 90% credible bounds of �s < 10.65.

We show the combined posterior distribution on �s from
all the GW events passing the selection criteria in Fig. 10.
The red curve draws the posterior distribution obtained by
multiplying the likelihoods of each individual signal. In
contrast, the population-marginalized posterior from the hi-
erarchical analysis is shown in the blue curve. Dotted lines
show the 90% symmetric credible intervals, and a dashed line
marks the BBH value (�s = 0). We estimate the combined
symmetric 90% bound on �s considering GWTC-3 events
to be �s = �16.0+13.6

�16.7 and, conditional on positive values,
�s < 6.66 from the joint likelihood analysis. With 90% credi-
bility, we find �s = �26.3+45.8

�52.9 from the hierarchical analysis.

The generic population results constrain �s < 51.85 when
we restrict to positive prior region. Also, we find the hyperpa-
rameters to be consistent with the Kerr BBH hypothesis with
90% credible bounds with µ = �26.8+26.3

�34.1 and � < 41.8. Com-
pared to the previous bounds reported in [11], µ = �24.6+30.7

�35.3
and � < 52.7, the � estimate improves, meaning tighter con-
straints on �s, while the peak of the distribution is shifted
more towards the negative prior region. The shift in the peak
or µ omits the BBH value with the 90% credibility and can
be associated to the poor �s constraints on the negative side
of the prior region from the individual events, emerging from
waveform degeneracies at �s < 0 with a certain region of
the spin parameter space. A future study employing wave-
form models including higher harmonics may help break those
degeneracies and hence to improve our overall parameter es-
timation [228, 230]. Moreover, a more generic approach has
been recently proposed [230] that uses a hierarchical mixture-
likelihood formalism to estimate the fraction of events in the
population that deviated from BBH nature. With the increased
number of detections in the future, it would be more natural to
employ generic approaches that considers the population to be
comprised of BBH and non-BBH subpopulations.

The combined log Bayes factor of log10 BKerr
�s , 0 = 0.9 is

obtained supporting the BBH hypothesis over the hypothesis
of all events being non-BBH. This changes to log Bayes factor
of log10 BKerr

�s > 0 = 2.2 if we only allow �s � 0. The findings
here are all consistent with the results reported in GWTC-2 [11]
although the combined constraints are not directly compatible
due to the di↵erent selection of events.

VI. TESTS OF GRAVITATIONAL WAVE PROPAGATION

GR predicts that GWs propagate nondispersively and hence
they are described by the dispersion relation E2 = p2c2, where
E and p are the energy and momentum of the wave. Detection
of dispersion of GWs can be seen as a signature of modifica-
tions to GR. For example, some of the Lorentz violating theo-
ries of gravity predict a modified dispersion relation [45, 231–
234]. We use a parameterized model [41, 49] for dispersion of
GWs that helps search for the presence of dispersion using the
data without referring to the details of the modified theory.

Our parameterized dispersion relation reads [41]

E2 = p2c2 + A↵p↵c↵ , (9)

where A↵ and ↵ are two phenomenological parameters charac-
terizing dispersion. The modified dispersion relation causes
frequency modes of GWs to propagate at di↵erent speeds,
changing the overall phase morphology of the GW that are
observed with respect to the GR predictions. This can be incor-
porated in the waveform as frequency-dependent corrections
to its phase evolution [10, 41]. Here we assume that the wave-
form obtained in the local wave zone [235] of the system is
consistent with GR [10].

For di↵erent choices of ↵, the modified dispersion leads to
a deviation in the GR phasing formula. For example, ↵ = 0
with A↵ > 0 corresponds to the dispersion e↵ect of a massive
graviton with mass mgc2 =

p
A0 [49]. We choose to test

• Massive gravity:
• Change in the speed of GW:
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Low and high frequencies propagate at different speeds (except          ),  leaves an imprint on 
the phasing of the wave
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the dispersion relation for a set of eight discrete values of ↵
between 0 and 4 with a step of 0.5 excluding ↵ = 2. When
↵ = 2, the speeds of all the frequency components are modified
in the same way; therefore, the GW signal remains unchanged
from the GR prediction except for an overall change in the
time of arrival of the signal.

Our method is identical to the previous analyses performed
in GWTC-1 and GWTC-2 [10, 11], except for the use of a more
up-to-date IMRPhenomXP [105] waveform model as opposed
to the PhenomPv2 [236] waveform employed in GWTC-1
and GWTC-2 [10, 11]. We perform parameter estimation
using the nested sampling algorithm [140] as implemented
in the LALInference package [138] and obtain bounds on
the phenomenological parameters A↵ for each event. As in
the case of preceding analyses, we perform the sampling for
A↵ < 0 and A↵ > 0 separately [10, 11], and then combine the
posterior to produce the joint A↵ posterior. We choose uniform
priors for the phenomenological parameters A↵. However,
while computing the bound on the graviton mass mg, which
is derived from A0, we re-weight the posteriors such that the
prior on mg is uniform.

Propagation e↵ects are independent of the source proper-
ties. Therefore we can combine the results from individual
events to compute overall constraints over the phenomenologi-
cal dispersion parameters. We obtain the combined posterior
distributions of A↵ by multiplying the likelihoods from individ-
ual events and weighting the product with the prior.

We perform the analysis on the 12 BBH candidate events
in the catalog that are listed in Table II. Though we analyzed
GW191109 010717, the posteriors obtained were too wide to
be informative, and following the study regarding this event re-
ported in Appendix A, which finds that nonstationarities in the
detector noise could dominate over the signal, we exclude this
event from further analysis. Analysis of another BBH event,
GW200316 215756 has sampling issues and is thus excluded
from the analysis. Further, we do not include NSBH event
GW200115 042309 in this analysis due to the computational
constraints. Nonetheless, this is among the closest events in
the catalog and would have a negligible impact on the joint
bounds.

Fig. 11 shows the violin plots of joint posteriors on the
phenomenological parameters A↵ for various values of ↵,
which are obtained by combining posteriors from analysis
of individual events. The red violin plots represent the poste-
riors obtained from all 43 selected events (31 events from
pre-O3b and 12 O3b events). For some of the ↵ values,
the posteriors show biases with respect to the previous re-
sults [11] due to the inclusion of O3b events. We have identi-
fied the events GW200219 094415 and GW200225 060421 as
having the strongest impact in biasing the combined pos-
terior. These are the events with the lowest residual
SNR p-values among all the O3b events (see Table III).
GW200225 060421 shows p-value of 0.05 with fitting fac-
tor FF90 = 0.86 and GW200219 094415 has p-value = 0.1
with FF90 = 0.74. These events require detailed analysis to
understand the reasons for the observed deviations, which we
leave for follow-up work. For comparison, in Fig. 11, we
also plot the combined posteriors from all the events exclud-

FIG. 11. Results for the modified dispersion analysis (Sec. VI). The
red violin plots show the combined posteriors of the parameter A↵
calculated from the GWTC-3 events with the error bars denoting the
90% credible intervals. For comparison, we also present the com-
bined posteriors after excluding the events GW200219 094415 and
GW200225 060421 using blue violin plots. The gray plots in the
background are the combined posteriors corresponding to GWTC-
2 [11].

ing GW200219 094415 and GW200225 060421 (blue violin
plots). These are consistent with the GWTC-2 [11] results
(gray plots in the background) and show an average improve-
ment of 1.3 over the previous results, which is in agreement
with the Gaussian expectation for improvement from 41 events
compared to 31 of GWTC-2 [11].

In Fig. 12, we present the scatter plot of 90% credible up-
per bounds on |A↵|, for A↵ > 0 and A↵ < 0 separately. In
the figure, red-filled diamond markers represent the GWTC-3
bounds. We also show the bounds from the analysis excluding
the events GW200219 094415 and GW200225 060421 in the
blue diamond markers. For quantitative comparison, we list
|A↵| bounds, including bounds on the graviton mass mg, in Ta-
ble VII. To demonstrate the level of bias in the posteriors with
respect to the GR hypothesis, we included the GR quantiles
QGR = P(A↵ < 0) in Table VII.

The updated 90% credible bound on the graviton mass
obtained by combining posteriors of 43 GWTC-3 events is
mg  1.27 ⇥ 10�23eV/c2, which is 2.5 times better than the
Solar System bound of 3.16 ⇥ 10�23 eV/c2 [237]. Compared
to the previous GWTC-2 bound 1.76 ⇥ 10�23 eV/c2 [11], the
improvement is a factor of 1.4.

VII. POLARIZATIONS

Measuring the polarization content of GWs is a way of con-
straining possible deviations from GR, as the theory allows
only two of the six polarization states predicted by generic
metric theories of gravity [50, 51]. Assuming M generic polar-
ization modes, the frequency-domain strain data d̃( f ) measured
by a network of D detectors can be written as the combination
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FIG. 14. Left panel: The 90% credible levels of the posterior probability distribution of the fractional deviations in the frequency and damping
time of the (2,±2) QNM, (� f220, �⌧220) and their corresponding one-dimensional marginalized posterior distributions, for events from O1, O2
and O3 passing a SNR threshold of 8 in both the pre- and post-merger signal. Posteriors for GW150914 and GW200129 065458 are separately
shown. The joint constraints on (� f220, �⌧220) obtained multiplying the posteriors (given a flat prior) from individual events are given by the
filled grey contours, while the hierarchical method of combination yields the black dot dashed curves in the 1D marginalized posteriors. Right
panel: 90% credible interval on the one-dimensional marginalised posteriors on ��i = (� f220, �⌧220), colored by the median redshifted total mass
(1 + z)M, inferred assuming GR. Filled gray (unfilled black) downward triangles mark the constraints obtained when all the events are combined
by multiplying posteriors (hierarchically). For comparison, we mark the previously published bounds from [11] using filled/unfilled upward
triangles. The bounds from GW200129 065458 (square) and GW150914 (diamond) are indicated by the separate markers. See Sec. VIII A 2 for
details.

are. Follow-up investigations with synthetic signals in seg-
ments of data immediately adjacent to the event suggests the
possibility of noise systematics not accounted for. The same
study rules out, within our statistical uncertainties, any system-
atic bias due to missing physics in the SEOBNRv4HM waveform
model.

We also note that the joint posterior distribution on �⌧̂220
in the left plot of Fig. 14 does not include the GR prediction
at the 90% credible level. Although insu�cient to claim a
violation of GR, this apparent deviation definitely warrants
further investigation. The trend of overestimating the com-
bined damping time is consistent with what is observed on
an event-by-event analysis, where the posterior on �⌧̂220, al-
though consistent with 0 is biased towards positive values.
Hence a combination of information across multiple events
is expected to reduce statistical uncertainties and make this
bias more prominent. One possible reason might be a prior
on (� f̂220, �⌧̂220) which is asymmetric around 0 with greater
support for positive values. This is because, since ( f220, ⌧220)
are strictly positive quantities, the priors on (� f̂220, �⌧̂220) are
strictly greater than �1. However, the upper prior boundary

is free to be as large as is required for the posterior to not rail
against it and it usually greater than 1. For events with moder-
ately high SNRs analysed with this method, the e↵ect of the
prior on the final posterior can be non-negligible. We also note
that while the posteriors on the fractional deviation show more
support towards positive values, the frequency and damping
time reconstructed using Eqs. (16) and (17) are consistent with
those predicted using estimates of initial masses and spins from
[81] and NR fits [158]. This gives us more confidence in the
measured QNMs, while also pointing to the possibility that
correlations among the remnant parameters may be responsible
for the apparent deviation. Further, as has been argued in [11],
imperfect noise modelling can also lead to overestimation of
damping time [120]. Finally, we can not rule out the statistical
uncertainties of working with a sample of just 12 events.

B. Echoes

Mergers of certain classes of exotic compact objects that do
not have a horizon can cause ingoing gravitational waves (e.g.,
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TABLE VIII. The table summarizes the choices of basis used in the polarization test. x, ⇥, b, l, x, and y represent the plus mode, cross mode,
scalar breathing mode, scalar longitudinal mode, vector x mode, and vector y mode respectively. The first column shows the polarization
hypothesis being tested, the third column reports the number of basis modes, and the last column reports the number of free parameters that are
marginalized over in the computation of the evidence.

Hypothesis Description # of basis modes Mode(s) Basis mode(s) Free parameters

HT,1 Pure tensorial 1 +, ⇥ + 5
HV,1 Pure vectorial 1 x, y x 5
HS,1 Pure scalar 1 b b 2
HTS,1 Tensor–scalar 1 +, ⇥, b, l + 9
HTV,1 Tensor–vector 1 +, ⇥, x, y + 9
HVS,1 Vector–scalar 1 x, y, b, l x 9
HTVS,1 Tensor–vector–scalar 1 +, ⇥, b, l, x, y + 13
HT,2 Pure tensorial 2 +, ⇥ +, ⇥ 2
HV,2 Pure vectorial 2 x, y x, y 2
HTS,2 Tensor–scalar 2 +, ⇥, b, l +, b 11
HTV,2 Tensor–vector 2 +, ⇥, x, y +, x 11
HVS,2 Vector–scalar 2 x, y, b, l x, b 11
HTVS,2 Tensor–vector–scalar 2 +, ⇥, b, l, x, y +, b 19

TABLE IX. Combined log10 Bayes factors B for various polarization hypotheses against the tensor hypothesis, using both 2-detector and
3-detector events. Polarization states have been projected onto one basis-mode as detailed in Sec. VII. Positive (negative) values indicate that the
hypothesis indicated in the superscript is favored (disfavored) with respect to the tensorial hypothesis. Error bars refer to 90% credible intervals.

Events log10 BS
T log10 BV

T log10 BTS
T log10 BTV

T log10 BVS
T log10 BTVS

T

O1 �0.04 ± 0.07 0.09 ± 0.07 0.04 ± 0.07 0.09 ± 0.07 0.09 ± 0.07 0.07 ± 0.07
O2 �0.42 ± 0.12 0.04 ± 0.12 0.08 ± 0.12 0.22 ± 0.12 0.09 ± 0.12 0.35 ± 0.12
O3a �1.85 ± 0.21 �1.04 ± 0.20 0.25 ± 0.20 0.07 ± 0.20 �1.05 ± 0.20 �0.18 ± 0.20
O3b �1.93 ± 0.17 �0.79 ± 0.17 �0.17 ± 0.17 �0.07 ± 0.17 �0.86 ± 0.17 �0.32 ± 0.17

Combined �4.24 ± 0.30 �1.70 ± 0.30 0.20 ± 0.30 0.31 ± 0.30 �1.73 ± 0.30 �0.08 ± 0.30

TABLE X. Combined log10 Bayes factor B for various polarization hypotheses against the tensor hypothesis, for 3-detector events. Polarization
states been projected onto two basis-modes as explained in Sec. VII. Positive (negative) values indicate that the hypothesis indicated in the
superscript is favored (disfavored) with respect to the tensorial hypothesis. Error bars refer to 90% credible intervals.

Events log10 BV
T log10 BTS

T log10 BTV
T log10 BVS

T log10 BTVS
T

O1 � � � � �
O2 0.05 ± 0.03 0.01 ± 0.03 �0.02 ± 0.03 0.06 ± 0.03 0.01 ± 0.03
O3a �0.37 ± 0.12 �0.77 ± 0.12 �0.72 ± 0.12 �0.73 ± 0.12 �0.91 ± 0.12
O3b �0.09 ± 0.10 �0.22 ± 0.10 �0.35 ± 0.10 �0.38 ± 0.10 �0.38 ± 0.10

Combined �0.41 ± 0.16 �0.98 ± 0.16 �1.09 ± 0.16 �1.05 ± 0.16 �1.29 ± 0.16

dices (`,m) represent the angular decomposition of the modes,
whereas the index n denotes various tones of the spectrum start-

ing with n = 0. A schematic decomposition of the post-merger
signal reads [11],

h+(t) � ih⇥(t) =
+1X

`=2

X̀

m=�`

+1X

n=0

A`mn exp
"
� t � t0

(1 + z)⌧`mn

#
exp
"
�2⇡i f`mn(t � t0)

1 + z

#
�2S `mn(✓, �,�f ), (13)

whereA`mn denotes the amplitude of the mode, t0 is the start
time of the ringdown model, and z is the redshift of the source.
The frequency and the damping time of a mode characterized
by the three indices are denoted by ⌧`mn and f`mn, respectively,
while �f is the final spin. The polar and azimuthal angles (✓, �),

measured relative to the final spin axis, describe the direction
to the observer. These coordinates assume the spin of the black
hole to be along the ✓ = 0 direction. The contribution of
counter-rotating perturbations is ignored, since it’s expected to
be negligible in the post-merger regime of the signals under

QNM frequencies and damping times functions of the remnant mass and spin in GR:
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TABLE XI. The median, and symmetric 90%-credible intervals, of the redshifted final mass and final spin, inferred from the full IMR analysis
(IMR) and the pyRing analysis (Sec. VIII A 1) with three di↵erent waveform models (Kerr220, Kerr221, and KerrHM). A positive value of
log10 BHM

220 indicates support for HM in the data, and a positive value of log10 B221
220 shows support for the presence of the first overtone. A positive

value of log10 OmodGR
GR quantify the level of disagreement with GR. The catalog-combined (including GWTC-2 events) log odds ratio is negative

(�0.90 ± 0.45).

Event Redshifted final mass Final spin Higher Overtones
(1 + z)Mf [M�] �f modes

IMR Kerr220 Kerr221 KerrHM IMR Kerr220 Kerr221 KerrHM log10 BHM
220 log10 B221

220 log10 OmodGR
GR

GW191109 010717 132.7+21.9
�13.8 181.7+28.5

�30.6 179.0+23.7
�21.7 174.5+38.1

�30.1 0.60+0.22
�0.19 0.81+0.10

�0.24 0.81+0.08
�0.14 0.77+0.11

�0.21 �0.11 1.03 �0.27
GW191222 033537 114.2+14.3

�11.7 111.4+69.3
�29.7 110.3+36.2

�23.8 118.3+97.0
�46.2 0.67+0.08

�0.10 0.46+0.41
�0.41 0.52+0.31

�0.43 0.60+0.28
�0.66 0.08 �0.83 �0.20

GW200129 065458 71.8+4.4
�3.9 60.0+16.7

�8.9 77.0+14.4
�14.2 219.1+110.4

�140.0 0.75+0.06
�0.06 0.31+0.43

�0.28 0.74+0.17
�0.59 0.54+0.35

�0.59 �0.00 �0.47 �0.09
GW200224 222234 90.3+6.4

�6.3 84.4+23.2
�20.3 88.6+15.5

�15.2 119.4+142.6
�34.3 0.73+0.06

�0.07 0.61+0.27
�0.49 0.60+0.23

�0.42 0.64+0.27
�0.59 0.20 0.95 �0.11

GW200311 115853 72.1+5.4
�4.7 68.5+23.6

�13.5 72.2+28.6
�16.3 213.2+167.8

�141.5 0.68+0.07
�0.08 0.30+0.44

�0.28 0.58+0.30
�0.47 0.56+0.32

�0.54 0.02 �1.16 �0.15

over the same set of parameters appearing in the GR template,
with the addition of the deviation parameters on which we
impose uniform priors in the [�1, 1] range for the frequency
� f̂221 and in the [�0.9, 1] range for the damping time �⌧̂221.
The lower bound on �⌧̂221 prevents issues due to the finite time
resolution in the waveform sampling. [11]. If GR provides an
accurate description of the ringdown emission, we expect to
observe posterior distributions of the deviation parameters to
be centered around zero, together with a Bayesian evidence
disfavouring the addition of non-GR parameters.

The inferred values of the frequency deviation parameters
are consistent with GR for all events analysed, while weak con-
straints can be extracted on the damping times deviations from
single events. The damping time estimation of low-SNR events
is more sensitive to violations of the Gaussianity and station-
arity hypotheses compared to the frequency estimation [11].
Additional studies investigating this behaviour will be required
in the future to properly derive joint posteriors on this pa-
rameter when combining many weak events. The posterior
distribution of �⌧̂221 often tends to rail towards the lower prior
bound �0.9 for events with low SNR in the ringdown regime,
as the data show little evidence for the first overtone.

To combine the set of measurements for all 21 available
events we make use of a hierarchical analysis [11]. The sin-
gle events posteriors used to derive this joint bound are the
marginalised � f̂221 posteriors obtained when allowing both the
frequency and the damping time of the 221 mode to deviate
from the GR predictions. We obtain a constraint on the fre-
quency deviation equal to � f̂221 = 0.01+0.27

�0.28, overlapping with
the GR predicted value for a Kerr BH, and show its posterior
probability distribution in Fig. 13. The corresponding hyper-
parameter values are: µ = 0.01+0.18

�0.18, � < 0.22. Although
GW191109 010717 is excluded from the combined analysis,
we note that even though the mass and spin estimates coming
from this event show some tension with the ones coming from
an IMR analyses, the parametrised deviations do not indicate
preference for additional parameters required to describe the
ringdown emission. We do not allow to obtain informative
constraints on �⌧̂221.

The single event odds ratios log10 OmodGR
GR values, computed

following a procedure similar to our previous analysis [11], are
reported in Table XI. The highest log10 OmodGR

GR value among

FIG. 13. The posterior distribution of the fractional frequency
deviation for the ` = |m| = 2, n = 1 mode, � f̂221, from the pyRing
joint hierarchical analysis (triangles and small vertical bars indicate
respectively median and 90% CLs). The measurements of � f̂221 from
individual events, and its combined value using all available 21 GW
events (red solid line), both show consistency with GR. Compared to
the corresponding GWTC-2 constraint (dashed-dotted blue line), the
hierarchically combined posterior on the frequency deviation shows a
90% CL shrinkage ratio of ⇠ 8%. See Sec. VIII A 1 for details.

O3b events, �0.09, corresponds to GW200129 065458 and
does not signal significant tension. By considering all the
GWTC-3 events that passed our selection criteria (including
previous GWTC-2 results), we find a combined log odds ratio
of �0.90 ± 0.44, at 90% uncertainty, favouring the hypothesis
that GR gives an accurate description of the observed ringdown
signals.

Finally, as an agnostic test of the consistency of the ringdown
emission with GR predictions, a single damped sinusoid (DS)
template is used to fit the data. In this case we are not assuming
an underlying Kerr metric, nor that the object emitting the
signal is a BH, thus the frequency, damping time, and complex
amplitude are considered as free parameters without imposing
any predictions from GR. We adopt uniform priors on the
frequency, damping time, log of the magnitude, and the phase
of the complex amplitude. The fit starts at 10GM̄f (1+z)/c3 after
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TABLE XI. The median, and symmetric 90%-credible intervals, of the redshifted final mass and final spin, inferred from the full IMR analysis
(IMR) and the pyRing analysis (Sec. VIII A 1) with three di↵erent waveform models (Kerr220, Kerr221, and KerrHM). A positive value of
log10 BHM

220 indicates support for HM in the data, and a positive value of log10 B221
220 shows support for the presence of the first overtone. A positive

value of log10 OmodGR
GR quantify the level of disagreement with GR. The catalog-combined (including GWTC-2 events) log odds ratio is negative

(�0.90 ± 0.45).

Event Redshifted final mass Final spin Higher Overtones
(1 + z)Mf [M�] �f modes

IMR Kerr220 Kerr221 KerrHM IMR Kerr220 Kerr221 KerrHM log10 BHM
220 log10 B221

220 log10 OmodGR
GR

GW191109 010717 132.7+21.9
�13.8 181.7+28.5

�30.6 179.0+23.7
�21.7 174.5+38.1

�30.1 0.60+0.22
�0.19 0.81+0.10

�0.24 0.81+0.08
�0.14 0.77+0.11

�0.21 �0.11 1.03 �0.27
GW191222 033537 114.2+14.3

�11.7 111.4+69.3
�29.7 110.3+36.2

�23.8 118.3+97.0
�46.2 0.67+0.08

�0.10 0.46+0.41
�0.41 0.52+0.31

�0.43 0.60+0.28
�0.66 0.08 �0.83 �0.20

GW200129 065458 71.8+4.4
�3.9 60.0+16.7

�8.9 77.0+14.4
�14.2 219.1+110.4

�140.0 0.75+0.06
�0.06 0.31+0.43

�0.28 0.74+0.17
�0.59 0.54+0.35

�0.59 �0.00 �0.47 �0.09
GW200224 222234 90.3+6.4

�6.3 84.4+23.2
�20.3 88.6+15.5

�15.2 119.4+142.6
�34.3 0.73+0.06

�0.07 0.61+0.27
�0.49 0.60+0.23

�0.42 0.64+0.27
�0.59 0.20 0.95 �0.11

GW200311 115853 72.1+5.4
�4.7 68.5+23.6

�13.5 72.2+28.6
�16.3 213.2+167.8

�141.5 0.68+0.07
�0.08 0.30+0.44

�0.28 0.58+0.30
�0.47 0.56+0.32

�0.54 0.02 �1.16 �0.15

over the same set of parameters appearing in the GR template,
with the addition of the deviation parameters on which we
impose uniform priors in the [�1, 1] range for the frequency
� f̂221 and in the [�0.9, 1] range for the damping time �⌧̂221.
The lower bound on �⌧̂221 prevents issues due to the finite time
resolution in the waveform sampling. [11]. If GR provides an
accurate description of the ringdown emission, we expect to
observe posterior distributions of the deviation parameters to
be centered around zero, together with a Bayesian evidence
disfavouring the addition of non-GR parameters.

The inferred values of the frequency deviation parameters
are consistent with GR for all events analysed, while weak con-
straints can be extracted on the damping times deviations from
single events. The damping time estimation of low-SNR events
is more sensitive to violations of the Gaussianity and station-
arity hypotheses compared to the frequency estimation [11].
Additional studies investigating this behaviour will be required
in the future to properly derive joint posteriors on this pa-
rameter when combining many weak events. The posterior
distribution of �⌧̂221 often tends to rail towards the lower prior
bound �0.9 for events with low SNR in the ringdown regime,
as the data show little evidence for the first overtone.

To combine the set of measurements for all 21 available
events we make use of a hierarchical analysis [11]. The sin-
gle events posteriors used to derive this joint bound are the
marginalised � f̂221 posteriors obtained when allowing both the
frequency and the damping time of the 221 mode to deviate
from the GR predictions. We obtain a constraint on the fre-
quency deviation equal to � f̂221 = 0.01+0.27

�0.28, overlapping with
the GR predicted value for a Kerr BH, and show its posterior
probability distribution in Fig. 13. The corresponding hyper-
parameter values are: µ = 0.01+0.18

�0.18, � < 0.22. Although
GW191109 010717 is excluded from the combined analysis,
we note that even though the mass and spin estimates coming
from this event show some tension with the ones coming from
an IMR analyses, the parametrised deviations do not indicate
preference for additional parameters required to describe the
ringdown emission. We do not allow to obtain informative
constraints on �⌧̂221.

The single event odds ratios log10 OmodGR
GR values, computed

following a procedure similar to our previous analysis [11], are
reported in Table XI. The highest log10 OmodGR

GR value among

FIG. 13. The posterior distribution of the fractional frequency
deviation for the ` = |m| = 2, n = 1 mode, � f̂221, from the pyRing
joint hierarchical analysis (triangles and small vertical bars indicate
respectively median and 90% CLs). The measurements of � f̂221 from
individual events, and its combined value using all available 21 GW
events (red solid line), both show consistency with GR. Compared to
the corresponding GWTC-2 constraint (dashed-dotted blue line), the
hierarchically combined posterior on the frequency deviation shows a
90% CL shrinkage ratio of ⇠ 8%. See Sec. VIII A 1 for details.

O3b events, �0.09, corresponds to GW200129 065458 and
does not signal significant tension. By considering all the
GWTC-3 events that passed our selection criteria (including
previous GWTC-2 results), we find a combined log odds ratio
of �0.90 ± 0.44, at 90% uncertainty, favouring the hypothesis
that GR gives an accurate description of the observed ringdown
signals.

Finally, as an agnostic test of the consistency of the ringdown
emission with GR predictions, a single damped sinusoid (DS)
template is used to fit the data. In this case we are not assuming
an underlying Kerr metric, nor that the object emitting the
signal is a BH, thus the frequency, damping time, and complex
amplitude are considered as free parameters without imposing
any predictions from GR. We adopt uniform priors on the
frequency, damping time, log of the magnitude, and the phase
of the complex amplitude. The fit starts at 10GM̄f (1+z)/c3 after

• Analyze ringdown-only signal, consider HM, overtones, mod GR (pyRing)
• Modify QNMs inside an IMR waveform model (pSEOBNRv4HM)28

TABLE XI. The median, and symmetric 90%-credible intervals, of the redshifted final mass and final spin, inferred from the full IMR analysis
(IMR) and the pyRing analysis (Sec. VIII A 1) with three di↵erent waveform models (Kerr220, Kerr221, and KerrHM). A positive value of
log10 BHM

220 indicates support for HM in the data, and a positive value of log10 B221
220 shows support for the presence of the first overtone. A positive

value of log10 OmodGR
GR quantify the level of disagreement with GR. The catalog-combined (including GWTC-2 events) log odds ratio is negative

(�0.90 ± 0.45).

Event Redshifted final mass Final spin Higher Overtones
(1 + z)Mf [M�] �f modes

IMR Kerr220 Kerr221 KerrHM IMR Kerr220 Kerr221 KerrHM log10 BHM
220 log10 B221

220 log10 OmodGR
GR

GW191109 010717 132.7+21.9
�13.8 181.7+28.5

�30.6 179.0+23.7
�21.7 174.5+38.1

�30.1 0.60+0.22
�0.19 0.81+0.10

�0.24 0.81+0.08
�0.14 0.77+0.11

�0.21 �0.11 1.03 �0.27
GW191222 033537 114.2+14.3

�11.7 111.4+69.3
�29.7 110.3+36.2

�23.8 118.3+97.0
�46.2 0.67+0.08

�0.10 0.46+0.41
�0.41 0.52+0.31

�0.43 0.60+0.28
�0.66 0.08 �0.83 �0.20

GW200129 065458 71.8+4.4
�3.9 60.0+16.7

�8.9 77.0+14.4
�14.2 219.1+110.4

�140.0 0.75+0.06
�0.06 0.31+0.43

�0.28 0.74+0.17
�0.59 0.54+0.35

�0.59 �0.00 �0.47 �0.09
GW200224 222234 90.3+6.4

�6.3 84.4+23.2
�20.3 88.6+15.5

�15.2 119.4+142.6
�34.3 0.73+0.06

�0.07 0.61+0.27
�0.49 0.60+0.23

�0.42 0.64+0.27
�0.59 0.20 0.95 �0.11

GW200311 115853 72.1+5.4
�4.7 68.5+23.6

�13.5 72.2+28.6
�16.3 213.2+167.8

�141.5 0.68+0.07
�0.08 0.30+0.44

�0.28 0.58+0.30
�0.47 0.56+0.32

�0.54 0.02 �1.16 �0.15

over the same set of parameters appearing in the GR template,
with the addition of the deviation parameters on which we
impose uniform priors in the [�1, 1] range for the frequency
� f̂221 and in the [�0.9, 1] range for the damping time �⌧̂221.
The lower bound on �⌧̂221 prevents issues due to the finite time
resolution in the waveform sampling. [11]. If GR provides an
accurate description of the ringdown emission, we expect to
observe posterior distributions of the deviation parameters to
be centered around zero, together with a Bayesian evidence
disfavouring the addition of non-GR parameters.

The inferred values of the frequency deviation parameters
are consistent with GR for all events analysed, while weak con-
straints can be extracted on the damping times deviations from
single events. The damping time estimation of low-SNR events
is more sensitive to violations of the Gaussianity and station-
arity hypotheses compared to the frequency estimation [11].
Additional studies investigating this behaviour will be required
in the future to properly derive joint posteriors on this pa-
rameter when combining many weak events. The posterior
distribution of �⌧̂221 often tends to rail towards the lower prior
bound �0.9 for events with low SNR in the ringdown regime,
as the data show little evidence for the first overtone.

To combine the set of measurements for all 21 available
events we make use of a hierarchical analysis [11]. The sin-
gle events posteriors used to derive this joint bound are the
marginalised � f̂221 posteriors obtained when allowing both the
frequency and the damping time of the 221 mode to deviate
from the GR predictions. We obtain a constraint on the fre-
quency deviation equal to � f̂221 = 0.01+0.27

�0.28, overlapping with
the GR predicted value for a Kerr BH, and show its posterior
probability distribution in Fig. 13. The corresponding hyper-
parameter values are: µ = 0.01+0.18

�0.18, � < 0.22. Although
GW191109 010717 is excluded from the combined analysis,
we note that even though the mass and spin estimates coming
from this event show some tension with the ones coming from
an IMR analyses, the parametrised deviations do not indicate
preference for additional parameters required to describe the
ringdown emission. We do not allow to obtain informative
constraints on �⌧̂221.

The single event odds ratios log10 OmodGR
GR values, computed

following a procedure similar to our previous analysis [11], are
reported in Table XI. The highest log10 OmodGR

GR value among
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FIG. 13. The posterior distribution of the fractional frequency
deviation for the ` = |m| = 2, n = 1 mode, � f̂221, from the pyRing
joint hierarchical analysis (triangles and small vertical bars indicate
respectively median and 90% CLs). The measurements of � f̂221 from
individual events, and its combined value using all available 21 GW
events (red solid line), both show consistency with GR. Compared to
the corresponding GWTC-2 constraint (dashed-dotted blue line), the
hierarchically combined posterior on the frequency deviation shows a
90% CL shrinkage ratio of ⇠ 8%. See Sec. VIII A 1 for details.

O3b events, �0.09, corresponds to GW200129 065458 and
does not signal significant tension. By considering all the
GWTC-3 events that passed our selection criteria (including
previous GWTC-2 results), we find a combined log odds ratio
of �0.90 ± 0.44, at 90% uncertainty, favouring the hypothesis
that GR gives an accurate description of the observed ringdown
signals.

Finally, as an agnostic test of the consistency of the ringdown
emission with GR predictions, a single damped sinusoid (DS)
template is used to fit the data. In this case we are not assuming
an underlying Kerr metric, nor that the object emitting the
signal is a BH, thus the frequency, damping time, and complex
amplitude are considered as free parameters without imposing
any predictions from GR. We adopt uniform priors on the
frequency, damping time, log of the magnitude, and the phase
of the complex amplitude. The fit starts at 10GM̄f (1+z)/c3 after
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GWTC-3: polarization content of GW

[credit Ezquiaga&al 2018]
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Gravitational Wave Polarizations
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FIG. 6: Possible gravitational wave polarizations. A circle of test masses is distorted di↵erently for each polarization propagating
on the z-direction as a function of time (! t = 0, ⇡/2, ⇡, 3⇡/2). General Relativity only contains the two tensor polarizations +
and ⇥. Other gravity theories might contain also a transverse (breathing) scalar mode (Scalar T ), a longitudinal scalar (Scalar
L) and two vector modes (Vector 1 , 2).

Focusing on the case without sources, ⇧ij = 0, the
original GR wave-form hGR , given by (34) for instance,
will be modified by

hGW ⇠ hGR e
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where we have introduced ↵T = c
2

g
� 1. Mainly, the

additional friction will modify the amplitude, while the
anomalous speed and the e↵ective mass change the phase.
The modified luminosity distance is then7
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We will discuss how to test the GW phase in Sec. V and
the damping of the strain in Sec. VI.

7 See Appendix A of the first arXiv version of [111] for a derivation.

For GWs propagating in FLRW backgrounds, a source
is present ⇧ij 6= 0 when there are additional tensor modes
propagating. A paradigmatic example of this is bigravity,
where there are two dynamical metrics. In that case, we
have to track the evolution of both metric perturbations
[250–252]
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(58)
where for shortness we have absorbed the Hubble friction
in the definition of the perturbation and we do not show
the spatial indices. Here mg is the e↵ective mass (one
of the tensor fields is massive) and ✓ is the mixing an-
gle. Since there are interactions between hij and tij , this
means that the mass eigenstates are not the same as the
propagation eigenstates. In analogy with the propaga-
tion of neutrinos, there can be GW oscillations. In Sec.
VIIA we will see how GW oscillations can be tested. One
should note that the possibility of having GW oscillations
is not restricted to bigravity. Any gravity theory in which

• GR templates, Bayes ratio for full-vector and 
full-tensor

• GWTC-2: agnostic null-stream construction
• GWTC-3: extension of the null-stream 

construction for 2-detector events

Different methods:
Best constraints: GW170817, 
known location

Full-vector and tensor 
disfavoured at 
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Very dependent on the number and 
orientation of detectors !
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GWTC-3: echoes

[LVK 2021]

GW echoes are generic for horizonless compact objects, have been proposed as smoking 
gun for Planck-scale structures at the horizon, wormholes, ECOs

32

TABLE XIV. Results of the echoes analysis (Sec. VIII B). List of
p-values for signal to noise Bayes Factor BS

N for the events that
are analysed. In the absence of any echoes signal these should be
uniformly distributed between [0, 1]. Fig. 15 shows the corresponding
PP plot with 90% credible intervals superimposed on it. There is no
evidence for the presence of echoes.

Event p-value

GW191109 010717 0.35
GW191129 134029 0.35
GW191204 171526 0.37
GW191215 223052 0.23
GW191216 213338 0.88
GW191222 033537 0.89
GW200115 042309 0.44
GW200129 065458 0.33
GW200202 154313 0.43
GW200208 130117 0.24
GW200219 094415 0.18
GW200224 222234 0.59
GW200225 060421 0.69
GW200311 115853 0.42
GW200316 215756 0.27

IX. CONCLUSIONS AND OUTLOOK

Gravitational-wave observations provide a unique tool to test
fundamental physics. The strongly gravitating, highly dynam-
ical and radiative spacetime associated with the late inspiral,
merger and ringdown of compact binaries facilitates tests of
general relativity in a regime that is unaccessible otherwise.
Binary black holes and binary neutron star mergers observed
in the past observing runs already set limits on possible de-
viations from GR [3, 6, 7, 9–11, 79, 99, 242, 259, 266–269].
Here we discuss a pool of tests aimed at unearthing deviations
from GR using the events detected during the second part of
the third observing run of advanced LIGO and advanced Virgo.
We perform ten tests of GR on the 15 events that have a false
alarm rate less than 10�3 yr�1. These tests are the same ones
as in the previous analysis [11], except with the following
updates. Our search for post-merger echoes is morphology-
independent in this paper and the method to test for non-GR
polarization modes is refined to address mixed polarizations
as opposed to scalar-only, vector-only, and tensor-only hy-
potheses as was the case in [11]. Furthermore, some of the
tests rely on more up-to-date waveforms; in the residuals and
inspiral-merger-consistency tests, we account for higher order
multipole moments for all the events from the second part of
the third observing run.

We subtract the maximum-likelihood GR waveform from
the data to verify the consistency of the residuals with detector
noise, thereby showing the consistency of the signals in the
data with GR. Independent estimates of the mass and spin of
the merger remants, from the inspiral and postinspiral parts
of the waveform for di↵erent events show mutual consistency.
The fractional changes in the final mass and spin from this
test, assuming they take the same values for all the events
and combining all the events analyzed so far, are constrained
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FIG. 15. Results of the echoes analysis (Sec. VIII B). Plot of fraction
of events for which the echoes signal-to-noise p-value is less than or
equal to the abscissa. The light-blue band represents the 90% credible
interval of the observed p-values, while the diagonal dashed line is
expectation from the null hypothesis. The light-gray band around
the diagonal line represents the 90% uncertainty band of the null
hypothesis.

to �Mf/M̄f = �0.02+0.07
�0.06 and ��f/�̄f = �0.06+0.10

�0.07 at 90%
credibility.

Tests aimed at looking for parametrized departures from GR
in the post-Newtonian phasing coe�cients all find consistency
with GR within the statistical uncertainties. The most well-
constrained parameter is the absolute value of the �1PN coe�-
cient, which is bound to  7.3⇥10�4 at 90% credibility, assum-
ing its value is the same for all the events. As certain modified
theories of gravity predict dispersion of GWs, we searched for
this e↵ect and found no evidence for dispersion. The bound
on the graviton mass is updated to mg  1.27 ⇥ 10�23eV/c2,
at 90% credibility. A general metric theory of gravity admits
up to six modes of GW polarization. We searched for non-GR
polarization modes and found no signature of such modes.

Analyses to measure the spin-induced quadrupole moments
of the binary components found no signatures of exotic com-
pact objects. Further, tests for deviations from GR in the
ringdown of the remnant black hole were carried out using
two independent methods and the frequency deviation parame-
ters are constrained to � f̂221 = 0.01+0.27

�0.28 and � f̂220 = 0.02+0.07
�0.07,

at 90% credibility, by hierarchically combining the results
from the events that are analyzed. We also found no evidence
for post-merger echoes from the merger remnant from our
morphology-independent search.

Future observing runs with improved detector sensitivities
will provide a larger catalog of compact binary observations
and events with larger SNR. These observations will enable us
to carry out more stringent tests of GR in parts of the parameter
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Figure 4: Ringdown waveform for a BH (dashed black curve) compared to a
ClePhO (solid red curve) with a reflective surface at r0 = 2M(1 + ✏) with
✏ = 10�11. We considered l = 2 axial gravitational perturbations and a Gaussian
wavepacket  (r, 0) = 0,  ̇(r, 0) = e�(z�zm)
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(with zm = 9M and � = 6M)
as initial condition. Note that each subsequent echo has a smaller frequency
content and that the damping of subsequent echoes is much larger than the
late-time QNM prediction (e�!It with !IM ⇠ 4⇥ 10�10 for these parameters).
Data available online [19].

where now z0 ⇠ M [1+(1��2)�1/2] log ✏. The result (24) shows how angular mo-
mentum can bring about substantial qualitative changes. The spacetime is un-
stable for !R(!R�m⌦) < 0 (i.e., in the superradiant regime [22]), on a timescale
⌧inst ⌘ 1/!I . This phenomenon is called ergoregion instability [22,41,42]. In the
✏! 0 limit and for su�ciently large spin, !R ⇠ m⌦ and !I ⇠ | log ✏|�1. Notice
that such description is only valid at small frequencies, and therefore becomes
increasingly less accurate at large spins and away from the instability threshold
(where !R,!I ⇠ 0). For large spin the result is more complex and can be found
in Ref. [43]. Furthermore, in the superradiant regime the “damping” factor,
!I/!R > 0, so that, at very late times (when the pulse frequency content is
indeed described by these formulas), the amplitude of the QNMs increases due
to the instability. Such increase is anyway small, for example !I

!R
⇡ 4 ⇥ 10�6

when ✏ = 0.001, l = 2 and � = 0.7.
In the spinning case, the echo delay time (23) reads

⌧echo ⇠ 2M [1 + (1� �2)�1/2] log ✏ , (25)

which corresponds to the period of the corotating mode, ⌧echo ⇠ (!R �m⌦)�1.
Note that, as we explained earlier, the signal can only be considered as a se-

ries of well-defined pulses at early stages. In this stage, the pulse still contains a
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[Cardoso&al 2017]

Method:
• GWTC-2: morphology-dependent as in 

[Abedi&al 2017]
• GWTC-3: morphology-independent, 

superposition of decaying repeating sine-
Gaussians, compare the Bayes ratio of signal vs 
noise to the background
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FIG. 1. Qualitative features of the e↵ective potential felt by
perturbations of a Schwarzschild BH compared to the case
of wormholes [12] and of star-like ECOs with a regular cen-
ter [22]. The precise location of the center of the star is model-
dependent and was chosen for visual clarity. The maximum
and minimum of the potential corresponds approximately to
the location of the unstable and stable PS, and the correspon-
dence is exact in the eikonal limit of large angular number l.
In the wormhole case, modes can be trapped between the
PSs in the two “universes”. In the star-like case, modes are
trapped between the PS and the centrifugal barrier near the
center of the star [28–30]. In all cases the potential is of fi-
nite height, and the modes leak away, with higher-frequency
modes leaking on shorter timescales.

where rmin is the location of the minimum of the potential
shown in Fig. 1. If we consider a microscopic correction
at the horizon scale (` ⌧ M), then the main contribution
to the time delay comes near the radius of the star and
therefore,

�t ⇠ �nM log

✓
`

M

◆
, ` ⌧ M , (6)

where n is a factor of order unity that takes into account
the structure of the objects. For wormholes, n = 8 to
account for the fact that the signal is reflected by the
two maxima in Fig. 1, whereas for our thin-shell gravas-
tar model and the empty-shell model it is easy to check
that n = 6 and n = 4, respectively. The results shown in
Fig. 2 for ` = 10�6M are perfectly consistent with this
picture, with the wormhole case displaying longer echo
delays than the other cases with the same compactness.
Our results show that the dependence on ` is indeed log-
arithmically for all the ECOs we studied.

As argued in Ref. [12], the logarithmic dependence dis-
played in Eq. (6) implies that even Planckian corrections
(` ⇡ LP = 2 ⇥ 10�33 cm) appear relatively soon after
the main burst of radiation, so they might leave an ob-

servable imprint in the GW signal at late times. From
Eq. (6), a typical time delay reads

�t ⇠ 54(n/4)M30


1� 0.01 log

✓
`/LP

M30

◆�
ms , (7)

where M30 := M/(30M�).
The picture of GW signal scattered o↵ the potential

barrier is also supported by two further features shown
in Fig. 2, namely the modulation and the distortion of
the echo signal. In general, modulation is due to the
slow leaking of the echo modes, which contain less en-
ergy than the initial one. In the wormhole case, this
e↵ect is stronger due to the fact that modes can also leak
to the “other universe” through tunneling at the second
peak of the potential. While the amplitude of the echoes
is model-dependent, for a given model it depends only
mildly on `. Distortion is also due to the potential bar-
rier, which acts as a low-pass filter and reflects only the
low-frequency, quasibound echo modes. This implies that
each echo is a low-frequency filtered version of the previ-
ous one and the original shape of the mode gets quickly
washed out after a few echoes1.

B. Waves generated by infalling or scattered
particles

The features above are observed in a simple scattering
process, but are also evident in the GW signal produced
by head-on collisions or close encounters, in the test-
particle limit. The latter di↵er from the radial plunge
studied in Ref. [12] in that their pericenter rmin > 3M ,
i.e. the particle does not cross the radius of the PS
(in fact, scattered particles in the Schwarzschild geom-
etry can never get inside the r = 4M surface). In
order to compute the GW signal, we use the Regge-
Wheeler-Zerilli decomposition reviewed in Appendix B
(cf. Ref. [31] for details).
We have studied the GW emitted during collisions or

scatters between point particles and ECOs; again the
general qualitative features are the same as those dis-
cussed in Section IIA and independent of the nature
of the ECO. To be specific, we show in Fig. 3 the Zer-
illi wavefunction for a point particle plunging into (left
panel) or scattering o↵ a wormhole with ` = 10�6M , with
initial Lorentz boost E = 1.5. The coordinate system we
use is such that the particles are moving along the equa-
tor, and it di↵ers - by a ⇡/2 rotation - from the coordinate
axis used in Ref. [12]. As such, the l = 2 Zerilli-Moncrief
wavefunction, for example, has contributions from az-
imuthal numbers m = 0,±2. Note also that it is easy to

1 Incidentally, we note that all these features (namely time delay,
echoes, modulation, and high-frequency filtering) are precisely
what one would expect by the scattering of sound waves in a
finite-size cavity.

[Cardoso&al 2016]
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The future of GW science

[Jani&al 2020]

High SNRs
Great precision science !

Systematics become crucial…
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1BHF � -*4" o �� */530%6$5*0/

[Cosmic Explorer] [LISA]

Large number of sources
Great statistical power !

Confusion/global fit become crucial…
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Measuring multi-mode ringdown signals

Black hole spectroscopy with multiple 
detected QNMs

[Berti&al 2016]

Event rates with ringdown and multiple QNMs detectable 3

O
1

O
2

A
dL

IG
O

A
+

A
+

+

V
rt

V
oy

ag
er

E
T
D
X

E
T
B

C
E
1

C
E
2w

C
E
2n

10�3

10�2

10�1

100

101

102

103

104

105

106

ev
en

ts
/y

ea
r

� > 8 � > �GLRT

M3

M10

M1

M3

M10

M1

N
1A

1

N
1A

2

N
1A

5

N
2A

1

N
2A

2

N
2A

5

100

101

102

103

ev
en

ts
/y

ea
r

� > 8 � > �GLRT

Q3nod 4L

Q3d 4L

PopIII 4L

Q3nod 6L

Q3d 6L

PopIII 6L

Q3nod 4L

Q3d 4L

PopIII 4L

Q3nod 6L

Q3d 6L

PopIII 6L

Figure 2. Rates of binary BH mergers that yield detectable ringdown signals (filled symbols) and allow for spectroscopical
tests (hollow symbols). Left panel: rates per year for Earth-based detectors of increasing sensitivity. Right panel: rates per
year for 6-link (solid) and 4-link (dashed) eLISA configurations with varying armlength and acceleration noise.

of BH-BH merger rates, and therefore model M3 should
be regarded as pessimistic [9]. In all of these models we
set the BH spins to zero, an assumption consistent with
estimates from GW150914 [4]. Even in the unrealistic
scenario where all BHs in the Universe were maximally
spinning, rates would increase by a factor . 3 (see Table
2 of [6]). Massive binaries with ringdowns detectable by
Earth-based interferometers could also be produced by
other mechanisms (see e.g. [39–42]), and therefore our
rates should be seen as lower bounds.

To estimate ringdown rates from massive BH mergers
detectable by eLISA we consider the same three models
(PopIII, Q3nod and Q3d) used in [20] and produced with
the semi-analytical approach of [43] (with incremental
improvements described in [44–46]). These models were
chosen to span the major sources of uncertainty a↵ect-
ing eLISA rates, namely (i) the nature of primordial BH
seeds (light seeds coming from the collapse of Pop III
stars in model PopIII; heavy seeds originating from pro-
togalactic disks in models Q3d and Q3nod), and (ii) the
delay between galaxy mergers and the merger of the BHs
at galactic centers (model Q3d includes this delay; model
Q3nod does not, and therefore yields higher detection
rates). In all three models the BH spin evolution is fol-
lowed self-consistently [43, 44]. For each event in the
catalog we compute ⇢ from Eq. (1), where ✏rd is rescaled
by a spin-dependent factor as necessary.

Detection rates. The ringdown detection rates (events
per year with ⇢ > 8 in a single detector) predicted by
models M1, M3, M10 (for stellar-mass BH binaries) and
PopIII, Q3d, Q3nod (for supermassive BH binaries) are
shown in Fig. 2 with filled symbols. For example, models

M1 (M10, M3) predict 3.0 (2.5, 0.57) events per year
with detectable ringdown in O1; 7.0 (5.8, 1.1) in O2; and
40 (35, 5.2) in AdLIGO. Model Q3d (Q3nod, PopIII)
predicts 38 (533, 13) events for a 6-link N2A5 eLISA
mission lasting 5 years, but in the plot we divided these
numbers by 5 to facilitate a more fair comparison in terms
of events per year.
BH spectroscopy. Suppose that we know that a signal
contains two (or possibly more) ringdown modes. We
expect the weaker mode to be hard to resolve if its amp-
litude is low and/or if the detector’s noise is large. The
critical SNR for the second mode to be resolvable can
be computed using the generalized likelihood ratio test
(GLRT) [47] under the following assumptions: (i) using
other criteria, we have already decided in favor of the
presence of one ringdown signal; (ii) the ringdown fre-
quencies and damping times, as well as the amplitude
of the dominant mode, are known. Then the critical
SNR ⇢GLRT to resolve a mode with either ` = m = 3
or ` = m = 4 from the dominant mode with ` = m = 2
is well fitted, for nonspinning binary BH mergers, by

⇢2, 3GLRT = 17.687 +
15.4597

q � 1
� 1.65242

q
, (2)

⇢2, 4GLRT = 37.9181 +
83.5778

q
+

44.1125

q2
+

50.1316

q3
.(3)

These fits reproduce the numerical results in Fig. 9 of
[47] within 0.3% when q 2 [1.01 � 100]. Spectroscopical
tests of the Kerr metric can be performed whenever either
mode is resolvable, i.e. ⇢ > ⇢GLRT ⌘ min(⇢2, 3GLRT, ⇢2, 4GLRT).
The ` = m = 3 mode is usually easier to resolve than the
` = m = 4 mode, but the situation is reversed in the

Ground LISA
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LISA: Extreme Mass Ratio Inspirals

Berry et al. The unique potential of extreme mass-ratio inspirals
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Figure 1. Illustration of an orbit in Kerr spacetime, appropriate for a short portion of an EMRI around a
spinning MBH. The central black hole has a mass M = 106M� and a dimensionless spin of 0.9. Distances
are measured in units of the gravitational radius rg = GM/c2. The innermost stable circular orbit for this
MBH would be at r ' 2.3rg. The coordinates have been mapped into Euclidean space to visualise the orbit:
the bottom right panel shows a three-dimensional view of the orbit; the top panels show the projections of
this orbit into three planes, and the bottom left panels show the orbit as a function of time. While EMRIs
evolve over years, this trajectory is only a few hours long. The intricate nature of the orbit is encoded into
the frequencies of the gravitational-wave signal. Measuring these lets us reconstruct the spacetime of the
MBH. Adapted from [29].
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[Berry&al 2019]Large number of orbital cycles in the strong-
field regime:
map of the central object’s spacetime

25

unclear.

C. Observables and tests

1. Inspiral-based test with SMBH binaries, IMBH binaries, and EMRIs

a. Non-gravitational emission channels by extra fundamental fields An obvious difference between BHs
and certain models of ECOs is that the latter could be charged under some gauge fields, as in the
case of current fuzzball microstate solutions, quasi-BHs, and potentially other models that arise
in extended theories of gravity. These fields might not be electromagnetic and can therefore avoid
current bounds on the charge of astrophysical compact objects coming from charge neutralization
and other effects (Barausse et al., 2014; Cardoso et al., 2016c). In addition, their effective coupling
might be suppressed, thus evading current constraints from the absence of dipole radiation in BBHs
(see Sect. II). A detailed confrontation of given charged ECO models with current constraints on
dipolar radiation remains to be done.

b. Multipolar structure & Kerr bound The multipole moments of a Kerr BH satisfy an elegant
relation (Hansen, 1974)4 ,

MBH
`

+ iSBH
`

= M`+1
(i�)` , (2)

where M` (S`) are the Geroch–Hansen mass (current) multipole moments (Geroch, 1970; Hansen,
1974), M = M0 is the mass, � ⌘ J /M2 the dimensionless spin, and J = S1 the angular
momentum. The multipole moments of the Kerr BH are non-trivial, but Eq. (2) implies that they
are completely determined by its mass and spin angular momentum. Thus, there is a multipolar
structure, but not multipolar freedom (unlike, say, in stars).

Furthermore, introducing the dimensionless quantities M` ⌘ M`/M`+1 and S` ⌘ S`/M`+1,
the only nonvanishing moments of a Kerr BH are

MBH
2n = (�1)

n�2n , SBH
2n+1 = (�1)

n�2n+1 (3)

for n = 0, 1, 2, .... The fact that M` = 0 (S` = 0) when ` is odd (even) is a consequence of
the equatorial symmetry of the Kerr metric, whereas the fact that all multipoles with ` � 2 are
proportional to (powers of) the spin – as well as their specific spin dependence – is a peculiarity
of the Kerr metric.

Non-Kerr compact objects (BHs or ECOs) will have, in general, a different multipolar structure.
Differences will be model dependent, but can be considerable in some cases, e.g. for boson stars
(Ryan, 1997b) and BHs with synchronised scalar hair (Herdeiro and Radu, 2014b). For ECOs, the
tower of multipole moments is, in general, richer. The deformation of each multipole depends on
the specific ECO’s structure, and in general vanishes in the high-compactness limit, approaching
the Kerr value (Glampedakis and Pappas, 2018; Pani, 2015; Raposo and Pani, 2020; Raposo et al.,
2019b). In particular, a smoking gun of the “non-Kerrness" of an object would be the presence of
moments that break the equatorial symmetry (e.g. the current quadrupole S2 or the mass octopole
M3), or the axisymmetry (e.g. a generic mass quadrupole tensor M2m with three independent
components (m = 0, 1, 2), as in the case of multipolar boson stars (Herdeiro et al., 2021) and of
fuzzball microstate geometries (Bena and Mayerson, 2020, 2021; Bianchi et al., 2020a,b).

The multipolar structure of an object leaves a footprint in the GW signal emitted during the
coalescence of a binary system, modifying the PN structure of the waveform at different orders. The
lowest order contribution, entering at 2PN order is given by the intrinsic (typically spin-induced)
quadrupole moment (Barack and Cutler, 2007). LISA can be able to detect deviations in the
multipole moments from supermassive binaries for comparable and unequal mass systems. So far
proposed tests of the Kerr nature have been based on constraints of the spin-induced quadrupole
M2 (Barack and Cutler, 2007; Krishnendu et al., 2017), spin-induced octopole S3 (Krishnendu and
Yelikar, 2019), and current quadrupole S2 (Fransen and Mayerson, 2022).

4 For a generic spacetime the multipole moments of order ` are rank-` tensors, M`m and S`m, which reduce to
scalar quantities, M` and S`, in the axisymmetric case, see e.g., Bianchi et al. (2020a,b) for the general definitions.

Multipolar structure of Kerr: [Hansen 1974]
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FIG. 12. Distribution of the statistical errors in the measurement of EMRI extrinsic parameters: luminosity distance (left
panel) and sky localization (right panel). The dashed lines mark the first, second and third quartile of the distributions. In
the plot for the sky position, a horizontal solid red line marks an error of 10 deg2.

FIG. 13. Distribution of the statistical error in measurement
of the deviation of the MBH’s quadrupole moment away from
the Kerr value. The dashed lines mark the first, second and
third quartile of each distribution.

distributions of the errors are broadly consistent between
the di↵erent population models. The populations control
the number of events, and so are important for consid-
ering how much we could learn about the population of
MBHs and their host environments, but do not have a
significant impact on our ability to extract the parame-
ters for individual EMRIs.

VI. CONCLUSIONS

In this paper we have performed a comprehensive anal-
ysis of the performance of the recently proposed LISA
mission with regards to the detection and parameter
estimation of EMRIs. For the first time we have at-
tempted to thoroughly investigate the astrophysical un-

certainties that a↵ect the calculations of the expected
intrinsic EMRI rate. In more detail, we have constructed
competing astrophysical models for the EMRI rate as a
function of cosmic time, accounting for: the uncertainty
on the expected MBH spin magnitude; the disruption
of stellar cusps due to mergers; the MBH growth due
to EMRIs and plunges of stellar-mass CO’s; and possi-
ble viable competing choices for the MBH mass function,
the CO mass, and the correlation between MBH masses
and stellar velocity dispersions. Although simple, our
models capture the diversity of plausible astrophysical
uncertainties. Overall, we find that these astrophysical
assumptions produce a variance of up to three orders of
magnitude in the expected intrinsic EMRI rate.
For each astrophysical model, we have computed the

number of expected detections with the LISA interferom-
eter, as well as the precision with which the source pa-
rameters (both intrinsic and extrinsic) can be recovered.
To this purpose, because of computational-time limita-
tions, we have used two time-inexpensive kludge wave-
form models that we expect should bracket the results
that would be obtained with more sophisticated Teukol-
sky or self-force based templates. Our main findings are:

1. Irrespective of the astrophysical model, at least a
few EMRIs per year should be detectable by LISA.
This number may reach a few thousands per year
under the most optimistic astrophysical assump-
tions.

2. Except for the most pessimistic astrophysical mod-
els, we predict at least a few events per year should
be observable with SNR of several hundreds.

3. The typical (source-frame) mass and redshift range
of detected EMRIs will be M ⇠ 105–106M� and
z <

⇠ 2–3, although we may have events with masses
an order of magnitude outside of this range or with
larger redshifts (up to z ⇠ 4 and z ⇠ 6 for COs of

Constraints on the quadrupole moment

[Babak&al 2017]
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Detecting the nonlinear memory effect

Nonlinear memory: secular term in the 
gravitational waves [Christodoulou 1991]

Challenging to detect, needs stacking of 
a large number of signals

4

and Virgo for a single (`, m) mode, they will be useful
for explaining certain degeneracies that occur when the
GWs measured by a GW detector are influenced predom-
inantly by a few individual h(lm)(t) in the total strain
h(t).

B. Computing the oscillatory waveform modes

To compute the dominant and higher-order oscilla-
tory waveform modes, we use the NRHybSur3dq8 sur-
rogate model [42]. This model can be used to generate
waveforms from BBHs with mass ratios q in the range
q = m1/m2  8 and with aligned spins with magnitudes
|�1z|, |�2z|  0.8. The model was built from a cata-
log of spinning, non-precessing numerical relativity (NR)
simulations [43] that were “hybridized” [44] with post-
Newtonian (PN) (see e.g. the review article [45] and
references therein) and e↵ective-one-body (EOB) wave-
forms [46, 47]. The surrogate model is a type of in-
terpolant (based on reduced-order modeling techniques
[48–52]) that allows the waveform model to be rapidly
evaluated with high accuracy in its range of validity.

We use the Python package gwsurrogate [39] to eval-
uate the NRHybSur3dq8 surrogate model. This model
includes (`, m) modes with 2  `  4 [though not the
(4,0) or (4,1) modes] and the (5,5) mode. We restrict to
generating the dominant mode h22 and the five higher-
order modes h21, h32, h33, h44 and h55. We neglect the
other modes, as they are either small or not well resolved
in the NR simulations. We choose the duration of the
waveform to be such that the h55 mode starts at a fre-
quency of f0 = 10 Hz, for all the binaries (of di↵erent
masses) that we consider.

C. Computing the nonlinear GW memory

The GW memory e↵ect can be computed from NR
simulations using the technique of Cauchy-characteristic
extraction (see, e.g., [53]) as was done in [16] for a few
nonprecessing, equal-mass BBHs. The more commonly
used methods of waveform extraction (and extrapola-
tion), however, fail to resolve the e↵ect (see, e.g., [43]).
The memory e↵ect is required by the conservation of su-
permomentum (the conserved quantity associated with
the supertranslation symmetries of the Bondi-Metzner-
Sachs group); thus, the memory can be computed ap-
proximately from the gravitational waveform model with-
out the GW memory e↵ect by determining the waveform
required to maintain supermomentum conservation (see,
e.g., [54–56]).

While supermomentum conservation provides the the-
oretical underpinning for the approximate method for
computing the GW memory e↵ect from waveforms with-
out GW memory, the resulting prescription can be de-
scribed in simpler terms: One can compute the nonlinear
GW memory following the same procedure used to cal-

culate linear memory from massless fields after replacing
the material stress-energy tensor with the e↵ective stress-
energy tensor of gravitational waves [22]. The derivation
of the result relies on solving the relaxed Einstein equa-
tions (in harmonic gauge), and has been given in several
places (e.g., [14, 15]); as a result, we do not rederive the
result, but quote the final result instead.

The strain associated with the memory e↵ect can be
computed from the expression

h
TT,mem
jk =

4

r

uZ

�1

du
0
Z

dE

d⌦0du

n
0
jn

0
k

1 � n0 · nd⌦0
�TT

.

(2.6)
In this expression, we have defined the retarded time u,
the distance to the source r, the unit vector pointing
from the source n = x/r, the solid-angle element d⌦,
and the GW luminosity per solid angle dE/(dud⌦). To
relate the expression in Eq. (2.6) to the two polarizations
of the GWs, it is necessary to contract Eq. (2.6) with the
complex polarization tensor as follows:

h
mem
+ � ih

mem
⇥ = h

TT,mem
jk (ejk

+ � ie
jk
⇥ ) . (2.7)

It is convenient to define the polarization tensors using
a complex vector m

⇤
j (where ⇤ denotes complex conjuga-

tion). In spherical coordinates, (◆, �c), the vector m
⇤
j is

given by m
⇤j = [(@◆)j � i sin ◆(@�c)

j ]/
p

2, and the polar-
ization tensor is then

e
jk
+ � ie

jk
⇥ = m

⇤j
m

⇤k
. (2.8)

For practical computations of the nonlinear memory
e↵ect, it is common to expand the energy flux in terms
of the time-derivatives of the GW strain expanded in
spin-weighted spherical harmonics:

dE

dud⌦
=

r
2

16⇡

X

`0,`00,m0,m00

D
ḣ`0m0 ḣ

⇤
`00m00

E
(�2)

Y`0m0
(�2)

Y
⇤
`00m00 .

(2.9)
The angle brackets around the term ḣ`0m0 ḣ

⇤
`00m00 mean

to average over a few wavelengths of the radiation. By
substituting Eq. (2.9) into Eq. (2.6), the memory wave-
form becomes a sum over products of two spin-weighted
spherical harmonics. However, it is then useful to expand
h

mem
+ � ih

mem
⇥ in spin-weighted spherical harmonics as

h
mem
+ � ih

mem
⇥ =

X

`,m

h
mem
`m

(�2)
Y`0m0 , (2.10)

so that the multipole moments h
mem
`m are functions of

time that are determined by a double angular integral
of products of three spin-weighted spherical harmonics.
These integrals, although somewhat complicated, can be
evaluated numerically (as was done in [35]). Alternately,
the integral can be recast in terms of symmetric-trace-
free tensors or scalar spherical harmonics and evaluated
analytically (in terms of Clebsch-Gordon coe�cients or
Wigner 3-j symbols) [15, 54, 57].

We compute several appoximate expressions for the
polarizations in Eq. (2.10) in the next part of this section.
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from h
mem
+ (t) in the following ways: For the MWM, we

use the analytical expression given in [21]; for the other
two models, we pad the time domain waveform, window
the time-domain waveform with a Planck window [61] to
remove edge e↵ects, and use the fast Fourier transform
(FFT) algorithm [62] implemented in NumPy [63, 64].

While the time dependence of the three models is sim-
ilar, the amplitudes are not. The quadrupole and higher-
mode models are similar (they di↵er in the constant value
of h

mem
+ (t) at late times t by around ten percent). These

two models, however, di↵er from the MWM by a larger
amount. This di↵erence is also present in the frequency
domain waveforms, although it is more di�cult to ob-
serve in the bottom panel of Fig. 1.

The higher-mode model of [35] is expected to be
the most accurate of the three, because it introduces
the fewest assumptions and approximations. However,
it is also the slowest to compute, because it involves
the largest number of waveform modes. Because the
quadrupole approximation of [21] di↵ers by a relatively
small amount and is faster to compute, we will use this
waveform for most of our forecasts in Sec. IV; however,
this will slightly underestimate the signal to noise of the
memory e↵ect in the population of BBHs. The MWM
would typically overestimate it instead (we describe this
in more detail in Sec. IVB).

E. Degeneracies between waveform parameters

We discuss in this section properties of the quantities
h(lm)(t) introduced in Eq. (2.4) that will a↵ect whether
a given detection will be likely to contribute any signif-
icant evidence for the GW memory in the population of
binaries (similarly to what was done in [31]).

In GW parameter estimation, it is well known that
there are strong correlations between some parameters
measured from a BBH merger by interferometric detec-
tors when performing parameter estimation using just
the dominant l = 2, m = 2 waveform mode (e.g., the
correlation between inclination ◆ and luminosity distance
dL [65]). It is also well known, however, that by including
higher-order modes in the waveform model, some of these
correlations can be broken and improved constraints on
the parameters of the gravitational waveform model can
be obtained [66–70].

One salient type of correlation for detecting the GW
memory e↵ect was noted by Lasky et al. in [31]: namely,
they described a degeneracy for the dominant l = 2, m =
2 under transformations of the form

( ,�c) ! ( 0
,�

0
c) = ( + ⇡/2,�c + ⇡/2) . (2.12)

The quantity h(22)(t) was invariant, but other modes
h(lm)(t) were not. The reason for the degeneracy of
h(22)(t) is straightforward to understand: At fixed sky
location (↵, �), the antenna patterns F+ and F⇥ are pe-
riodic in the polarization angle  2 (0,⇡); thus, the
transformation  !  + ⇡/2 changes the sign of the
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FIG. 1. Gravitational waveforms associated with the nonlin-
ear GW memory e↵ect for a BBH with masses m1 = 30M�
and m2 = 30M�, at a luminosity distance dL = 500Mpc and
at an inclination ◆ = ⇡/2. The three curves are three dif-
ferent approximations for computing the GW memory wave-
form: the blue dotted-dashed line is the MWM of [21], the
red solid line is the quadrupole approximation also in [34], and
the dashed brown line is the higher-mode model of [35] (see
the the text for more detailed descriptions of the models).
Top: The time-domain waveform hmem

+ (t) for the nonlinear
GW memory for the three models. Bottom: The nonlinear
GW memory waveform in the frequency domain for the three
models.

antenna patterns F+ ! �F+ and F⇥ ! �F⇥. Be-
cause the polarizations associated with the mode h22 sat-
isfy h

22
+ � ih

22
⇥ / e

2i�c , then under the transformation
�c ! �c +⇡/2 it follows that h

22
+ � ih

22
⇥ ! �(h22

+ � ih
22
⇥ ).

This leaves the mode h(22)(t) invariant under this trans-
formation.

For the purposes of discussing some of the correlations
we have found in this work, it will be useful to consider
the slightly more general transformation

(F+, F⇥,�c) ! (±F+, ±F⇥,�c + �) . (2.13)

For a general mode h(`m)(t), a straightforward calcula-
tion then shows that under the transformation (2.13), the
mode transforms as

h(`m)(t) ! ± [F+h
`m
⇥ (t) � F⇥h

`m
+ (t)] sin m�

± h(`m)(t) cos m� .
(2.14)

[Boersma&al 2020]
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values both shifted by ⇡/2 (indicated by the intersection
of the white dashed lines). The presence of the negative
noise-weighted inner product is most obvious for Virgo
(in the inset), where the amplitude of the inner product
is smallest; however, it is also visible in the histograms for
LIGO-Hanford and LIGO-Livingston, despite the larger
amplitude for the inner product.

For ⇢hom
N ⇡ 2, almost all templates hmem(~✓s) consistent

with the posterior PDFs have the correct sign, which
occurs because the degeneracy of Eq. (2.12) is now almost
fully broken. For ⇢hom

N ⇡ 4,  and �c are even better
constrained, and the overlap for all detectors is closely
centered around the optimal SNR squared. Note that
there is a remaining degeneracy between �c and �c + ⇡

apparent in the 2D posteriors even at the large values of
⇢
hom
N . This occurs because the majority of the SNR in
⇢
hom
N comes from h(44) (this was noted in Sec. II E). This

residual degeneracy does not a↵ect the sign of the GW
memory e↵ect, however.

The results in Fig. 2 are representative of the required
network SNR in the higher-order modes, ⇢hom

N , that is
needed to break the degeneracies that determine the sign
of the memory in at least one detector (though see Ap-
pendix C for an example of a very specific sky location
and polarization that requires a slightly higher value of
⇢
hom
N ). Thus, we conclude that binaries for which the net-

work SNR ⇢
hom
N � 2 is su�cient to be able to determine

the memory sign. As a result, we will use this criteria to
determine when we include a given detection in the total
SNR for the memory in Eq. (3.6) in a BBH population.
This criteria is used throughout the next two subsections.

B. GW150914-like binary-black-hole population

Before we investigate di↵erent populations from those
studied in [31], we first aim to understand the e↵ects of
using a di↵erent waveform model and a slightly di↵erent
criteria for the SNR in the higher-order GW modes on
the same population of BBHs used by [31]. Specifically,
we consider in this section a population of GW150914-
like binaries. These are nonspinning binaries with m1 =
36M�, m2 = 29M� and dL = 410 Mpc, which are values
consistent with GW150914 [1]. The rest of the binary’s
parameters are distributed uniformly in ↵, sin �, cos ◆,  
and �c. In this analysis, as in Ref. [31], we use a detec-
tor network of the two LIGO detectors at design sensi-
tivity [72], and we use a network SNR for the oscillatory
part of the signal of 12 as our threshold for detection (i.e.,
⇢
osc
N � 12).
We calculate the GW memory waveforms for all detec-

tions using the three di↵erent waveform models described
in Sec. II D. For each model, we calculate the associated
total memory SNR from Eq. (3.5) for a population of 100
GW150914-like binaries. For detections with ⇢

hom
N � 2

(where just higher-order modes with l  3 and odd |m|
are used), we include the network SNR for the memory
e↵ect in the sum, and for the remaining detections, we

set ⇢mem
N,j = 0, for each of the waveform models (as was

described in Sec. IVA).8

We repeat the above analysis for 100 realizations of this
GW150914-like population (and we use the same realiza-
tions for the three di↵erent waveform models). Figure 3
shows how the total SNR for the memory e↵ect grows
over the 100 detections. The solid lines show the median
SNR over the 100 realizations of the population, h⇢toti,
and the shaded regions indicate the 1-� confidence in-
tervals (i.e., the symmetric, 68% credible region). The
three colors (blue, maroon, and red) correspond to the
three di↵erent waveform models described in Sec. IID
(the MWM, higher-mode, and quadrupole, respectively).
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ti
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Higher-mode
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FIG. 3. The total memory SNR versus the detection number
for a population of GW150914-like binaries computed with
the three GW memory waveform models in Sec. IID. The
solid lines are the median values over 100 realizations of this
population, and the shaded regions are 1-� confidence inter-
vals. The colors red, maroon, and blue correspond to the
quadrupole, higher-mode, and MWM models, respectively.
The dotted-dashed and dashed black lines show two SNR
thresholds used in [31]. Our calculations with the MWM
are consistent with the ones in [31] (which also used the
MWM). The other two models have notably smaller SNRs
for the memory e↵ect.

TABLE I. Total memory SNR h⇢toti for the three di↵erent
waveform models of Sec. IID after 30 and 90 detections. The
numbers are the median value, and the error bars are 1-�
confidence intervals.

Detection Number MWM Higher-mode Quadrupole

30 3.10+0.33
�0.41 2.11+0.23

�0.28 1.79+0.19
�0.23

90 5.30+0.36
�0.36 3.61+0.24

�0.25 3.06+0.21
�0.21

For reference, we give the median value of the SNR
h⇢toti and the 1-� confidence intervals for the popula-
tion after 30 and 90 detections in Table I. We choose

8 Although we do not include GW modes l > 3 in the oscillatory
waveform to match with [31], the higher-mode memory waveform
is calculated using all modes up to l = 4 as stated in Sec. IID.

[Boersma&al 2020]
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Multiband GW observations and TGR

Figure 1. Visual representation of the multi-band GW astronomy concept. Violet dashed
lines are, from top to bottom, the total sensitivity curves of LISA configurations N2A1, N2A2,
N2A5 (from [19]). The thick solid purple line is the LISA baseline proposed by the LISA
Consortium to address ESA’s L3 call. Orange lines refer to current (dashed) and design (solid)
aLIGO sensitivity curves. Lines in di↵erent shades of blue represent amplitude tracks of BHBs
found in a selected Monte Carlo realization of the flat population model (see main text) seen with
S/N> 1 in the new LISA configuration, integrated assuming a four year mission lifetime (baseline
LISA4yr). Light and dark blue curves starting around 0.01Hz and extending to ⇠ 100Hz are
BHBs coalescing within the LIGO band during the LISA lifetime, and observable by LISA with
S/N> 5 and S/N> 8 respectively; the dark blue ticks in the upper left corner are further sources
with S/N> 8 by LISA but not crossing to the aLIGO band within the mission lifetime. Light
turquoise lines clustering at the bottom are sources seen in LISA with S/N< 5 (for clarity
those were down-sampled by a factor of 20 and sources extending to the aLIGO band were
removed). The characteristic amplitude track completed by GW150914 is shown as a black
solid line for comparison. The chart at the top of the figure indicates the frequency progression
of this particular source in the last 10 years before coalescence. Adapted from [15].

a recommendation for a space based GW observatory. During the study, di↵erent baselines for
a spaceborne interferometer were considered. Full details can be found in [19]. In the following,
six baselines featuring one, two or five million km arm-length (A1, A2, A5) and two possible low
frequency noises – namely the LISA Pathfinder goal (N1) and the original LISA requirement
(N2) – are considered. Those configurations, labelled N1A1, N1A2, N1A5, N2A1, N2A2, N2A5,
all assume five years of observations with two equivalent Michelson interferometers (i.e. six
active laser links). Building on the GOAT recommendation, the LISA Consortium proposed
a somewhat di↵erent baseline [22], with slightly di↵erent technical specifications, including an
armlength of 2.5M kilometres and a mission lifetime requirement of 4 years, and an extension goal

[Sesana 2017]

• Challenging detections for 
LISA on its own

• Archival searches possible 
from detections on the ground
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FIG. 1: 1� constraints on the BH dipole flux parameter B
from various sources – GW150914-like BH binaries (stars
and plusses), massive BH binaries (filled circles) and EM-
RIs/IMRIs (filled triangles) – as a function of the instrument
– aLIGO at the time of the GW150914 event (Curr. aLIGO),
aLIGO at design sensitivity (Desgn aLIGO), various six-link
eLISA configurations (NxAx) with target/pessimistic low-
frequency noise (N2/N1) and 1 Gm/2 Gm arms (A1/A2),
a Classic LISA design with six links, 5-Gm arms and target-
level low-frequency noise, and joint observations by design
aLIGO and eLISA (C-NxAx), or by design aLIGO and Clas-
sic LISA (aLIGO-LISA). For comparison, we also include the
current constraint on vacuum dipole radiation from LMXB
A0620-00 [62]. The combined aLIGO-eLISA observation
of GW150914-like sources leads to the most stringent con-
straints, which are six orders of magnitude stronger than cur-
rent bounds.

obtain the variance-covariance matrix [70, 71].4

We explore the projected bounds on B with several BH
binaries. For GW150914-like systems, we consider total
masses m = (50, 80, 100)M� (as well as m = 65M� for
the actual GW150914 event), a mass ratio q ⌘ m1/m2 =
0.8, dimensionless spin parameters (�1,�2) = (0.4, 0.3),
and a luminosity distance dL = 400 Mpc (i.e. redshift
z ⇠ 0.085). For massive BH binaries, we consider m =
(104, 105, 106)M�, with large (�1,�2) = (0.9, 0.8) spins,
mass ratios q = (0.3, 0.8), and dL = (16, 48) Gpc (i.e. z ⇠
2 and 5). We also consider extreme/intermediate mass-
ratio inspirals (EMRIs/IMRIs), for which we take indi-
vidual masses (10, 105)M�, (10, 104)M�, (102, 105)M�,
(103, 105)M�, dL = (1, 5) Gpc [z ⇠ (0.2, 0.8)], and spins
(�1,�2) = (0.5, 0.8) in all cases.

Figure 1 summarizes our projected 1� bounds on B

4
This is a good approximation if the signal in the two detectors

is phase-connected, i.e. if the chirp mass is measured by eLISA

with su�cient accuracy so as to account for all the cycles between

the two bands [72]. We have verified that this is indeed the case.

and compares them to the existing ones. eLISA ob-
servations of GW150914-like systems lead to constraints
typically five orders of magnitude stronger than the cur-
rent A0620-00 constraints, and six orders of magnitude
stronger than current aLIGO constraints. This is be-
cause when these binaries produce GWs in the eLISA
band, they are widely separated and thus emit dipole ra-
diation abundantly. For example, 5 years prior to merger
(while in the eLISA band), the GW150914 binary had an
orbital velocity of 0.025 c. When exiting the eLISA band
at ⇠ 0.1 Hz, the velocity was 0.048 c, which increased to
0.22 c upon entering the aLIGO band at ⇠ 10Hz. No-
tice that eLISA is sensitive to the very low-velocity/early
inspiral, where not only does dipole radiation dominate
over quadrupole radiation, but any systematics due to
the PN approximation are negligible (unlike for events
including the merger). We have confirmed this by re-
peating the Fisher analysis with two waveform models
(PhenomB and PhenomD [63, 73]), which lead to very
similar constraints on dipole radiation, since the mod-
els are almost indistinguishable in the early inspiral (see
also [63]).
Combined eLISA and design-aLIGO observations lead

to constraints ⇠ 10 times better than eLISA observa-
tions alone. If design aLIGO is upgraded, e.g. to one
of the LIGO Explorer designs with a ten-fold increase
in sensitivity at 100Hz [74], these combined constraints
would become ⇠ 102 times better than eLISA observa-
tions alone. Note that the eLISA/design-aLIGO com-
bined constraints are roughly one order of magnitude
worse than the approximate calculation presented ear-
lier, because the latter does not account for correlations
between parameters. We have indeed verified that the
bound from the Fisher analysis becomes stronger and
approaches the approximate estimate if we assume that
all parameters except � (or equivalently B) are known
exactly, i.e. if we assume that the variance on � is sim-
ply given by the inverse of the corresponding diagonal
Fisher matrix entry.

eLISA observations of massive BH binaries and EM-
RIs/IMRIs would also constrain BH dipole radiation, al-
though bounds are typically weaker. How strong these
constraints are depends on the orbital separation (or rel-
ative velocity) of these binaries when they emit in the
eLISA band. For example, eLISA will be sensitive only to
the late inspiral and merger-ringdown of very massive BH
binaries, which is why these lead to weaker constraints
in Fig. 1.

One may wonder whether the projected constraints
discussed above are robust, since gravity modifications
inducing dipole emission, if present, will typically change
the GW model not only at -1PN order in the waveform
phase, but also at higher PN orders. However, as shown
explicitly in [63], at least in FJBD theory, these higher-
order PN corrections only a↵ect a Fisher analysis like
ours by at most 10%. The addition of many terms in

[Barausse&al 2016]
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FIG. 2. We present a simulated time series of duration 104

seconds illustrating the character of the BBH and BNS signals
in the time domain. In red we show a simulated BNS back-
ground corresponding to the median rate as shown in Figure 1,
and in green we display the median BBH background. We do
not show any detector noise, and do not remove some loud
and close events that would be detected individually. The re-
gion in the black box, from 1800 – 2600 seconds, is shown in
greater detail in the inset. The BNS time series is continuous
as it consists of a superposition of overlapping signals. On the
other hand the BBH background (in green) is popcorn-like,
and the signals do not overlap. Remarkably, even though the
backgrounds have very di↵erent structure in the time domain,
the energy in both backgrounds are comparable below 100 Hz,
as seen in Figure 1.
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