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Introduction

Self-interacting scalar dark matter ?

Upper panel : Radial density profiles of haloes
formed in the ΨDM model compared to CDM
Lower panel : Comparison of large-scale
structures formed by CDM and by ΨDM
[Shive et al. Nature Phys 10, 496 - 499 (2014)]

DM is composed of bosons (spin - 0)

Masses : 10−22eV < m < eV

Form stable equilibrium
configurations, between self-gravity
and quantum pressure (Fuzzy DM)
self-gravity and pressure due to
self-interactions → different
behaviour at galactic scales

Might help to solve some
cosmological tensions (core-cusp
problem, missing satellites, ...)

Still recovers the successes of
ΛCDM at large scale
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Introduction

Dynamical friction

Dynamical friction/Gravitational drag :
Loss of momentum of moving objects through gravitational interactions

Framework :
A Schwarzschild Black Hole (BH) in motion in SFDM cloud, in steady state

Impact on : Gravitational waves emission dephasing in binary BHs
[Kocsis et al. PhysRevD.84.024032 (2011), Barausse et al. PhysRevD.89.104059 (2014),

Cardoso & Maselli AA 664 (2020), ...]

Ψ(f ) = 2πf
(

tc +
r
c

)
− Φc −

π

4
+ΨGR (f ) + Ψenv (f )
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SFDM

Action and field solution (large-m limit)

SFDM Action : Sϕ =

∫
d4x

√
−g

[
−1

2
gµν∂µϕ∂νϕ− V(ϕ)

]
V(ϕ) =

m2

2
ϕ2 + VI(ϕ) , VI(ϕ) =

λ4

4
ϕ4 (first term obey ρ ∝ a−3)

The Klein-Gordon equation [Brax et al. PhysRevD.101.023521 (2020)] :

∂2ϕ

∂t2 −
√

f
h3 ∇⃗ ·

(√
fh∇⃗ϕ

)
+ f

∂V(ϕ)

∂ϕ
= 0

If the radial and angular derivatives are discarded (local approximation), we can
recognize the Duffing equation :

ϕ = ϕ0(r, θ)cn[ω(r, θ)t − K(k)β(r, θ), k(r, θ)]

Angular frequency

Amplitude Phase related to the velocity

Modulus (nonlinear oscillator)
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SFDM

A system of 3 equations

At leading order in the large-mass limit, we obtain the system :

Relativistic Bernouilli equation : (∇β)2 =
h
f

(
2ω0

π

)2

− hm2

(1 − 2k2)K2

Deviation from harmonic oscillator :
λ4ϕ

2
0

m2 =
2k2

1 − 2k2

At large distances (r → ∞) : k → k0 with k2
0 ≃ λ4ϕ

2
0

2m2 =
λ4ρ0

m4

From the conservation equation ⟨∇µTµ
0 ⟩ = 0 (where ⟨...⟩ is the average over the

oscillations, to ensure steady state) we obtain a result in the form of an effective
continuity equation :

∇ · (ρeff∇β) = 0 , ρeff =
√

fhϕ2
0ωK⟨cn′2⟩
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SFDM

Low and high velocity branches

In the case of radial accretion, the effective continuity equation can be integrated
at once, since only depending on radial derivatives. We get 2 solutions for k as
for hydrodynamics infall (see [Bondi (1952), Michel (1972)])

Moduli k1 and k2 for a constant flux Fc/3 (dashed lines) and Fc (dotted lines). The critical
modulus kc (solid line) is equal to k1 for x < x⋆ and to k2 for x > x⋆, with F = Fc

[Brax et al. PhysRevD.101.023521 (2020)]

In our case, Same k near the BH + need to solve at large-radii along k2

A. Boudon (IPhT) TUG Workshop 2022 6th October, 2022 5 / 11
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SFDM

Low-k and subsonic regime

Using the rescaled quantities r̂ =
r
rs

and β̂ =
π

2mrs
β, we obtain :

(∇̂β̂)2 =
3
2

k2
0 + v2

0 +
1
r̂
− 3

2
k2 =

3
2
[
k+(r̂)2 − k2] ,

where we introduced k+(r̂)2 = k2
0 +

2
3

v2
0 +

2
3r̂

Relative velocity termEnthalpy/Soliton density BH contribution

With this, we can re-express the conservation equation (ρeff ∝ k2) as :

∇̂ ·
[(

k+(x)2 − 2
3
(∇̂β̂)2

)
∇̂β̂

]
= 0 → (subsonic regime) ∇̂·

[
k+(x)2∇̂β̂

]
= S
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SFDM

Velocity and density fields

Flow (top panels) and odd-component of the density field r̂ρ̂odd/ρ̂0 (bottom panels) for the
scalar field cloud at different scales
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Dynamical friction and accretion

Dynamical friction & mass accretion

The mass accretion (mass conservation) :

˙̂MBH = −
∫

Ŝ

⃗dŜ · ρ̂⃗v = 2π
∫ b̂−

0
db̂ b̂ ρ̂vz |̂z− − 2π

∫ b̂+

0
db̂ b̂ ρ̂vz |̂z+

Finding b̂+ from the streamlines, ṀBH ∼ ρ0r2
s /c2

s ∼ ρ0G2M2
BH/c2

s

The dynamical friction (momentum conservation), exact analytical result :

Fz =
dpz

dt
= −

∫
Sout

d⃗S · ρ⃗vvz −
∫

Sout

d⃗S · P⃗ez = ṀBHv0
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Dynamical friction and accretion

Comparison with FDM and CDM

SFDM : v0 < cs, Fz ∼
G2M2

BHρ0v0

c2
s

Chandrasekhar : v0 < cs (velocity dispersion), Ffree ∼
CG2M2

BHρ0v0

c3
s

[Chandrasekhar (1943)]

Fuzzy DM (FDM) :
rsg

R
cs ≪ v0 < cs, FFDM ∼ G2M2

BHρ0

c2
s

[Hui et al. PhysRevD.95.043541 (2017)]

Subsonic perfect gas : Fperfect gas ∼
G2M2

BHρ0v0

c3
s

[Ostriker Astrophys.J. 513-252 (1999), Lee & Stahler Mon.Not.Roy.Astro.Soc. 416-3177 (2011)]

So
Fz

Ffree
∼ cs

C
≪ 1 ,

Fz

FFDM
∼ v0 ≪ 1 and

Fz

Fperfect gas
∼ cs ≪ 1
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Conclusion

Summary

In the large-mass regime + subsonic regime :

The self-interaction modifies the accretion rate and the dynamical friction of a
moving BH inside a soliton

The system is closer to the case of a perfect gas than FDM

Close to the BH, the self-interactions are able to significantly slow down the
infall, thus the dynamical friction is smaller than for a perfect gas

The obtained dynamical friction is also smaller than for FDM/Collisionless
particles

A. Boudon (IPhT) TUG Workshop 2022 6th October, 2022 10 / 11



Conclusion

Prospects

In progress :

Calculation of the phase shift induced on GW emissions for BBHs

Φ(f ) =
∫ fc

f
ωgwdf ∝ f −13/3 , an inverse PN contribution (-4 PN)

Compared to a fluid at rest : Φ(f ) ∝ f −16/3 (-5.5 PN)
[Barausse et al. PhysRevD.89.104059 (2014), Cardoso & Maselli AA 664 (2020), ...]

For future work :

Generalize to supersonic flow, v0 > cs =

√
3

2
k0

Add spin to the BH (for more realistic results) → Kerr BH

A. Boudon (IPhT) TUG Workshop 2022 6th October, 2022 11 / 11



Annexes

Schwarzschild metric

ds2 = −f (r) dt2 +h(r) (dr2 + r2 dΩ⃗2)

Isotropic metric functions :

f (r) =
(

1 − rs/(4r)
1 + rs/(4r)

)2

,

h(r) = (1 + rs/(4r))4

In this coordinates, the BH horizon is
located at r =

rs

4
At large radii : f = 1 + 2ΦN and
h = 1 − 2ΦN

[Manoukian (2020)]
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Annexes

Parameter space (m, λ4)

10 14 10 11 10 8 10 5 10 2 101 104 107

m [eV]
10 80

10 70

10 60

10 50

10 40

10 30

10 20

10 10

100

4

MBH = 10 M

10 20 10 17 10 14 10 11 10 8 10 5 10 2 101 104

m [eV]
10 90

10 80

10 70

10 60

10 50

10 40

10 30

10 20

10 10

4

MBH = 107 M

Domain in the parameter space (m, λ4) for a BH of mass 10 M⊙ and 107M⊙

Solid : Quantum pressure comes
into play at cloud scale
Dashed : The cloud radius is of
the order of rs

Dotted : The Cloud radius does
not extend above rsg (self-gravity
regime never reached)

Solid : λ4 becomes large enough to see
deviations from CDM model at large
scales
Dashed : Obs. constraints on cross
section [Brax et al. PhysRevD.100.023526 (2019)]

Solid : Quantum pressure comes into
play at rs scale
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Annexes

Linear flow (1)

At small radii (but far from BH), we are in low-velocity radial accretion regime
and so (∇̂β̂)2 ≪ k2

+ :

∇̂ ·
[
k+(r̂)2∇̂β̂

]
= 0

The spherical symmetry of k2
+ implies that the angular part of the linear modes

can be expanded over spherical harmonics

We only need Y0
l (θ, ϕ) since we have axisymmetric solutions and so the Green

function Gℓ(r̂, θ) = Gℓ(r̂)Pℓ(cos θ) with :

d
dr̂

(
r̂2k2

+

dGℓ

dr̂

)
− ℓ(ℓ+ 1)k2

+Gℓ = 0
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Annexes

Linear flow (2)

The boundary condition at large radius, r̂ → ∞ : β̂ = v0r̂ cos θ

The inner boundary condition, r̂ = r̂m :
∂β̂

∂r̂
≃ vm

r ,
∂β̂

∂θ
≃ 0

Thus, at linear level we only generate the monopole and the dipole :

β̂L = β̂L
0 (r̂) + β̂L

1 (r̂) cos(θ) ,

where :

β̂L
0 (r̂) = −vm

r

(
γr̂2

m + r̂m
)
ln

(
γ +

1
r̂

)
,

β̂L
1 (r̂) =

v0

γ
(γr̂)

√
2 Γ(−1 +

√
2) Γ(2 +

√
2)√

2Γ(1 + 2
√

2)

× 2F1(2 +
√

2,−1 +
√

2; 1 + 2
√

2;−γr̂)
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Beyond linear flow

To go beyond linear flow, we can consider the second term in the conservation
equation as a source term :

∇ · (k2
+∇β) = S, S =

2
3
∇ · [(∇β)2∇β]

In this case, using ∇ · (k2
+∇G) = δD(⃗r − r⃗

′
) and developing G and β in

spherical harmonics :

G(⃗r, r⃗
′
) =

∑
ℓ,m

Gℓ(r, r′)Ym
ℓ (θ

′, φ′)∗Ym
ℓ (θ, φ) ,

β(r, θ) =
∑
ℓ

βℓ(r)Pℓ(cos θ) ,

we obtain :

βℓ = βL
ℓ +

∫ ∞

rm

dr′ r′2Gℓ(r, r′)Sℓ(r′)
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Green function components

By setting γ =
3k2

0

2
+ v2

0 and
3
2

k2
+ =

1
r̂
+ γ :

G+
0 (r̂) = 1 , G−

0 (r̂) = ln

(
γ +

1
r̂

)
,

G+
ℓ (r̂) = r̂a−ν

2F1(a, 1 − b; 1 − b + a;−γr̂) ,

G−
ℓ (r̂) = r̂−ν

2F1(a, b; c;−1/(γr̂)) ,

with :

ν =
1 +

√
1 + 4ℓ(ℓ+ 1)

2
, a = ν +

√
ν(ν − 1) ,

b = ν −
√
ν(ν − 1) , c = 2ν
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Green function

Since βL
ℓ already matches the boundary conditions, we require the Green

function to become negligible at rm and large radii, and
∂G0

∂r
(rm) = 0 to recover

the radial velocity :

r < r′ : G0(r, r′) = −3G−
0 (r′)/2

r > r′ : G0(r, r′) = −3G−
0 (r)/2

r < r′ : Gℓ(r, r′) = A
[
G−

ℓ (rm)G+
ℓ (r)− G+

ℓ (rm)G−
ℓ (r)

]
,

r > r′ : Gℓ(r, r′) = B G−
ℓ (r) ,

where :

A =
3G−

ℓ (r
′)

2G−
ℓ (rm)(r′ + γr′2)[G+

ℓ (r′)G
−′

ℓ (r′)− G−
ℓ (r′)G

+′

ℓ (r′)]
,

B = A
[

G−
ℓ (rm)

G+
ℓ (r

′)

G−
ℓ (r′)

− G+
ℓ (rm)

]
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Numerical simulation

To obtain numerical results, one solution is to express S in spherical harmonics
to :

S =
∑
ℓ

SℓPℓ(cos θ)

Then, we can solve :

Sℓ =
∫

dΩ⃗
2
3
∇ · [(∇β)2∇β]Pℓ(cos θ)

And finally, we can calculate the new value of βℓ

This iteration go on until we reach convergence (if there is )
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