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1- Inflationary reheating
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From (P)reheating Effects of the Kdhler Moduli Inflation | Model, Islam Khan, Aaron C. Vincent and Guy Worthey, 2111.11050

Simon Cléry - |JCLab Orsay - TUG 2022



Time dependent background

Reheating

inflaton

V(g) ~ A

d (GeV)
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EOM: o(t) + 3Ho(t) +

Couplings of the inflaton with the other fields induce
transfer of energy during the oscillations : (p)reheating !
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Redshifted envelop and frequency of
the oscillations depend on the shape
of the potential near the minimum
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Pe rtu rbative processes (for non perturbative preheating and production during inflation —Mathias' talk !)

Inflaton sector can also handle non-thermal Dark Matter (DM) production through perturbative processes

DM
_ _(i)_ _ =» From inflaton background direct decay to DM, see for example Reheating and
Post-inflationary Production of Dark Matter, Garcia, Kaneta, Mambrini, Olive, 2004.08404
. DM
o _ =» From inflaton portal, in which the inflaton mediates between SM and DM sectors,
see The Inflaton Portal to Dark Matter, Heurtier, 1707.08999
SM - DM
¢ | DM
\ . . . .
\ =» From inflaton scattering mediated by a (massive) particle, see for example,
/’ Gravitational Production of Dark Matter during Reheating, Mambrini, Olive, 2102.06214
/
o, - DM 5
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2- Minimal gravitational portal

=» Graviton portal arises from metric perturbation TA ,/
around its locally flat form THY "~ e
£ > /
A 1111 AT

Juv = Muv + Qh/,LI//MP v’ huv A

l h/p -~ ~X/h
1
. 1% 174 v ].
Lmin. = _M_Phul/ <T}l; + Tqﬁb + T)/z’ ) T(')LW = gtSa¥S — g'uy lgé)aS@aS — V(S)] y

=» Consider massless gravitons and from the stress-energy Tlu/'; _! lx,y,ué_;/x i XW”;“X]
of spin 0, 1, % fields we can compute the amplitudes for 4
the processes | @ it _

—9"" | XY 0aX — MxXX|

Spin-2 Portal Dark Matter, Bernal, Dutra, Mambrini, Olive, Peloso, 1803.01866 & 1 1
TH = Z |FEPFY® £ FYFHFY _ g FOPF 5
Gravitational Production of Dark Matter during Reheating, Mambrini, Olive, 2102.06214 2 2
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Graviton can play the portal between :

SM\ 'DM

=» Thermal bath and DM to populate DM through the FIMP scenario » <
SM/ DM
o ,DM

=» Inflaton and DM to directly produce DM from the condensate \/ <
o/ ‘DM
O« , SM

=» Inflaton and the thermal bath to initiate the reheating process S <

BUT inflaton scattering cannot reheat entirely (p = p, ... ) in a quadratic potential (o< ¢?) as the radiation
produced is more “redshifted” than the inflaton energy density

Gravitational portals in the early Universe, SC, Mambrini, Olive, Verner, 2112.15214
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Radiation production in minimal framework

T . ~10'>GeV reached by the

bath is unavoidable !
T_..is almost independent of
the potential near the minimum
(the power k)

| | k=2 | k=4 | k=6 ]
| Timax [1.0 X 10" GeV|[7.5 x 10'! GeV|6.5 x 10'! GeV |

Gravitational portals in the early Universe, SC,
Mambrini, Olive, Verner, 2112.15214
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Figure 1 : Evolution of energy densities of the inflaton (blue),

and graviton exchange (green)

Reheating is still given by
the decay width of the
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DM production in minimal framework

LogolTru]

Gravitational portals in the early Universe, SC, Mambrini, Olive, Verner, 2112.15214
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Figure 2 : DM relic, Qh? = 0.12 in the case of a spin 0 DM
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Figure 3 : DM relic, Qh? = 0.12 in the case of a spin ¥2 DM
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3- Non-minimal coupling to gravity

The natural generalization of this minimal interaction is to introduce a non-minimal coupling to gravity of
the form:

2 2 2
MZE e 2 §o0°  Enh”  ExX
P ()2 i =
£non—min. - 9 QR + ‘C¢ + Ln+ Lx with 0% = 1+ M2 + M2 + M2
in the Jordan frame inflaton SM DM
g = Q%5 . . . i S
2 a This non-minimal coupling N
induces leading-order S el
interactions in the small fields /
Loon—min. = —0%h2X2 — g% ¢2X2 — ot ¢2p2 [NErd . nd .
Hon T L ox 9 oh9 limit, involved in radiation and RN
_ o DM production. 7 .
in the Einstein frame . "
h/® X/h
Gravitational Portals with Non-Minimal Couplings, SC, Mambrini, Olive, Shkerin, Verner, 2203.02004 Reheatiny

and Dark Matter Freeze-in in the Higgs-R? Inflation Model, Aoki, Lee, Menkara, Yamashita, 2202.13063
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Figure 4 : Energy densities of inflaton (blue), total radiation (red),

radiation from

, from scattering mediated by
graviton (purple) and from non-minimal coupling (green), with §, = § = 2
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Figure 5 : Contours respecting Qxhz =0.12 for spin 0
DM, for different values of ¢, = ¢, = & Both minimal
and non-minimal contributions are added.

=» Non-minimal couplings alleviate difficulties to produce DM and radiation through gravitational portals

Gravitational Portals with Non-Minimal Couplings, SC, Mambrini, Olive, Shkerin, Verner, 2203.02004
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4 - Gravitational reheating

=» Graviton exchange processes can be sufficient to reheat entirely, for

b - SM o ) .
sufficiently steep inflaton potential : k>9
AL Gravitational Reheating, Haque, Maity, 2201.02348
o Py \*\\ Inflationary Gravitational Leptogenesis, Co, Mambrini, Olive, 2205.01689
o ~SM 10— : . 3
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10*°F A E
- 10ifr . g=100 A
6k e 5
a k42 Qend L0 o sl 1
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¢ SM 102k | S reheating 3
, : 10F o f
=» The requirement of large k can be relaxed if we add the BRG]
non-minimal contribution to radiation production, 4 @ 8 1 h_12 16 18 20
(but still need k>4). Figure 6 : Reheating temperature from gravitational
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5 - Gravity as a portal to reheating, leptogenesis and DM

Baryogenesis via leptogenesis, Strumia, 0608347

Interference between tree level decay and vertex + self energy
1-loop order corrections provides a CP violation in the decay of
the sterile neutrino.

Graviton portal can handle the
production of sterile neutrinos

'noc,og—Un_i 7 3deF ™My, MN \ nr, NN

UNsroag +UN L2 7 167 v f s s
Considering type | see-saw mechanism with, v =174 GeV Lepton asymmetry, out-of
(Higgs VEV) and the effective CP violation phase 6 . equilibrium

Inflationary Gravitational Leptogenesis, Co, Mambrini, Olive, 2205.01689.
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Finally, gathering all these results in one “purely” gravitational framework :

L£>V-3

&g ¢* " Enh
]\[2 JUQ

= -

Non-minimal couplings with gravity

h/¢ N

h/¢ )
h/¢/
66 — N.N, and SM SM — N. N,

from minimal and non-minimal
couplings

inflaton RHNs
(N1! Nzﬁ N3)

LN =—5 My, NEN; -

Ry L tLn

(yn)ij Ni Ht L; +hé..

N, is the lightest right handed neutrino (RHN) and the DM candidate,
assumed to be decoupled from N, N,

N, N, are much heavier and generate the lepton asymmetry through their

graV|tat|onaI production and out-of equilibrium decay

dd — NN, (N5 N,)
from minimal and non-minimal
couplings

h, D
\A\ ,’ a
Thre ™ <" Tx/n
e 111 At + o
/'/ hW “ o
¢ - h )
o]
dd — SM SM

from minimal and non-minimal
couplings, for radiation production
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Figure 7 : Lines corresponding to the observed DM relic abundance, all gravitational contributions added, for different M, ,
Shaded regions correspond to under abundance of DM

Gravity as a Portal to Reheating, Leptogenesis and Dark Matter, B. Barman, SC, R. Co, Y. Mambrini, K.A. Olive, Soon on arXiv, stay tuned! 15



Baryon asymmetry from leptogenesis (N.)

10° g j : : a
i i
10°F Yp underproduced 02 Gey - - - - 4
My '1’0'\‘2 G(\I
10%F LM T i £
N i AN B )
: . 10°¢ e e
Lepton asymmetry is converted into a baryon = 5 E s s
2L v i A -
asymmetry : = 10°) e o
n m M = 10f ya E
- N V; an o ; ]
Yp=28Y, ~35x 107404 ( : ) ( A ) = F ; ]
= s \0.05eV/ \1013 GeV S L
10 — /lfl inconsistent —
Gravity as a Portal to Reheating, Leptogenesis and Dark Matter, B. Barman, SC, R. Co, i T reheating ;
Y. Mambrini, K.A. Olive, Soon on arXiv, stay tuned! 102§ i 3
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Figure 8 : Lines corresponding to the observed baryon asymmetry |Yp ~ 8.7 x 10~ |for different M,,
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Gravitational leptogenesis and DM production simultaneously

€=10
1012 n Mp;, [PeV] Mpy;, [GeV] En
Z ] . | 163 16+ 0
< 2.8 4.0 x 1017 1
< 8.7 1.3 x 104 10
=
We choose in this table k = 6 as a benchmark. For each & on the
plot, the range runs over k < [6,20] without a significant change.
s £=0
Graviton Gravity as a Portal to Reheating, Leptogenesis and Dark Matter, B. Barman, SC,
R. Co, Y. Mambrini, K.A. Olive, Soon on arXiv, stay tuned!
1

()I 1
10° 107
My, (GeV)

M,,,) parameter space satisfying simultaneously the observed DM relic abundance (N1) and the baryon

Figure 9 :(M,,, M,
asymmetry (N2) via gravitational production, asking also for a gravitational reheating.
17
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Conclusion

=» Reheating phase allows production from Planck suppressed couplings : gravitational production
=» Unavoidable lower limits on radiation and DM production

=> Non-minimal coupling to gravity can naturally enhance particle production

=» Graviton portal can complete the reheating for steep inflaton potential (large k)

=» It provides a minimal framework to produce sterile neutrinos that handle leptogenesis

There is a way to explain DM relic abundance, Baryon asymmetry and Reheating in a framework which
involves only gravitational interactions, with minimal and non-minimal coupling to gravity !
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Thank you for your attention!
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APPENDIX
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The WIMP Miracle ?

DM production/annihilation from/to the thermal bath

Evolution of number density during radiation era
following the classical Boltzmann equation in an Radiation (SM)
expanding Universe :

<+—>

Ny +3Hn, = ]\(m>72 = R(T)

Ny T3
Yy = 5 l Radlatlon (SM)

sy — <m'>( Yga)2 — y2)  Thermal and chemical equilibrium

—r

><—><+ +/\+/\
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T < mDM : WIMP becomes non-relativistic
—— —departs from its equilibrium value and

Yx*
l 4—/ starts chemical decoupling

A = 0.005

10°°
Radiation (SM)

Se -10 | i
o A=0.07 > <

Radiatlon (SM)

10'15- A:l-‘

my = 100 GCV i\\ ny<ov> < H: WIMP “freezes out”
(ov) = M/m? — comoving number density becomes constant

15722

102 107 1 10 102 10°
From Origins for dark matter particles: from the "WIMP miracle" to the "FIMP

wonder" - Maira Dutra




Radiation (SM) DM
Y
1077 i Mp- = = A
A = 0.005
/ DM
Radiation (SM)
S 1070 A=0.07]
Typical electroweak scale massive particle
8 (~100 GeV) with electroweak coupling
107 A=1] production corresponds to the observed relic
my = 100 GeV abundance of Dark Matter £h? =0.12
(ov) = \/m?
10720 AP D e T S Sy _ .
102 101" 1 10 102 10% 10% — No new physical scale is needed, just a new
sector to connect with the SM electroweak
my /T sector !
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V P Probing DM scattering with nucleons, electrons = direct detection
|
/'\ But... detection bounds still go down. Indirect detection and collider experiments
should probe other processes involving WIMPs, but still without success.
SM  SM

0.100
0.100
0.010
x 3 0.010p "¢ 0.001
- _ 1074}
0.001} g H
S 107°f
107} SM ¥ - i
L L L | 10— L i i I
10 50 100 500 1000 10 50 100 500 1000

my[GeV] my[GeV]
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+ « Ultraviolet » freeze out

(neutnno)

< Ultraviolet freeze 1in

(gravitno)

Credit : Yann Mamobrini

" Infrared freeze in

(FIMP)

DM interacts so
feebly that it never
reaches equilibrium
and it “freezes in”

Radiation (SM) DM

Observed
abundance
A A

Vs DM
Radiation (SM)

time= 1/T
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Can arise from superpotential in no-scale
supergravity :

k+ 2 3(k + 6)

W= 2%1\5\]\/{% ((qs/Mp)f+1 (¢/Mp)5+3> Class of models : a-attractor T-model inflation

}

V(g) = AM} [\/Eta“h (ﬁ)r

k
~ Asinh? [ /= tanh
24m2e, M5~ 8KZa2 ( 3 MP) an <\/5MP>

A determined by the power spectrum amplitude
of the CMB “As”
— Planck measurements give for k=2 : A ~ 10"

AS* ~

| L I L 1 L L I L

for N ~ 50 efolds Q=T -5

A =

Reheating and Post-inflationary Production of Dark Matter, Marcos A.G.
Garcia, Kunio Kaneta, Yann Mambrini, Keith A. Olive, 2004.08404

187T2AS* Figure 1: Potentials for the T-Model inflation tanh®"(¢/v/6) for n = 1,2,3,4

6k/2N2 From Universality Class in Conformal Inflation, Kallosh and Linde, 1306.5220
*


https://inspirehep.net/authors/1327985
https://inspirehep.net/authors/1327985
https://inspirehep.net/authors/1078184
https://inspirehep.net/authors/1019683
https://inspirehep.net/authors/994945

Boltzmann approach

From this, production rate can be
computed by

Assumes that the background geometry is

Minkowskian and compute transition probabilit (n)
P P y ¢>—>xx Z / dP bPp—rxX
3 3
AP, 45 = d ba_ d DB M, [ which is the right hand side of the
(2m)32p) (27) 2193 Boltzmann equations
x (2m)*0(nw — py — pp)3°(Pa + Pp) . N
Ny + 3Hn, = R<(ﬁ¢)—>xx
Initial state ¢ as a coherently oscillating Bose-Einstein dpg 3H(1 _f1 T
condensate with no spatial momentum dt T3H(L+w)ps = —(1+ws)Typy
d
gf +4Hpr ~ (1+we)Lppy .

See Boltzmann or Bogoliubov? Approaches Compared in Gravitational Particle Production, K. Kaneta, S. M. Lee, K. Oda, 2206.10929
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Inflaton scattering

Potential near the minimum is a power

k-dependant monomial V($) = V(do) Phe-inwt — ;. Pheinwt
V(d)) = E—a ¢ < Mp . C . . .
Mg Expand the quasi-periodic function in Fourier modes
Treat the time dependent condensate as a time 1.1
dependent coupling with an amplitude and with w = me mk TG +%)
quasi-periodic function which is k-dependent 2(k—1) T(3)

o(t) = ¢o(t) - P(t)

Each Fourier mode adds its contribution to the

> An homogeneous classical field, not a scattering amplitude with its energy En = n.o

quantum field !

Gravitational portals in the early Universe, SC, Y. Mambrini, K. A. Olive, S Verner 2112.15214 28
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Bogoliubov approach

Instead of transition probability, consider the time evolution of the wave function in the vacuum while
keeping the effect of curved spacetime

1 1
Sy = /d4x [5(5{’)2 — §~w2§<’] Consider simply a single field in the vacuum

EOM: ¥’ +w?yY=0 with w’=-V?+Ha’n]+|A time dependent frequency !

Then, it is clear that the Hamiltonian is changing with time through the time dependence in w.
=> cannot decompose X based on the positive/negative frequency in the Fourier space

Bogoliubov
3 coefficients
= dk eF I, = Ag =i Jwrdn o [Br| i fwan the occupation
(27)3/2 V2w V2w —__» number is given by
—_—
Xk = agux + a' _uf ay = Age~tfwrdn g = ByetSwrdn |8k |

See Boltzmann or Bogoliubov? Approaches Compared in Gravitational Particle Production Kunio Kaneta, Sung Mook Lee, Kin-ya Oda, 2206.10929
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Phase space distribution of a gravitationally excited scalar field for a range of DM masses, coded by color. The
dashed black curve corresponds to the numerical integration of the Boltzmann equation, which is valid for ¢ > 1

Scalar Dark Matter Production from Preheating and Structure Formation Constraints, M. Garcia, M. Pierre, S. Verne, 2206.08940



Particle production

Perturbative reheating : considering an

oscillating background field with small

couplings to the other quantum fields
-> Particle production

!

Example : Yukawa like interaction

2
_ 3
Lobath =Ye0ff = Tp= 2o

Constitute the primordial bath that will
thermalize

Freeze-in from preheating, Garcia, Kaneta, Mambrini, Olive, Verner, 2109.13280

Classical non-perturbative approach : preheating

Time dependant background coupled to fields
leads to parametric resonance or tachyonic
instabilities

2 28
ITL(I)(]/

Mathieu equation for Fourier modes in the oscillating background

0
8 0.20
m 6 0.15
2 =
a
4 0.10
2 0.05
1 0.00
2.5 5.0 75 17.5 20.0

10.0 125 15.0

" ]{2 P '3 Py ey £3 g
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Instabilities in the colored regions

L ; 31
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Preheating : non-perturbative processes

Ll

Instabilities in the colored regions
=> number of occupation increasing

Xk X €TP(fk,q2]

withq~o.(¢/ M)

Preheating corresponds to the first oscillations of the background => resonances and exponential production

Energy densities p (GeV?)

reduced coupling o ~10

Py
backreactions

resonances

Scale factor (a/aend)

For large couplings, reach a regime of large backreactions of the fields on the background
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See Freeze-in from preheating, Garcia, Kaneta, Mambrini, Olive, Verner, 2109.13280
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Thermal bath scattering

Usual amplitude computation for a s-channel scattering of (massless) SM particles giving DM particles
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,l()|2 B 1 (—t(s+1))(s+ 2t)2

- 64ME 52

SM (spin 0, %2)
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b=

1
2

M
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SM (spin 0, 2) DM spin
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Gravitational portals in the early Universe, Simon Cléry, Yann Mambrini, Keith A. Olive, Sarunas Verner, 2112.15214
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From amplitudes compute the rate of DM production for each process

T*
T Al
Ry =5 M}

for spinj =

0, ¥ DM final state

See Spin-2 Portal Dark Matter, Nicolas Bernal, Maira Dutra, Yann Mambrini,
Keith Olive, Marco Peloso, Phys.Rev.D (2018).
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See Gravitational Production of Dark Matter during Reheating, Yann Mambrini,

Keith A. Olive, 2112.15214
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Compute the number density of DM as a function of the scale factor to have the relic abundance

/ 2 (1 [k 3]
; BxvV3 k+2 S
QL h? =1.6 x 10 B X\/_ , L) X pRH = 1—2 Thermal case
gru @2M3 |18 — 6k| 1 GeV T3y (izfg;) (H) " >3
' OR—¢ PRH )

The relic abundance decreases with k coming from the fact that the Hubble parameter is dominated by
inflaton evolution — greater dependence on Tru for larger value of k, slowing down the DM production
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Gravitational portals in the early Universe, Simon Cléry, Yann Mambrini, Keith A. Olive, 2112.15214
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For fermionic DM

[ pe=10% GeV* ™
Inflaton scattering is helicity suppressed 14 :
=» broken spectrum due to strong DM mass dependence thermal
production
dominates
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Qh?=0.12 in the case of a spin % DM, aII
contributions added
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Leading order interactions

in Einstein frame
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Non-canonical kinetic term

M? L e ———
5 = /d4:c\/—g {—TPRjL §K”g”'/8“51(9115j _Y +‘S;’Z+VX in Einstein frame
with
_ Eod?  &h? ExX? ;i 0logQdlogQ 6”7  non-canonical
0 =1+ vz Pt K = 65s "85, T2 kinetic term

In general, it is impossible to make a field redefinition that would bring it to the canonical form, unless
all three non-minimal couplings vanish.

In the small-field limit, we can expand the action in powers of
M, and obtain canonical kinetic term and deduce the
leading-order interactions induced by the non-minimal
couplings.
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Gravitational Portals with Non-Minimal Couplings, Simon Cléry, Yann Mambrini, Keith A. Olive, Andrey Shkerin, Sarunas Verner, 2203.02004
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Non-minimal couplings bounds

- Small field approximationisvalid if:  \/|&s| < Mp/(S) with S = ¢,h, X

-» Since at the end of inflation we have ¢.,q ~ Mp and that inflaton field is decreasing during the reheating

= [€y| 51

=» Since our perturbative computations involve effective couplings in the Einstein frame that depend on all £, the
small value of f(p can be compensated by ¢, . Current constraints on §, from collider experimentsis £, < 10"

See for example Cosmological Aspects of Higgs Vacuum Metastability, Tommi Markkanen, Arttu Rajantie, Stephen Stopyra, 1809.06923

=» On the other hand, to prevent the EW vacuum instability at high energy scale, during inflation, we can invoke
stabilization through effective Higgs mass from the non-minimal coupling : ¢, > 107

=» In the case of Higgs inflation, &h is fixed from CMB (Planck)
See F. L. Bezrukov and M. Shaposhnikov, Phys. Lett. B (2008)
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Sphalerons and baryogenesis

=» Anomalous baryon number violating processes are unsuppressed at high temperatures : the so
called non-perturbative sphaleron transitions violate (B+L) but conserve (B-L).

N.S. Manton, Phys. Rev. (1983), F.R. Klinkhammer and N.S. Manton, Phys. Rev. D (1984), V.A. Kuzmin, V.A. Rubakov and M.E. Shaposhnikov, Phys.
Lett. B (1985)

=» Primordial (B-L) asymmetry can be realized as a lepton asymmetry generated by the out-of
equilibrium decay of heavy right-handed Majorana neutrinos. L is violated by Majorana masses, while
the necessary CP violation comes with complex phases in the Dirac mass matrix of the neutrinos

M. Fukugita and T. Yanagida, Phys. Lett. B (1986)

8N, + 4Ny
Yp= ¥y,
. <22Nf—|—13NH> A

Baryogenesis and lepton number violation, Plimacher, M. 9604229
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