

Vendredi 1er avril 2022

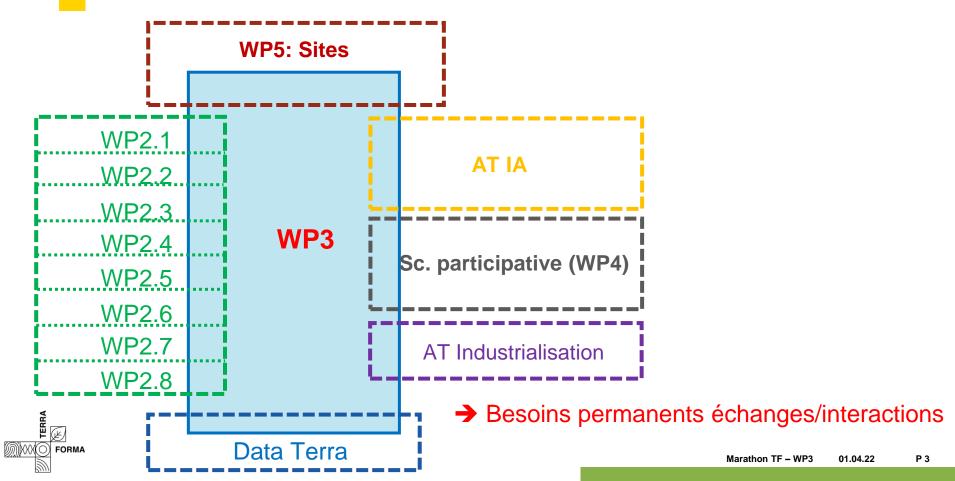
WP3.1 & WP3.2 -Du capteur au Cloud

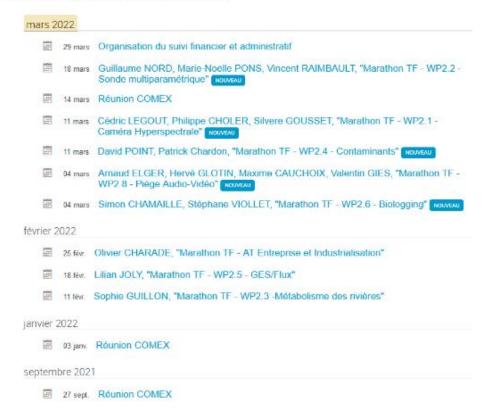
Transférer Données capteurs [Traiter]

(Gérer)

Collecter

alexandre.claude@uca.fr, andre-luc.beylot@irit.fr, david.sarramia@clermont.in2p3.fr, didier.donsez@univgrenoble-alpes.fr, guillaume.pierre@irisa.fr, kacimi@irit.fr, laurent.royer@clermont.in2p3.fr, (matthieu.freichey@cnrs.fr), mickael.le-gentil@irisa.fr, (nadir.amarouche@cnrs.fr), [olivier.charade@cnrs.fr], olivier.sentieys@irisa.fr, richard.vandaele@clermont.in2p3.fr, thiebolt@irit.fr

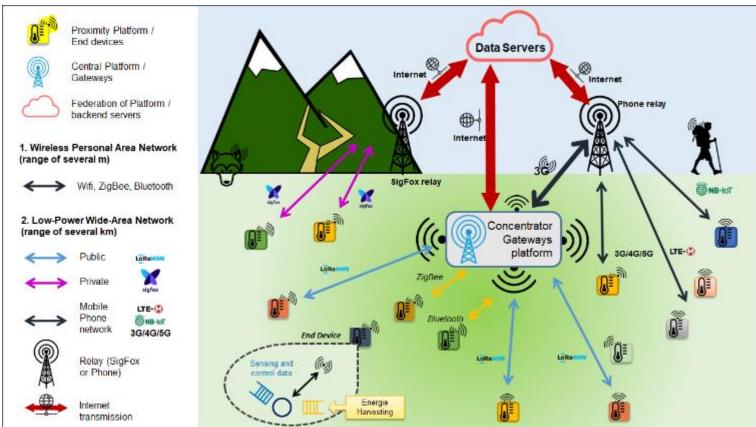




Partage documentaire: un besoin essentiel pour le WP3

Merci Virginie pour l'archivage sous Indico!!

https://indico.in2p3.fr/cat egory/1018/ WP dédié à la coordination, animation et gestion de projet



Objectifs des WP3.1 et WP3.2

Connecter vos capteurs au(x) cloud(s)

Eléments du Cahier des charges

- Collecter toutes (ou presque) les données capteurs
 - adaptabilité matérielle (interfaces câblées, sans fil, ...)
 - adaptabilité logicielle (drivers)
- Transférer les données quelque que soit le site et la position
- Garantir la qualité du service: QoS > 90% ?
- (Pré)-traiter les données in-situ (IA)
- Limiter la maintenance: autonomie > 6 mois ?
 - Optimisation données transmises
 - Energy Harvesting
 - Fiabiliser

- Pérenniser les équipements: durée de vie > 10 ans ? (réparabilité)
- Faire évoluer les systèmes (nouvelles technos)
- Limiter l'impact environnemental
- Rendre les systèmes « accessibles »
 - DIY
 - Facilité d'usage; outils d'aide (tutoriels, vidéo,...)
- Limiter les coûts (sur la durée de vie)

Compromis à trouver!

Caractéristiques de vos capteurs

Extraits du Marathon

Données générées par les capteurs (cf. Marathon)

W2.1 - Caméra hyper-spectrales

Campagne de mesure: 1 Go de données en 17 s !!

W2.2 - Sondes multiparamètre

sonde multip.: faible ?

sonde MOD: faible ?

W2.3 - Métabolisme des rivières:

- Mini-Lomos & Gaz dissous: qqs voies, acquisition >15mn
- Spectro masse & Isotopes: acquisition haute fréquence (<30s)

WP2.4 - Contaminants

- radon: stockage et transfert faible qté (mesure <10mn)
- plateforme aquatique: ?

WP2.5 - GES/Flux

données brutes: 54 Mo par min(/1000 en post-process.)

WP2.6– Biologging mouvement inertiel

échantillonnage à 100Hz

WP2.7 - Biochimie

WP2.8 - Audio-Vidéo

- Jusqu'à 6 voies 512 ksps/ voie 24 bits carte SD (1TB aujourd'hui)
- Enregistrement déclenchable en IA Ultra Low Power

- → Large panel de type/quantité de données produites
- → Horodatage, des métadonnées ... ?

Interfaces de communication (cf. Marathon)

W2.1: Caméras hyper-spectrales

- flux video par USB3.1
- Pilotage du PC de contrôle à distance possible (actuellement WIFI, mais possible par module radio, 4G)

W2.2: Sonde multiparamètre

- sonde multip.: BT et LoRa intégré
- MOD:
 - sonde recherche: transmission via application sur smartphone
 - sonde « longue durée »: données télétransmises
- Radar discharge:

W2.3 - Métabolisme des rivières:

 Communication « en temps réel » à distance à développer

→ Besoin quasi général de télétransmission des données, parfois déjà intégré

WP2.4 – Contaminants

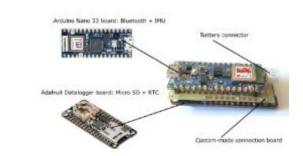
- radon: télétransmission « temps réel » à développer
- plateforme aquatique: contrôle à distance existant; data collecte fin campagne: BT/Wifi

WP2.5 - GES/Flux

 données brutes transférées au télépilote en 4G puis envoyer vers un cloud

WP2.6- Biologging mouvement inertiel

 LoRaWan envisagée (portée 10km). Pour l'instant, expérience avec du GSM; intérêt et contacts pour satellite


WP2.7 - Biochimie

WP2.8 - Audio-Vidéo

Alerte: besoin de dispositifs de communication sans fil longue portée

Interfaces matériels

W2.1: Caméras hyper-spectrales WP2.4: Contaminants

W2.2: Sonde multiparamètre

sonde multip.: base Arduino - Base Arduino

- MOD:

- Radar discharge: ?? WP2.7: Biochimie

W2.3: Métabolisme des rivières: WP2.8: Audio-Vidéo

- Mini-Lomos: Arduino - PIC 32MZ by Microchip

→ Arduino utilisé sur plusieurs capteurs; question à creuser ...

WP2.6: Biologging mouvement inertiel

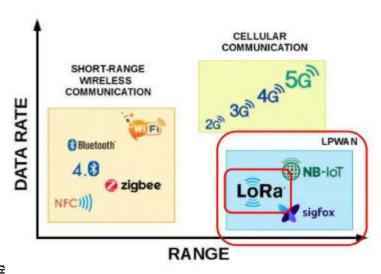
Continuons le travail à Saint-Jacut!!

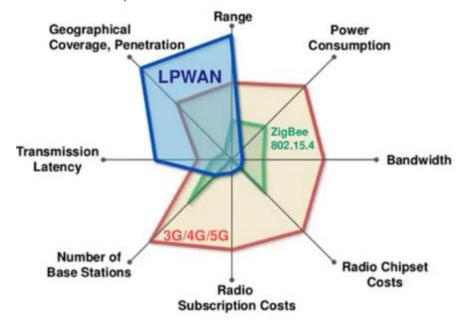
Rencontres TERRA FORMA à l'Abbaye de Saint-Jacut

par Super Administrateur | Fév 9, 2022

Après l'effort du marathon de lancement de TERRA FORMA, le réconfort !

Participez aux rencontres de TERRA FORMA du 11 au 13 mai 2022 à l'Abbaye de Saint-Jacut-dela-Mer (25km de St-Malo).


Des sources d'inspiration pour TF


Technologies de communication sans fil

→ Speed Meeting WP3-WP2 (https://indico.in2p3.fr/event/26823)

Technologies de communication sans fil pour l'IoT

Rahim.Kacimi-at-irit.fr

Data communication and Data processing architecture

Serveur eConect 4GLTE Centrale LoRaWAN

Rahim.Kacimi@irit.fr

https://indico.in2p3.fr/event/26823/attach

ments/69360/97861/TerraForma SpeedM eetingWP3WP2.pdf

- Develop an architecture for collection, transfer and analysis of environmental data
- Apply this architecture to three environment sentinel systems

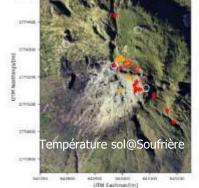
Domestic Bees

Evaluate the relevance of these sentinel systems to assess, in an integrative way, the effect of anthropogenic pressures

Bird-feeder (Great tit)

Aquatic eco-system

Technologies de communication sans fil Exemple Projet CONNECSENS



Pluviometrie Flumicité soi

- Maitrise réseaux LoRaWAN privés de bout-en-bout
- Expérience multisites
- Nœud LoRa polyvalent, configurable
- Uniquement LoRa
- Coût (500€/noeud)
- Complexité Firmware

laurent.royer@clermont.in2p3.fr

Température ai

Harriste air

CampusioT : le réseau LoRaWAN privé de l'UGA

Station météo miniature

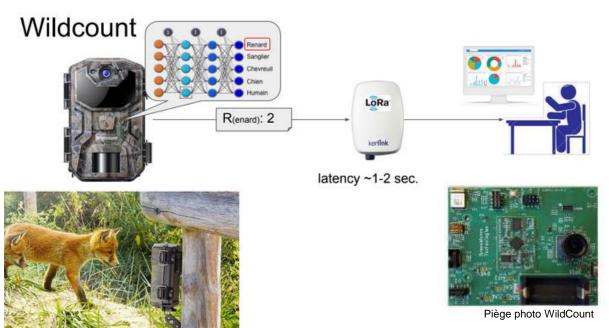
Station qualité de l'air

plateforme d'expérimentation in-vivo et à échelle 1 de l'IoT

OpenCollar (LR1110)

Cages à marmotte connectées

Installation sur site d'une station LoRa Fixation sur mat avec anneau/ruban métallique Alimentation PoE (soit routeur, soit injecteur) Accès Internet: Renater, ADSL, 3G/4G



Station LORA installée dans les Alpes ©Didier Donsez LIG, Grenoble

Wildcount

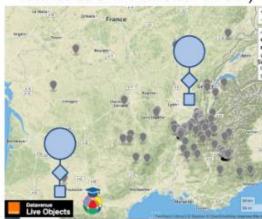
Inexpensive Edge sensor for recognizing and counting the presence of humans (anonymous) and animals into wild and protected areas.

https://drive.google.com/file/d/13hpfJ9KgGI2IFf4EnVbrZGKXZTSBhv12/view

Une connexion satellite

ThingSat: LoRa dans l'espace

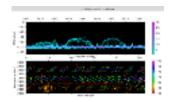
Context


New Space, Cubesat, Sat-IoT Internet des Objets Isolés

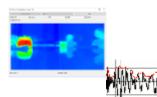
Research vehicle for

- 1) Testing LoRa-based modulation for
- ground station ←→ cubesat communications
- end-point ←→ cubesat communications
- cubesat ←→ cubesat communications
- 2) Testing applications
- delay tolerant networks EP ←→ CS ←→ GS
- multi-lateration of EP
- · clock distribution
- · track and monitor "zombie" or EoL satellites

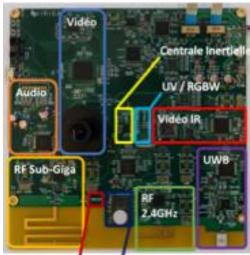
Test QoS LoRa en altitude (IUT de Valence et CNES Aire-sur-Adour)


https://drive.google.com/file/d/1aUsgsLRYwI7fi6pxZrL7X7-aSweW6T-X/view https://gricad-gitlab.univ-grenoble-alpes.fr/thingsat/public/-/tree/master/cubesat_mission

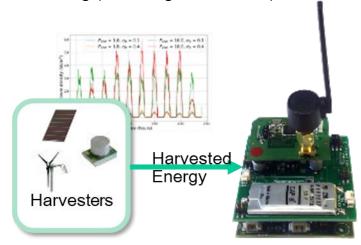
SmartSense(_•))

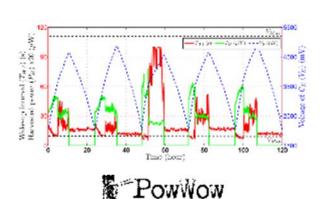

♦ §IRISA

An Open Platform for Smart Building Research


- Sensors
 - Environmental sensors: temperature, light (red, green, blue, white, UVA, UVB), humidity, atmospheric pressure, C02, VOC
 - Centimetre-precision distance ranging
 - 9-axis inertial motion sensor (vibrations, positioning)
 - Radio spectrum sensing, UWB positioning system, radio modules (ISM 2.4 GHz (Zigbee, BLE) and sub-GHz)
 - Infra-red sensors high (80x60) and low (8x8) resolution
 - 4 acoustic sensors, VGA camera
- Smart Building Automation, Agriculture, Structural Health Monitoring, Health, Security and usage of buildings

Température Humidité Pression


http://team.inria.fr/cairn
Olivier Sentieys <olivier.sentieys@irisa.fr>


SIRISA

Energy-Harvesting Sensor Platform

PowWow: open hardware platform

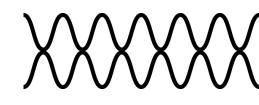
- Microprocessor, radio (Zigbee)
- FPGA for hardware acceleration
- Voltage and frequency scaling
- Energy harvesting (Heat, Light, Vibration)

http://team.inria.fr/cairn
Olivier Sentieys <olivier.sentieys@irisa.fr>

Exemples industriels

https://exotic-systems.com/kinetic-k1-2/

- ☐ Réseaux: KINEIS + SIGFOX + LORAWAN
- □ Interface NFC
- ☐ Antenne intégrée
- ☐ Interface RS232/485
- □ IP67



- La température du sol
- ☐ La température de l'air
- ☐ L'humidité du sol
- ☐ L'humidité de l'air
- La luminosité
- ☐ La qualité du sol
- □ Connexion Bluetooth

Le travail éloigne de nous trois grands maux : l'ennui, le vice et le besoin.

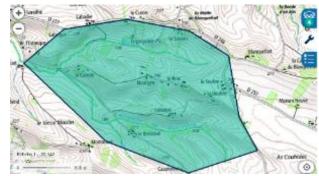
Voltaire

www.citation-celebre.com

Calendrier – 1ères actions

Planning WP3.1: plateforme de proximité


ELEMENTS INFORMATIFS	2022 N		2023 N+1		2024 N+2		2025 N+3		2026 N+4		2027 N+5		2028 N+6		2029 N+7		Labo	Nbre de mois
Etapes	S1	S2	S1	S2	S1	S2	S1	S2	S1	S2	S1	S2	S1	S2	S1	S2	32	IIIOIS
t0 : déploiement de capteurs existant avec retour d'expérience pour établir un CCTP en accord avec les besoins des communautés	Noeuc	Solo	v1														LPC	2
																	IRISA	0
 réalisation d'un prototype "artisanal" (fait en labo; qui peut être une version augmenté du capteur existant) pour enrichir le CCTP 	Noeud solo + energie						Intégration des nouvelles techno										LPC	8
												IRISA	3					
t2: test TEST_0 in-situ et labo pour le prototype																	LPC	2
																	IRISA	11
13: étude de la réalisation du prototype via un AAP et sélection de l'entreprise 14: réalisation d'un prototype conformes aux normes par l'entreprise (également appelé phase de prototypage)					Noeuc	d solo	v2 et v	3									LPC	0
																	IRISA	0
							v2			v3							LPC	0
																	IRISA	0
t5: test TEST_1 in situ pour valider les recettes par les partenaires									v2			v3					LPC	4
																	IRISA	2
t6: duplication après validation																	LPC	0
																	IRISA	0
t7: co-déploiement opérationnel à partir de cette date																		
														N	lbre d	e mois	total:	32

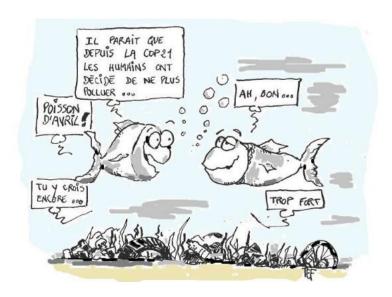


https://docs.google.com/spreadsheets/d/1pK_KCILyW38RGHJz-k8H306nFAeed87XmtMrdnkbi1Y/edit#gid=826918707

WP3: Au travail!

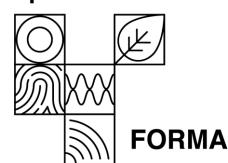
- A1: Collecte et synthèse des caractéristiques des 3 sites pilotes à instrumenter d'un point de vue "réseau"
- A2: Collecte et synthèse des caractéristiques des capteurs qui seront déployés sur site
- A3: Déploiement de dispositifs existants: définition des objectifs et des protocoles de test
- A4: Dispositifs de réseau de capteurs communicants disponibles dans nos labos et sur étagère

Conclusion



WP3 @ Terra Forma: un beau Challenge

- Laurent L. a su réunir pour Terra Forma les compétences nécessaires pour relever de Challenge!
- 5 équipes (> 12 personnes) doivent apprendre à travailler ensemble, à distance
- Nombreuses interactions nécessaires avec autres WPx → Importance du Rendez-vous de Saint-Jacut
- Partenariat(s) industriel(s) nécessaire(s)
- **Enjeux**: polyvalence, autonomie, coût, robustesse, fiabilité, réparabilité, évolutivité, simplicité d'usage ...
- 4 premières actions à mener
- Rendez-vous à l'étape Marathon du 15 avril pour WP3.3-Cloud (D.Sarramia)



Merci pour votre attention!

Laboratoires impliqués: CARRTEL, CEBC, CEFE, Centre de Géosciences, CERFE. CESBIO. Chrono-environnement. CRAL. CReSTIC. DT-INSU. Dynafor, ECOBIO, ECOLAB, EVS, GET, GR, GSMA, HABITER UR, IGE, IM2NP, IPAG, IPGP, IRISA, IRIT, ISM, ISTO, LAAS, LCA, LECA, LEMAR, LHYGES, LIG, LIRMM, LMGE, LPC, LRGP, LIS, RiverLy, SAS, Subatech.

Tutelles et partenaires non académiques : CNRS : INSU, INEE, INSIS, IN2P3, INP, INS2I, INSHS, INSB. Autres organismes de recherche : IRD, INRAE. IPGP. Ecole d'ingénieur : Mines ParisTech. Universités : Grenoble. Savoie-Mont-Blanc, Toulouse et Toulouse INP, Rennes, Clermont-Auvergne, Montpellier, Reims, Toulon, Franche Comté, Orléans, Strasbourg, Aix Marseille, EPIC: INERIS, PME: Extralab

Soutiens: CNES, OFB, BRGM, Agence de l'eau Loire Bretagne, Réseau RECOTOX, l'observatoire du sol vivant, Institut Carnot Eau & Environnement, Groupes Régionaux des experts du climat, Régions, Office régionales de la biodiversité, Fondation François Sommer

Remerciement aux autrices du livre TERRA FORMA qui nous ont laissé l'emprunt de leur titre.

Contact(s): terra-forma@services.cnrs.fr

terra-forma.cnrs.fr