

Probing new physics with rare B decays with tau leptons in the final state

03/06/2022, IPHC seminar, Strasbourg

Jacopo Cerasoli **CNRS - IPHC**

Outline

- 1) Introduction to the Standard Model
- 2) Flavor anomalies and the search for new physics
- 3) The LHCb detector
- 4) Search for the rare $B^0 \to K^{*0} \tau^+ \tau^-$ decay at LHCb (<u>my thesis</u>)
 - Event selection
 - Signal extraction
 - Sensitivity estimation
- 5) Future prospects and conclusions

The Standard Model and beyond

The Standard Model

- The **Standard Model** describes the behavior and \bullet interactions of the elementary particles
- Particles described as excitations of *dynamic fields* ulletat a given point in space-time
- 6 leptons and 6 quarks divided in *three* generations, 4 gauge bosons + Higgs boson

Standard Model of Elementary Particles

Search for new physics

- MC shows impressive predictive power, but has several **shortcomings**: lacksquare
 - Dark matter and dark energy (95 % of the universe) unexplained
 - Matter anti-matter asymmetry not accounted for by the model -
 - Neutrino non-zero mass terms not explained
 - Numerous theoretical prejudices (gravity, mass hierarchy, ...) -

- Two main methods to search for **new physics beyond the SM**: ullet
 - **Direct searches** of new particles

Indirect searches (this seminar): measurements of SM observables and comparison with theory predictions

Lepton Flavor Universality

- ullettheir masses)
- **Accidental symmetry** experimentally well-established so far lacksquare
- **Tested** by measuring **ratios of branching fractions**, examples:

Such measurements can reveal the presence of lepton flavor non-universal effects lacksquare

Lepton Flavor Universality: the three lepton generations have identical behaviors (except for differences due to

$$R_{K} = \frac{\mathscr{B}(B^{+} \to K^{+}e^{+}e^{-})}{\mathscr{B}(B^{+} \to K^{+}\mu^{+}\mu^{-})}$$

Higher-order $b \to sl^{+}l^{-}$ process
$$\frac{\gamma/Z}{\psi^{+}\psi^{+}}$$

Jacopo Cerasoli

Flavor anomalies

3.4 σ tension wrt the SM

• Additional anomalies (many more than those listed here) observed in branching ratio measurements, e.g. $B_s^0 \rightarrow \phi \mu^+ \mu^-$ (Phys. Rev. Lett. 127, 151801), and angular analyses, e.g. P'_5 in $B^0 \rightarrow K^{*0} \mu^+ \mu^-$ (Phys. Rev. Lett. 125, 011802)

Rare *B* decays with τ leptons in the final state...

- Rare $\mathbf{b} \to \mathbf{s}\tau^+\tau^-$ transitions are powerful probes for new physics:
 - $m_{\tau} \sim 17 m_{\mu} \sim 3500 m_{e}$, taus could be the most sensitive to NP
 - τ modes still largely unexplored (limits at 90% CL)

 $\mathscr{B}(B^0_{(s)} \to \tau^+ \tau^-) < 1.6 \ (5.2) \cdot 10^{-3}$ $\mathscr{B}(B^+ \to K^+ \tau^+ \tau^-) < 2.3 \cdot 10^{-3}$ $\mathscr{B}(B^0 \to K^{*0}\tau^+\tau^-) < 2.0 \cdot 10^{-3}$ (Belle 2021, arXiv:2110.03871)

- Complex experimentally:
 - $-\tau$ decays before it can be detected
 - Neutrinos in the final state: missing energy

Phys. Rev. Lett. 120, 181802

... at CPPM

• CPPM pioneered the study of rare/forbidden *B* decays with tau's in the final state at LHCb (95% CL limits):

Jacopo Cerasoli

The LHCb detector

The LHCb detector (Int. J. Mod. Phys. A 30, 1530022)

- $\sigma_{IP} = 15 + 29/p_T \,\mu m$
- $\sigma_p/p = 0.5 1.0\%$, $p \in [2,200]$ GeV
- PID $\epsilon_{\mu} \sim 98$ % with $\epsilon_{\pi \to \mu} \sim 1$ %

LHCb Cumulative Integrated Recorded Luminosity in pp, 2010-2018

LHCb vs Belle 2

LHCb

pp ⊪ BBX

- $\sigma_{bb} \sim hundreds of \mu b (B_s, B_c, \Lambda_b, ...)$
- L ~ 10³² cm⁻² s⁻¹
- Lower trigger efficiency
- Higher background
- B mesons decay length ~ 1 cm

Belle 2 $e^+e^- \rightarrow \Upsilon(4S) \rightarrow B\overline{B}$

- σ_{bb} ~ 1 nb
- L ~ 10³⁴ cm⁻² s⁻¹
- High trigger efficiency
- Clean environment, low background
- B mesons decay length ~ hundreds of µm

Search for the $B^0 \to K^{*0} \tau^+ \tau^-$ decay

Introduction

- **First direct limit** set recently by the **Belle collaboration** with 711 fb⁻¹ data: ullet
 - τ reconstructed via one-prong decays: $\tau \to e \bar{\nu}_e \nu_{\tau}$, $\tau \to \mu \bar{\nu}_{\mu} \nu_{\tau}$ and $\tau \to \pi \nu_{\tau}$
 - $\mathscr{B}(B^0 \to K^{*0}\tau^+\tau^-) < 2.0 \cdot 10^{-3} \text{ at } 90\% \text{ CL} \text{ (arXiv:2110.03871)}$

I analyzed the full LHCb dataset of ~9 fb⁻¹, decay reconstructed in two final states ullet

Fully hadronic final state

 $B^0 \to K^{*0} (\to K^- \pi^+) \tau^+ (\to \pi^+ \pi^+ \pi^- (\pi^0) \bar{\nu}_{\tau}) \tau^- (\to \pi^+ \pi^- \pi^- (\pi^0) \nu_{\tau})$

Challenge 1: background

- ~ 2 (8) fully hadronic (mixed hadronic-leptonic) events expected in the detector acceptance

- Many charged tracks in the final state (8 for fully hadronic, 6 for mixed hadronic-leptonic)

 - Mainly due to multiple signal candidates built with the same final state particles

About 200 million processed events to be analyzed! MVA techniques in order to suppress most of background

- Fully hadronic (mixed hadronic-leptonic) final state has on average ~10 (2) reconstructed candidates per event

Challenge 2: missing energy

- Signal and background-dominated data peak at very close values: mass fit is not enough discriminating
- Likelihood fit performed on boosted decision tree (BDT)
 - Background description data-driven \bullet

Analysis strategy

Event selection

- Preselection: candidates reconstruction, particle identification and trigger

- -Cut-based selection: isolation variables, used to reject most trivial background
- -MVA selection: two BDTs in sequence used to suppress most of the background

Likelihood fit

- Performed on output of a third BDT trained after the full selection
- -Background modeled with data-driven method, from events in control regions of the data

Branching ratio computation

$$\mathscr{B}(B^{0} \to K^{*0}\tau^{+}\tau^{-}) = \frac{N_{sig}^{obs}}{\epsilon_{sig} \cdot \sigma L} \to \frac{\mathscr{B}(B^{0} \to K^{*0}\tau^{+}\tau^{-})}{\mathscr{B}(B^{0} \to D_{s}^{+}D^{-})} = \frac{N_{sig}^{obs}}{\epsilon_{sig} \cdot \mathscr{I}} \frac{\epsilon_{norm} \cdot \mathscr{I}}{N_{norm}^{obs}} \to \mathscr{B}(B^{0} \to K^{*0}\tau^{+}\tau^{-}) = \frac{N_{sig}^{obs}}{\epsilon_{sig}} \frac{\epsilon_{norm}}{N_{norm}^{obs}} \cdot \mathscr{B}(B^{0} \to D_{s}^{+}D^{-})$$

-If no signal is observed, a limit on the branching ratio is set

-Branching ratio measured relatively to normalization channel $B^0 \to D_s^+ (\to K^+ K^- \pi^+) D^- (\to \pi^- \pi^- K^+)$

Analysis regions

- Regions defined using K^{*0} mass distribution:
 - -Signal region: $M_{K^{*0}} \in [846,938]$ MeV, most signal-like region, likelihood fit performed on data in it
- In order not to introduce any bias, the fit BDT must be uncorrelated with K^{*0} mass ●

• To describe the background with data-driven method, need to identify background-dominated regions in data

-Control region: $M_{K^{*0}} \in [724, 846]$ or $M_{K^{*0}} \in [938, 1053]$ MeV, used to extract background template for likelihood fit

-Background region: $M_{K^{*0}} \in [700, 724]$ or $M_{K^{*0}} \in [1053, 1100]$ MeV, data for background sample for BDT training

Event selection

Cut-based selection

- Isolation variables evaluate "activity" near reconstructed candidate \bullet
- Ex: let's select $J/\psi \to \mu^+\mu^-$ and reject partially reco $B^+ \to K^+\mu^+\mu^-$ by adding a track to the muon vertex

New vertex χ^2 > original vertex χ^2

High level of isolation Genuine $J/\psi \rightarrow \mu^+\mu^-$ decay

- Cuts to reject most trivial background: $\epsilon_{sig} \sim 95\%$, ϵ

New vertex $\chi^2 \simeq \text{original vertex } \chi^2$

Low level of isolation Partially reco background

Three track isolation variables defined for each particle in the decay chain, isolation level derived from a BDT

$$\varepsilon_{bkg} \sim 50\%$$

Jacopo Cerasoli

MVA selection: boosted decision trees

- BDTs are algorithms to **classify events in two (or more) categories** (e.g. signal and background) \bullet
- Building block of a BDT is the *decision tree*

They use *training samples* and a list of variables to "learn" to distinguish between two categories of events

1. In a decision tree samples are split using at each step the variable maximizing the discrimination

- 2. Final nodes are labelled as "signal" or "background" depending on
 - the majority of events belonging to them

3. More decision trees are built, at each iteration giving larger

- weights to misclassified events in order to improve the performance
- 4. The decision trees are linearly combined to form a BDT

MVA selection

- Two BDTs trained in sequence used to suppress most of the background, fit BDT trained after full selection
- Trained with MC signal events and data from the background region
- Background model for fit built from K^{*0} mass control region: fit BDT must be uncorrelated with K^{*0} mass
- Variables chosen with iterative procedure in order to maximize discriminating power
- BDT1 and BDT2 working points chosen to maximize sensitivity

Jacopo Cerasoli

Fully-hadronic: MVA selection and top-ranking variables

BDT1 (2016 example)

IPHC seminar

BDT2 (2016 example)

Mixed hadronic-leptonic: MVA selection and top-ranking variables

IPHC seminar

Efficiency corrections: data-MC differences (1/2)

Agreement between data and simulation is checked using the normalization channel

- Selection efficiencies corrected for data-MC differences using **iterative procedure**: \bullet 1) Weights w_i computed for the variable showing the worst χ^2/N_{dof}

3) χ^2/N_{dof} recomputed on the re-weighted normalization channel 4) Steps 1-3 iterated. Weights multiplied at each step

$$\chi^2 / N_{dof} = \frac{1}{n_{bins}} \sum_{bins} \frac{(a_i^{MC} - a_i^{data})^2}{\delta a_i^{MC^2} + \delta a_i^{data^2}}$$

$$w_i = \frac{a_i^{data}}{a_i^{MC}} \pm \sqrt{\left(\frac{\delta a_i^{data}}{a_i^{MC}}\right)^2 + \left(\delta a_i^{MC} \frac{a_i^{data}}{a_i^{MC^2}}\right)^2}$$

2) Corrected selection efficiency computed as $e^{corr} = \frac{\sum_{i} w_i n_i}{\sum_{i} w_i N_i}$ with n_i (N_i) number of events after BDT2 (trigger)

Efficiency corrections: data-MC differences (2/2)

• **Three iterations** are performed, example for 2016 fully hadronic final state:

The relative difference between third iteration and default value used to assign systematic uncertainty lacksquare

- The obtained systematic uncertainty is of O(1%)ullet
- Applied data-driven corrections also on PID (O(1) \pm 0.1 %) and trigger (O(1) \pm 0.5 %) efficiencies \bullet
- Final efficiency ~10⁻⁵ (~4 x 10⁻⁵) for hadronic (mixed hadronic-leptonic) final state

Jacopo Cerasoli

Normalization channel yield

- $B^0 \to D_s^+ (\to K^+ K^- \pi^+) D^- (\to \pi^- \pi^- K^+)$ selected with $m_D \in [1855, 1885]$ MeV and $m_{D_s} \in [1955, 1985]$
- Selection efficiency ~ $6 \cdot 10^{-4}$
- Backgrounds are combinatorial and partially reconstructed $B^0 \rightarrow D^{*-}D_s^+$, $B^0 \rightarrow D^-D_s^{*+}$

	Channel	Branching ratio (%)	Year	Not
272	$B^0 \rightarrow D_s^+ D^-$	0.72 ± 0.08	2011	
	$D^+ \rightarrow \pi^+ \pi^+ K^-$	9.38 ± 0.16	2012	
4 9	$D^+ \to \pi^+ K^+ K^ 5.39 \pm 0.15$	5.39 ± 0.15	2015	
			2016	
	Total	0.0036 ± 0.0004	2017	
			2018	

Normalization yield and efficiency computed, as well as signal efficiency. Signal yield is the only **missing ingredient** to compute the final result

Likelihood fit and sensitivity

Fully-hadronic: fit BDT and top-ranking variables

2016 example

Mixed hadronic-leptonic: fit BDT and top-ranking variables

2016 example

Fit components

- MC distributions not totally flat due to the presence of neutral pion component \bullet
- **Bins close to fit BDT = 1 are the most sensitive** to the signal

Background model validation: fully hadronic final state

- Background model from control region validated by comparing it with distribution in signal region lacksquare
- Last three bins of signal region blind

Background model validation: hadronic-leptonic final state

Cross-check on same-sign data

- Same-sign (SS) data are selected requiring both tau leptons to have the same charge
 - No signal is present in this dataset, **no need to blind the data**
 - Fit result must be compatible with 0

Expected upper limit

- Data is still blind
- **Expected upper limit** in the case where no signal is observed has been computed
- Systematic uncertainties taken into account:

 - Bin-by-bin statistical fluctuations of signal and background templates (~ 25 % limit increase)
 - Effect of data-MC differences on the signal template (negligible)

Final state	90% CL limit (10-4)	95% CL limit (10-4)
Fully hadronic	12.94	15.52
Mixed hadronic-leptonic	2.39	2.88
Combined	2.36	2.82

- Sensitivity dominated by mixed hadronic-leptonic final state \bullet
- **One order of magnitude improvement** with respect to current upper limit lacksquare

Uncertainties on input branching ratios, normalization yield, normalization and signal (corrected) efficiencies (~ 1% limit increase)

Future prospects

- LHCb is undergoing a major upgrade, expected ~50 fb⁻¹ by 2030 and ~300 fb⁻¹ by the end of operations • Two scenarios are envisaged for the search for the $B^0 \rightarrow K^{*0}\tau^+\tau^-$ decay:
 - Conservative: upper limit scaled by the expected increase in recorded luminosity
 - **Optimistic:** increased luminosity + reasonable detector and analysis improvements
- Upper limit reduced by an order of magnitude with respect to present limit and expected to be further lacksquarereduced by another order of magnitude by LHCb and Belle 2 in the coming years

Legend (limits at 90% CL)

SM prediction: ~10⁻⁷ Belle upper limit: 0.002 Expected upper limit (my thesis): 0.00024 Expected Belle 2 upper limit (50 ab⁻¹): ~2 x 10⁻⁵

IPHC seminar

