
Debugging &
Profiling

Scientific Code
Karl Kosack
CEA Paris-Saclay

ESCAPE School, June 2022

Karl Kosack - ESCAPE School 2022

A bit about
me... Astrophysicist at CEA Paris-Saclay (Astrophysics Department)

• High energy gamma rays, sources of cosmic ray acceleration

• HESS and CTA Atmospheric Cherenkov Telescope consortia

• Coordinator of Data Processing and Preservation for CTA Observatory (60% of time)

• creator and developer of ctapipe software for IACT low-level analysis pipeline

Other Background (apart from gamma-ray astro):

• Computational Physics

• Data analysis, processing, statistics

• Lots of scientific software development over the years...

• Was a hard-core C/C++/Perl (!) user, now essentially 100% python for 10+ years!
2

https://www.cta-observatory.org/
https://www.mpi-hd.mpg.de/hfm/HESS/

H.E.S.S. (Namibia)

https://github.org/cta-observatory/ctapipe

https://www.cta-observatory.org/
https://www.mpi-hd.mpg.de/hfm/HESS/
https://github.org/cta-observatory/ctapipe

Karl Kosack - ESCAPE School 2022

A bit about
me... Astrophysicist at CEA Paris-Saclay (Astrophysics Department)

• High energy gamma rays, sources of cosmic ray acceleration

• HESS and CTA Atmospheric Cherenkov Telescope consortia

• Coordinator of Data Processing and Preservation for CTA Observatory (60% of time)

• creator and developer of ctapipe software for IACT low-level analysis pipeline

Other Background (apart from gamma-ray astro):

• Computational Physics

• Data analysis, processing, statistics

• Lots of scientific software development over the years...

• Was a hard-core C/C++/Perl (!) user, now essentially 100% python for 10+ years!
2

https://www.cta-observatory.org/
https://www.mpi-hd.mpg.de/hfm/HESS/

Cherenkov Telescope Array - (Canary Islands + Chile) - artist's conception

https://github.org/cta-observatory/ctapipe

https://www.cta-observatory.org/
https://www.mpi-hd.mpg.de/hfm/HESS/
https://github.org/cta-observatory/ctapipe

Karl Kosack - ESCAPE School 2022

Some good
advice for
writing
Scientific
Code

3

Karl Kosack - ESCAPE School 2022

Some good
advice for
writing
Scientific
Code

3

Get the Code to Work First:

(test and Debug)

Karl Kosack - ESCAPE School 2022

Some good
advice for
writing
Scientific
Code

3

Write tests to
ensure it does!

Get the Code to Work First:

(test and Debug)

Karl Kosack - ESCAPE School 2022

Some good
advice for
writing
Scientific
Code

3

Write tests to
ensure it does!

Get the Code to Work First:

(test and Debug)

Profile to find bottlenecks

Karl Kosack - ESCAPE School 2022

Some good
advice for
writing
Scientific
Code

3

Write tests to
ensure it does!

Get the Code to Work First:

(test and Debug)

Profile to find bottlenecks

Optimize only what needs to be!

Karl Kosack - ESCAPE School 2022

Some good
advice for
writing
Scientific
Code

3

Write tests to
ensure it does!

Get the Code to Work First:

(test and Debug)

Profile to find bottlenecks

Optimize only what needs to be! run tests to
check

Karl Kosack - ESCAPE School 2022

Some good
advice for
writing
Scientific
Code

3

Write tests to
ensure it does!

Get the Code to Work First:

(test and Debug)

Profile to find bottlenecks

Optimize only what needs to be!

Refactor if necessary 
(redesign/rewrite)

run tests to
check

Karl Kosack - ESCAPE School 2022

Some good
advice for
writing
Scientific
Code

3

Write tests to
ensure it does!

Get the Code to Work First:

(test and Debug)

Profile to find bottlenecks

Optimize only what needs to be!

Refactor if necessary 
(redesign/rewrite)

run tests to
check

run tests to
check

Karl Kosack - ESCAPE School 2022

Some good
advice for
writing
Scientific
Code

3

Write tests to
ensure it does!

Get the Code to Work First:

(test and Debug)

Profile to find bottlenecks

Optimize only what needs to be!

Refactor if necessary 
(redesign/rewrite)

run tests to
check

run tests to
check

Karl Kosack - ESCAPE School 2022

Topics we
will cover
in this
lecture

Debugging:

• What happens when a program runs?

• What is a debugger?

• How do you use a debugger?

➤ command-line
➤ GUI
➤ in a notebook

Profiling:

• Why profile your code?

• How to profile:

➤ Using timing loops
➤ Function Call Profiling with cProfile
➤ Memory Profiling with memprof
➤ Line profiling with lineprof

4

Debugging
ESCAPE School, June 2022

Karl Kosack - ESCAPE School 2022 6

What is your current approach?

Karl Kosack - ESCAPE School 2022

When you run a piece of code and:

6

What is your current approach?

Karl Kosack - ESCAPE School 2022

When you run a piece of code and:

• get an error/crash/exception

6

What is your current approach?

Karl Kosack - ESCAPE School 2022

When you run a piece of code and:

• get an error/crash/exception

• encounter an unexpected result

6

What is your current approach?

Karl Kosack - ESCAPE School 2022

When you run a piece of code and:

• get an error/crash/exception

• encounter an unexpected result

• want to know what the code is
doing "under the hood"

6

What is your current approach?

Karl Kosack - ESCAPE School 2022

When you run a piece of code and:

• get an error/crash/exception

• encounter an unexpected result

• want to know what the code is
doing "under the hood"

 What do you usually do?

6

What is your current approach?

Karl Kosack - ESCAPE School 2022

When you run a piece of code and:

• get an error/crash/exception

• encounter an unexpected result

• want to know what the code is
doing "under the hood"

 What do you usually do?

Do you: (show of hands)

6

What is your current approach?

Karl Kosack - ESCAPE School 2022

When you run a piece of code and:

• get an error/crash/exception

• encounter an unexpected result

• want to know what the code is
doing "under the hood"

 What do you usually do?

Do you: (show of hands)
• Add a bunch of print statements

and try to track down the issue?

6

What is your current approach?

Karl Kosack - ESCAPE School 2022

When you run a piece of code and:

• get an error/crash/exception

• encounter an unexpected result

• want to know what the code is
doing "under the hood"

 What do you usually do?

Do you: (show of hands)
• Add a bunch of print statements

and try to track down the issue?

• Use an interactive python
interpreter

6

What is your current approach?

Karl Kosack - ESCAPE School 2022

When you run a piece of code and:

• get an error/crash/exception

• encounter an unexpected result

• want to know what the code is
doing "under the hood"

 What do you usually do?

Do you: (show of hands)
• Add a bunch of print statements

and try to track down the issue?

• Use an interactive python
interpreter

• Use a Jupyter notebook?

6

What is your current approach?

Karl Kosack - ESCAPE School 2022

When you run a piece of code and:

• get an error/crash/exception

• encounter an unexpected result

• want to know what the code is
doing "under the hood"

 What do you usually do?

Do you: (show of hands)
• Add a bunch of print statements

and try to track down the issue?

• Use an interactive python
interpreter

• Use a Jupyter notebook?

• Write a set of unit tests?

6

What is your current approach?

Karl Kosack - ESCAPE School 2022

When you run a piece of code and:

• get an error/crash/exception

• encounter an unexpected result

• want to know what the code is
doing "under the hood"

 What do you usually do?

Do you: (show of hands)
• Add a bunch of print statements

and try to track down the issue?

• Use an interactive python
interpreter

• Use a Jupyter notebook?

• Write a set of unit tests?

• Run the code in a debugger?

6

What is your current approach?

Karl Kosack - ESCAPE School 2022

When you run a piece of code and:

• get an error/crash/exception

• encounter an unexpected result

• want to know what the code is
doing "under the hood"

 What do you usually do?

Do you: (show of hands)
• Add a bunch of print statements

and try to track down the issue?

• Use an interactive python
interpreter

• Use a Jupyter notebook?

• Write a set of unit tests?

• Run the code in a debugger?

6

What is your current approach?

Karl Kosack - ESCAPE School 2022

Our program

def function_b(n):
 x = 3.3
 return sin(n * x * RAD_TO_DEG)

def function_a(n):
 return n * function_b(n + 1)

if __name__ == "__main__":
 RAD_TO_DEG = 180.0/np.pi
 for ii in range(10):
 function_a(ii)

7

First: how do programs run?

The Call Stack

Local Memory

Global Memory

Karl Kosack - ESCAPE School 2022

Our program

def function_b(n):
 x = 3.3
 return sin(n * x * RAD_TO_DEG)

def function_a(n):
 return n * function_b(n + 1)

if __name__ == "__main__":
 RAD_TO_DEG = 180.0/np.pi
 for ii in range(10):
 function_a(ii)

8

First: how do programs run?

main program
we are here

The Call Stack

Local Memory

Global Memory
RAD_TO_DEG = 57.29

Karl Kosack - ESCAPE School 2022

Our program

def function_b(n):
 x = 3.3
 return sin(n * x * RAD_TO_DEG)

def function_a(n):
 return n * function_b(n + 1)

if __name__ == "__main__":
 RAD_TO_DEG = 180.0/np.pi
 for ii in range(10):
 function_a(ii)

9

First: how do programs run?

main programwe are here

The Call Stack

Local Memory

Global Memory
RAD_TO_DEG = 57.29
ii = 0

Karl Kosack - ESCAPE School 2022

Our program

def function_b(n):
 x = 3.3
 return sin(n * x * RAD_TO_DEG)

def function_a(n):
 return n * function_b(n + 1)

if __name__ == "__main__":
 RAD_TO_DEG = 180.0/np.pi
 for ii in range(10):
 function_a(ii)

10

First: how do programs run?

main program
we are here

The Call Stack

Local Memory

Global Memory
RAD_TO_DEG = 57.29
ii = 0

Karl Kosack - ESCAPE School 2022

Our program

def function_b(n):
 x = 3.3
 return sin(n * x * RAD_TO_DEG)

def function_a(n):
 return n * function_b(n + 1)

if __name__ == "__main__":
 RAD_TO_DEG = 180.0/np.pi
 for ii in range(10):
 function_a(ii)

11

First: how do programs run?

main program

function_a
we are here

The Call Stack

Local Memory
n = 0

Global Memory
RAD_TO_DEG = 57.29
ii = 0

Karl Kosack - ESCAPE School 2022

Our program

def function_b(n):
 x = 3.3
 return sin(n * x * RAD_TO_DEG)

def function_a(n):
 return n * function_b(n + 1)

if __name__ == "__main__":
 RAD_TO_DEG = 180.0/np.pi
 for ii in range(10):
 function_a(ii)

12

First: how do programs run?

main program

function_a

function_b
we are here

The Call Stack

Local Memory
n = 1
x = 3.3

Global Memory
RAD_TO_DEG = 57.29
ii = 0

Karl Kosack - ESCAPE School 2022

Our program

def function_b(n):
 x = 3.3
 return sin(n * x * RAD_TO_DEG)

def function_a(n):
 return n * function_b(n + 1)

if __name__ == "__main__":
 RAD_TO_DEG = 180.0/np.pi
 for ii in range(10):
 function_a(ii)

13

First: how do programs run?

main program

function_a

function_bwe are here

The Call Stack

Local Memory
n = 1
x = 3.3

Global Memory
RAD_TO_DEG = 57.29
ii = 0

Karl Kosack - ESCAPE School 2022

Our program

def function_b(n):
 x = 3.3
 return sin(n * x * RAD_TO_DEG)

def function_a(n):
 return n * function_b(n + 1)

if __name__ == "__main__":
 RAD_TO_DEG = 180.0/np.pi
 for ii in range(10):
 function_a(ii)

14

First: how do programs run?

main program

function_a
we are here

The Call Stack

Local Memory
n = 0

Global Memory
RAD_TO_DEG = 57.29
ii = 0

Karl Kosack - ESCAPE School 2022

Our program

def function_b(n):
 x = 3.3
 return sin(n * x * RAD_TO_DEG)

def function_a(n):
 return n * function_b(n + 1)

if __name__ == "__main__":
 RAD_TO_DEG = 180.0/np.pi
 for ii in range(10):
 function_a(ii)

15

First: how do programs run?

main program
we are here

The Call Stack

Local Memory

Global Memory
RAD_TO_DEG = 57.29
ii = 0

Karl Kosack - ESCAPE School 2022

Our program

def function_b(n):
 x = 3.3
 return sin(n * x * RAD_TO_DEG)

def function_a(n):
 return n * function_b(n + 1)

if __name__ == "__main__":
 RAD_TO_DEG = 180.0/np.pi
 for ii in range(10):
 function_a(ii)

16

First: how do programs run?

main programwe are here

The Call Stack

Local Memory

Global Memory
RAD_TO_DEG = 57.29
ii = 1

Karl Kosack - ESCAPE School 2022

Heap:

• all global variables, dynamic memory

Stack:

• All functions currently being executed
and their local variables

• Single function's data is stored in a
"Stack Frame",

• Frames are stacked on top of each other
to represent hierarchy (bottom of stack =
outermost)

17

Program flow and memory in e.g. C(++)

diagram from: http://faculty.ycp.edu/~dhovemey/spring2007/cs201/info/exceptionsFileIO.html

python's memory scoping and stack is at a higher
level of abstraction than this, but conceptually is

pretty similar

http://faculty.ycp.edu/~dhovemey/spring2007/cs201/info/exceptionsFileIO.html

Karl Kosack - ESCAPE School 2022

Heap:

• all global variables, dynamic memory

Stack:

• All functions currently being executed
and their local variables

• Single function's data is stored in a
"Stack Frame",

• Frames are stacked on top of each other
to represent hierarchy (bottom of stack =
outermost)

17

Program flow and memory in e.g. C(++)

diagram from: http://faculty.ycp.edu/~dhovemey/spring2007/cs201/info/exceptionsFileIO.html

python's memory scoping and stack is at a higher
level of abstraction than this, but conceptually is

pretty similar

Stack frames use memory

+ all local variables.

If the stack gets too big
from too deeply nested
function calls, you can run

out of memory! This is
called a "stack overflow"

http://faculty.ycp.edu/~dhovemey/spring2007/cs201/info/exceptionsFileIO.html

Karl Kosack - ESCAPE School 2022

Heap:

• all global variables, dynamic memory

Stack:

• All functions currently being executed
and their local variables

• Single function's data is stored in a
"Stack Frame",

• Frames are stacked on top of each other
to represent hierarchy (bottom of stack =
outermost)

17

Program flow and memory in e.g. C(++)

diagram from: http://faculty.ycp.edu/~dhovemey/spring2007/cs201/info/exceptionsFileIO.html

python's memory scoping and stack is at a higher
level of abstraction than this, but conceptually is

pretty similar

Stack frames use memory

+ all local variables.

If the stack gets too big
from too deeply nested
function calls, you can run

out of memory! This is
called a "stack overflow"

Python has a default stack size limit of

 sys.getrecursionlimit()

(3000 on my machine)

That means that if you write a recursive
function that goes too deep, you will
hit this limit. It throws a
RecursionError in that case

http://faculty.ycp.edu/~dhovemey/spring2007/cs201/info/exceptionsFileIO.html

Karl Kosack - ESCAPE School 2022

A debugger:

• runs or attaches to a running piece of code or a program or one that has
just crashed or had an exception

• allows you to view the value of any variable

• allows you to move through the execution of the code and inspect data!

➤ go to next line
➤ step into function
➤ go up or down one level of function calls (up and down the call stack)
➤ watch a variable for change
➤ keep running until a condition occurs

The basic use/concepts of debuggers is independent of language (a C++
debugger works the same as a python debugger)

18

What is a debugger?

Karl Kosack - ESCAPE School 2022

Text-mode debuggers:

• command menu interface

• good for quick debugging

GUI Debuggers:

• often integrated with interactive
development environments (IDEs)

• Allow point-and-click inspection
of code and variables

• visual inspection of data

19

Two levels of debugging interface
pdb

GNU ddd

➤ GNU ddd [Data Display
Debugger] (c/c++)

➤ PyCharm's debugger
(python)

➤ VSCode's debugger (multiple
languages)

➤ Emacs dap-mode (multiple
languages)

➤ pdb (Python debugger)

➤ ipydb (iPython debugger)

➤ gdb (GNU debugger, C/C++)

Karl Kosack - ESCAPE School 2022

My recommendation: start with the IPython debugger!

• Run your code in ipython not python to get it to work...

➤ Make sure you run in INTERACTIVE python mode (-i)
➤ Make sure you run with an INTERACTIVE GUI as well!

| ipython -i --matplotlib=auto my-script.py

• When the exception is thrown (a bug!),

➤ all you need to do is type: %debug at the ipython prompt and

it will take you to the python debugger!

20

Use case 1: Your code "crashed"

Karl Kosack - ESCAPE School 2022

Then, once inside the debugger:

21

Then what?

common text-mode debugger commands  
(PDB or GDB!):

• u(p), d(own) (move in the stack)

• bt (backtrace) == where

• cont(inue) running program

• n(ext) [next line]

• s(tep) into next operation (e.g. into
functions)

• l and ll (list + longlist) of code at point

• q (quit debugging)

• any python expression

• ? to show help!

Karl Kosack - ESCAPE School 2022

Use Case 2: no exception occurred, but you want to see what is
happening inside a function

• Brute-force: place this line where you want to halt the program and
start debugging:

| breakpoint() # for python version 3.7 and above

then run python as usual (e.g. python myscript.py)

• More work, but more flexible: run the script inside the debugger:

| python -m pdb myscript.py

➤ the script will not run, but rather start at the first statement and then wait
for you to type commands

➤ use next, step, cont to step through program
➤ set a breakpoint! (break <linenumber>) and continue to it!

22

Debugging python code

- DEMO -

Karl Kosack - ESCAPE School 2022

Use Case 2: no exception occurred, but you want to see what is
happening inside a function

• Brute-force: place this line where you want to halt the program and
start debugging:

| breakpoint() # for python version 3.7 and above

then run python as usual (e.g. python myscript.py)

• More work, but more flexible: run the script inside the debugger:

| python -m pdb myscript.py

➤ the script will not run, but rather start at the first statement and then wait
for you to type commands

➤ use next, step, cont to step through program
➤ set a breakpoint! (break <linenumber>) and continue to it!

22

Debugging python code

- DEMO -

TIP: You can control which debugger is used by setting the
environment variable PYTHONBREAKPOINT
(the default is pdb, the built-in python debugger

I prefer IPython's debugger, ipdb:

% mamba install ipdb
% export PYTHONBREAKPOINT=ipdb.set_trace
% python my_script_to_debug.py

Karl Kosack - ESCAPE School 2022

Another common problem: what to do when a unit test fails?

• You can automatically enter the debugger automatically when
a test fails:

pytest --pdb
• Or even if it doesn't fail: start pdb for every tested function:

pytest --trace
• And of course breakpoint() still works

23

Debugging Unit Tests

Karl Kosack - ESCAPE School 2022

This is all nice and good, but it gets tedious for more than
simple debugging…

Solution: use a GUI debugger!

24

GUI Debugging

Click in margin
to set a
breakpoint

Open the "executable" part of the script and click the
"debug" icon in the toolbar

(may have to first create a debug config to tell what file
to run)

Karl Kosack - ESCAPE School 2022 25

GUI debugging

You can see all variables in the current
stack frame in this box

values also appear
right in the code!

(or on mouse-over)
currently at
this line

Move up and down
stack or lines

Karl Kosack - ESCAPE School 2022 25

GUI debugging

You can see all variables in the current
stack frame in this box

values also appear
right in the code!

(or on mouse-over)
currently at
this line

Move up and down
stack or lines

Drill deep down into any data structure!

Karl Kosack - ESCAPE School 2022 25

GUI debugging

You can see all variables in the current
stack frame in this box

values also appear
right in the code!

(or on mouse-over)
currently at
this line

Move up and down
stack or lines

Karl Kosack - ESCAPE School 2022 25

GUI debugging

You can see all variables in the current
stack frame in this box

values also appear
right in the code!

(or on mouse-over)
currently at
this line

Move up and down
stack or lines

use the "data view"
to see values of
large arrays or
tables

Karl Kosack - ESCAPE School 2022 26

GUI Debuggers: what they usually look like

Code

Stack

Local Variables

Global VariablesOutput

Breakpoints + current line

So basically like what I showed before, but fully interactive!

Sometimes
also a "view"

of data
structures

GNU Data Display
Debugger (DDD)

(a C/C++ debugger)

print(event)

VSCode Debugger (ptvsd)

Emacs (M-x dap-debug)

note: need to install the debugger server first

mamba install -c conda-forge ptvsd

Newish option: Jupyter-lab debugger extension

Caveat:

requires xeus-
python kernel and
doesn't work with
ipython kernel

https://github.com/jupyterlab/debugger

https://github.com/jupyterlab/debugger

Newish option: Jupyter-lab debugger extension

Caveat:

requires xeus-
python kernel and
doesn't work with
ipython kernel

https://github.com/jupyterlab/debugger

https://github.com/jupyterlab/debugger

demo
Debugging with notebooks/ipython

Debugging with pdb
Debugging with a GUI (PyCharm)

Profiling and Optimization
ESCAPE School, June 2022

Your code works!

Your code works!

Your code works!

But it's slow.

Your code works!

But it's slow.
Now what?

“We should forget about small
efficiencies, say about 97% of the time:
premature optimization is the root
of all evil

“We should forget about small
efficiencies, say about 97% of the time:
premature optimization is the root
of all evil

-Donald Knuth?
or Sir Tony Hoare?

“We should forget about small
efficiencies, say about 97% of the time:
premature optimization is the root
of all evil

-Donald Knuth?
or Sir Tony Hoare?

From a 1974 article on why GOTO statements are good

Karl Kosack - ESCAPE School 2022 34

Why optimize?

* though some compilation happens

Karl Kosack - ESCAPE School 2022

You want your code to work first, but you do want it to be efficient!

• balance between

➤ usability/readability/correctness
➤ and speed/memory efficiency

• not always achievable → err on the side of usability/readability!

34

Why optimize?

* though some compilation happens

Karl Kosack - ESCAPE School 2022

You want your code to work first, but you do want it to be efficient!

• balance between

➤ usability/readability/correctness
➤ and speed/memory efficiency

• not always achievable → err on the side of usability/readability!

Some things:

• Python is interpreted* → can be slow

• For-loops in particular → 100 - 1000x slower than C loops…

• Mostly one CPU Core (GIL - Global Interpreter Lock)

• but there are ways to get around these...  
(See Tamas's Numpy/Numba lecture)

34

Why optimize?

* though some compilation happens

Karl Kosack - ESCAPE School 2022

Not an inherent problem with the language

• python ≠ CPython!

➤ but CPython does generally get faster each

release

• other python implementations exist that are trying
to solve the general speed problem:

➤ pypy - pypy.org fully JIT-compiled python
➤ pyston - optimized CPython from Facebook
➤ other efforts to remove bottlenecks from CPython

(no GIL, etc)

35

Slowness of Python

http://pypy.org

Karl Kosack - ESCAPE School 2022

Not an inherent problem with the language

• python ≠ CPython!

➤ but CPython does generally get faster each

release

• other python implementations exist that are trying
to solve the general speed problem:

➤ pypy - pypy.org fully JIT-compiled python
➤ pyston - optimized CPython from Facebook
➤ other efforts to remove bottlenecks from CPython

(no GIL, etc)

35

Slowness of Python

So one option to optimization is:

Do nothing!

Wait for a faster implementation, or a
new version of CPython to be released,
or swap in a completely different
implementation!

http://pypy.org

Karl Kosack - ESCAPE School 2022

1) Make sure code works correctly first

• DO NOT optimize code you are writing or debugging!

2) Identify use cases for optimization:

• how often is a function called? Is it useful to optimize it?

• If it is not called often and finishes with reasonable time/memory, stop!

3) Profile the code to identify bottlenecks in a more scientific way

• Profile time spent in each function, line, etc

• Profile memory use

4) try to re-write as little as possible to achieve improvement
5) refactor if it is still problematic…

• some times the design is what is making the code slow... can it be
improved? (e.g.: flat better than nested!)

36

Steps to optimization

Karl Kosack - ESCAPE School 2022

A way to identify where resources are used by a program:

• CPU resources (computation time)

• Memory resources

Identify problems in your code like hangs and memory leaks

Identify "hotspots" in your code that may be useful to
optimize!

➤ always ask your question: will it make a real difference?

➤ If it's good enough, STOP

37

What is profiling?

Karl Kosack - ESCAPE School 2022

What I often see...

from time import time

start = time.time()

[code]

stop = time.time()
print(stop - start)

this measures only wall-clock time!

You want CPU time! 
(not dependent on other stuff you are running)

You want many trials, for statistics!

Better method: %timeit

• interactive %timeit "magic" jupyter/ipython
function

• Automatically runs a function many times and
measures CPU time and standard deviation

• Usage:
| %timeit <python statement>

Notes:

➤ to time an entire cell, use %%time
➤ you can also import the `timeit` module
➤ if you really only want one trial, use %%time

38

Speed profiling 1: in a notebook

Karl Kosack - ESCAPE School 2022

What I often see...

from time import time

start = time.time()

[code]

stop = time.time()
print(stop - start)

this measures only wall-clock time!

You want CPU time! 
(not dependent on other stuff you are running)

You want many trials, for statistics!

Better method: %timeit

• interactive %timeit "magic" jupyter/ipython
function

• Automatically runs a function many times and
measures CPU time and standard deviation

• Usage:
| %timeit <python statement>

Notes:

➤ to time an entire cell, use %%time
➤ you can also import the `timeit` module
➤ if you really only want one trial, use %%time

38

Speed profiling 1: in a notebook

Karl Kosack - ESCAPE School 2022

A profiler is better than a simple %timeit, in that it checks the time in
all functions and sub-functions at once and generates a report.

Python provides several profilers, but the most common is cProfile
(note: gprof for c++)
Profile an entire script:

• Run your script with the additional options: 

| python -m cProfile -o output.pstats <script>

• this generates a binary data file (output.pstats) that contains
statistics on how often and for how long each function was called

• There is a built-in pstats module that displays it using a command-
line UI, but it's a bit difficult to use... but there are GUIs!

39

Speed profiling 2: profiler!

Karl Kosack - ESCAPE School 2022 40

Tip: use a gui to view stats output

Viewing with SnakeViz
| % conda install snakeviz
| % snakeviz output.pstats

• interactive call statistics viewer

• this is not the only one, but it's
nice and simple and runs in your
browser.

• Click and zoom to see the results

Real-world demo!

Karl Kosack - ESCAPE School 2022

You can also view pstats output with the
qcachegrind GUI application, (also for C++ C++
profiling output):

| % pip install pyprof2calltree
| % pyprof2calltree -i output.pstats -k

This will open qCacheGrind GUI
automatically

you need to first install qCacheGrind using
your package manage (it's not in Conda), e.g.

brew install qcachegrind (macOS with HomeBrew installed)

apt install qcachegrind (linux with Apt)

...

41

Another stats viewer

Karl Kosack - ESCAPE School 2022

You can also run the profiler directly on a statement in a
notebook.

• use the magic %prun function

| %prun <python statement>

• Pops up a sub-window with the results (the same as if you ran
cProfile and then pstats (though you don't get an interactive
viewer)

42

Profiling in a Notebook

Karl Kosack - ESCAPE School 2022

What about time spent in each line of code?
The line_profiler module can help:

| % conda install line_profiler

• mark code with @profile:

| from line_profiler import profile

| @profile
| def slow_function(a, b, c):
| ...

• Then run:

➤ % kernprof -l script_to_profile.py

• which generates a .lprof file that can be viewed with:

➤ % python -m line_profiler script_to_profile.py.lprof

43

Line Profiling

File: pystone.py
Function: Proc2 at line 149
Total time: 0.606656 s

Line # Hits Time Per Hit % Time Line Contents
==
 149 @profile
 150 def Proc2(IntParIO):
 151 50000 82003 1.6 13.5 IntLoc = IntParIO + 10
 152 50000 63162 1.3 10.4 while 1:
 153 50000 69065 1.4 11.4 if Char1Glob == 'A':
 154 50000 66354 1.3 10.9 IntLoc = IntLoc - 1
 155 50000 67263 1.3 11.1 IntParIO = IntLoc - IntGlob
 156 50000 65494 1.3 10.8 EnumLoc = Ident1
 157 50000 68001 1.4 11.2 if EnumLoc == Ident1:
 158 50000 63739 1.3 10.5 break
 159 50000 61575 1.2 10.1 return IntParIO

Karl Kosack - ESCAPE School 2022

As with cProfile and timeit, you can do line profiling
in a notebook:

• unlike %timeit, need to load an extension first:

| %load_ext line_profiler

• Then, if you have a function defined, you must
"mark" it to be profiled by adding "-f <func>"

| %lprun -f <function name> <python statement that uses

function>

for example:

| %lprun -f myfunc myfunc(100,100)

Note you can mark more than one func

44

Line-profiling in a Notebook

Karl Kosack - ESCAPE School 2022

Use of CPU is not the only thing to worry about… what about
RAM? Let's first check for memory leaks…

| % conda install memory_profiler
| % mprof run python <script>
| % mprof plot

45

Memory Profiling

< This is already in your eschool2022 environment

Karl Kosack - ESCAPE School 2022

Line # Hits Time Per Hit % Time Line Contents
==
 17 @profile
 18 def main():
 19 1 3.0 3.0 0.0 if len(sys.argv) >>= 2:
 20 filename = sys.argv[1]
 21 else:
 22 1 485.0 485.0 0.0 filename = get_dataset_path("gamma_test_large.simtel.gz")
 24 1 3572651.0 3572651.0 9.8 with EventSource(filename, max_events=500) as source:
 26 1 438843.0 438843.0 1.2 calib = CameraCalibrator(subarray=source.subarray)
 27 2 249622.0 124811.0 0.7 process_images = ImageProcessor(
 28 1 2.0 2.0 0.0 subarray=source.subarray, is_simulation=source.is_simulation
 29)
 30 1 1363.0 1363.0 0.0 process_shower = ShowerProcessor(subarray=source.subarray)
 31 2 276938.0 138469.0 0.8 write = DataWriter(
 32 1 0.0 0.0 0.0 event_source=source, output_path="events.DL1.h5", overwrite=True
 33)
 35 111 11506526.0 103662.4 31.5 for event in tqdm(source):
 36 110 1313386.0 11939.9 3.6 calib(event)
 37 110 2353948.0 21399.5 6.4 process_images(event)
 38 110 14044245.0 127675.0 38.4 process_shower(event)
 39 110 2814913.0 25590.1 7.7 write(event)

Cumulative is nice, but we want to see
the memory for a particular function or
class…

• decorate the function you want to profile
(line-wise) with memory_profiler.profile

| % python -m memory_profiler <script>

46

Memory Profiling in detail

Decorate what we
want to measure (no

import needed)

Output shows the time
spent in the line or block

(e.g. if , for)

Karl Kosack - ESCAPE School 2022

Again, you can do memory profiling using magic commands in an iPython
(Jupyter) notebook

• Enable the memory profiling notebook extension:

| %load_ext memory_profiler

• Now you have access to several magic functions:

Like %timeit, but for memory usage:

| %memit <python statement>

or a more full-featured report:

| %mprun -f <function name> <statement>

Caveats:

• the peak memory usage shown in the notebook may not relate to the function
you are testing! It is the sum of all memory already allocated that has not yet
been garbage collected. (so look at the "increment" instead).

• %mprun only works if your functions are defined in a file (not a notebook) and
imported into the notebook

47

Memory Profiling in a Notebook

A real-world example from a few days ago  
(a Pull-Request for code written by Max Nöthe)

Karl Kosack - ESCAPE School 2022

Automatic Debugger breakpoints:

• you can automatically start the debugging if the code tries to
go above a memory limit, to see where the allocation is
happening:

| % python -m memory_profiler ——pdb-mmem=100 <script>

will break and enter debugger after 100 MB is allocated, on the line where the last
allocation occurred

Print out memory usage during program execution:
| from memory_profiler import memory_usage
| mem_usage = memory_usage(-1, interval=.2, timeout=1)
| print(mem_usage)
| [7.296875, 7.296875, 7.296875, 7.296875, 7.296875]

• see the docs. you can also write it to a log periodically, etc.

49

Memory Profiling: jump to debugger

demo

