
Unit Testing
Test Driven Development
Continuous Integration

Maximilian Nöthe

Astroparticle Physics, TU Dortmund

Summer School – 2022-06-23

Overview

Introduction

pytest

Test Coverage

Mocking / Monkeypatching

Test Driven Development

Doctests

Continuous Integration

M. Nöthe – TU Dortmund Testing 2

Warning

BIOHAZARD Copying commands or code from PDF files is
dangerous Radiation

Copy from the example files in the repository or type by hand.

Typing by hand is best for learning.

M. Nöthe – TU Dortmund Testing 3

Introduction

M. Nöthe – TU Dortmund Testing – Introduction 4

Automated Software Testing

→ Verifying that a software works as intended is crucial
→ Doing this manually using whatever method you can think of

→ is very tedious
→ is errorprone
→ will result in the tests not being done most of the time

⇒ We need automated tests that verify our software
→ Tests fall into three categories

1. Unit tests
2. Integration tests
3. Performance tests

M. Nöthe – TU Dortmund Testing – Introduction 5

Unit tests

→ Test single “units” of the code in isolation
→ Require modular design of the code base
→ Are the bedrock of any more complicated tests
→ Must be fast and easy to run⇒ or they would not be run most of the time

M. Nöthe – TU Dortmund Testing – Introduction 6

Properties of good unit tests

Existence SMILE-WINK

Correctness The code under test behaves according to requirements / specifications
Completeness The tests cover all required features / use cases
Readability Writing tests for tests would result in infinite recursion

⇒ tests must readable, so they can be easily verified by inspection
Demonstrability Good tests show how your code is meant to be used

Resilience Tests should only fail if what they test breaks

M. Nöthe – TU Dortmund Testing – Introduction 7

Frameworks

All modern languages have one or more frameworks for tests, a small selection:

Python pytest
C++ Catch2, GoogleTest
Java JUnit
Rust Part of the language
Julia Test module in the standard library

M. Nöthe – TU Dortmund Testing – Introduction 8

Integration tests

→ Test that multiple units are working together
→ E. g. testing a whole command line application
→ Can grow arbitrarily large / complicated

M. Nöthe – TU Dortmund Testing – Introduction 9

Performance tests

→ Unit and integration tests usually only test the correctness of code
→ Performance tests make sure the code fulfills requirements and does not get slower
→ This introduction focuses on unit tests
→ See the profiling lecture for more information on how to actually measure

performance

M. Nöthe – TU Dortmund Testing – Introduction 10

Example python code

We are going to use this simple function as example for our first unit tests:

examples/step1/fibonacci.py
1 def fibonacci(n):
2 if n == 0:
3 return 0
4 if n == 1:
5 return 1
6 return fibonacci(n - 1) + fibonacci(n - 2)

M. Nöthe – TU Dortmund Testing – Introduction 11

pytest

M. Nöthe – TU Dortmund Testing – pytest 12

pytest

→ Standard framework for writing unit tests for Python projects
→ Uses the assert statement for tests
→ Tests fail if an assertion fails or an exception is raised
→ Uses introspection of the assertion to give detailed error messages
→ Automatic test detection using patterns:

→ Modules matching test_*.py or *_test.py
→ Functions called test*
→ Methods named test* of classes named Test*

→ Docs: https://pytest.org

M. Nöthe – TU Dortmund Testing – pytest 13

https://pytest.org

First Unit Test
examples/step1/test_fibonacci1.py

1 def test_fiboncacci():
2 from fibonacci import fibonacci
3
4 assert fibonacci(4) == 3
5 assert fibonacci(7) == 13

1 ============================= test session starts
==============================↪

2 platform linux -- Python 3.10.5, pytest-7.1.2, pluggy-1.0.0
3 rootdir: /home/maxnoe/escape-school2022/testing/examples, configfile:

pyproject.toml↪

4 plugins: cov-3.0.0, anyio-3.6.1
5 collected 1 item
6
7 test_fibonacci1.py .

[100%]↪

8
9 ============================== 1 passed in 0.01s

===============================↪

M. Nöthe – TU Dortmund Testing – pytest 14

A note on imports

examples/step1/test_fibonacci1.py
1 def test_fiboncacci():
2 from fibonacci import fibonacci
3
4 assert fibonacci(4) == 3
5 assert fibonacci(7) == 13

→ Against usual python style, you should import what you test in the test function
→ Like this, the test discovery of pytest will also work when the import would fail and

the failure is reported as part of the test
→ Everything else, like standard library imports or third-party dependencies, is

imported normally at the top

M. Nöthe – TU Dortmund Testing – pytest 15

Testing Exceptions
Make sure the correct exception is thrown, e. g. for invalid input:

examples/step2/fibonacci.py
1 def fibonacci(n):
2 if n < 0:
3 raise ValueError(f'n must be >= 0, got {n}')
4 # rest unchanged

examples/step2/test_exception.py
1 import pytest
2
3 def test_invalid_values():
4 from fibonacci import fibonacci
5
6 with pytest.raises(ValueError):
7 fibonacci(-1)

The same can be done for warnings using pytest.warns

M. Nöthe – TU Dortmund Testing – pytest 16

Careful with floating point numbers

Naive, this fails
3 def test_addition_naive():
4 assert 0.1 + 0.2 == 0.3

Correct approach, using pytest.approx
6 def test_addition_correct():
7 assert 0.1 + 0.2 == pytest.approx(0.3)

See https://0.30000000000000004.com/

M. Nöthe – TU Dortmund Testing – pytest 17

https://0.30000000000000004.com/

Using numpy testing utitlities

Using numpy
1 import numpy as np
2
3 def test_sin():
4 x = np.array([0, np.pi / 2, np.pi])
5 np.testing.assert_array_almost_equal(np.sin(x), [0, 1, 0], decimal=15)
6
7 def test_poly():
8 def f(x):
9 return x**2 + 2 * x + 10

10
11 x = np.array([0.0, 1.0, 2.0])
12 np.testing.assert_allclose(f(x), [10.0, 13.0, 18.0], rtol=1e-5)

See https://numpy.org/doc/stable/reference/routines.testing.html

M. Nöthe – TU Dortmund Testing – pytest 18

https://numpy.org/doc/stable/reference/routines.testing.html

Using astropy quantity support

Using astropy units
1 import astropy.units as u
2
3 def test_time():
4 v = 10 * u.m / u.s
5 d = 1 * u.km
6 assert u.isclose(d / v, 100 * u.s)
7
8
9 def test_many():

10 v = 10 * u.m / u.s
11 d = [0, 1, 5] * u.km
12 assert u.allclose(d / v, [0, 100, 500] * u.s)

M. Nöthe – TU Dortmund Testing – pytest 19

Fixtures

→ Data and resources used by tests can be injected into tests using “fixtures”
→ Fixtures are provided by functions decorated with @fixture
→ Fixtures have a scope⇒ same object used per session, module, class or function
→ Default is scope="function"

1 import pytest
2
3 @pytest.fixture(scope='session')
4 def some_data():
5 return [1, 2, 3]
6
7 def test_using_fixture(some_data):
8 assert len(some_data) == 3
9

10 def test_also_using_fixture(some_data):
11 assert some_data[0] == 1

M. Nöthe – TU Dortmund Testing – pytest 20

Fixtures provided by pytest

pytest provides several builtin fixtures for

→ temporary directories tmp_path / tmp_path_factory
→ Testing output to stdout / stderr capsys
→ Testing logging caplog
→ Monkeypatching monkeypatch

More at https://docs.pytest.org/en/6.2.x/fixture.html

M. Nöthe – TU Dortmund Testing – pytest 21

https://docs.pytest.org/en/6.2.x/fixture.html

capsys – Fixture for testing the standard streams

1 def greet(name):
2 print(f'Hello, {name}!')
3
4 def test_prints(capsys):
5 # call the function
6 greet('Escape School 2022')
7
8 # test that it wrote what we expect to stdout
9 captured = capsys.readouterr()

10 # .err would be the stderr output
11 assert captured.out == 'Hello, Escape School 2022!\n'

M. Nöthe – TU Dortmund Testing – pytest 22

caplog – Fixture for testing logging

1 import logging
2
3 def do_work():
4 log = logging.getLogger('do_work')
5 log.info('Doing work')
6 log.info('Done')
7
8
9 def test_do_work_logs(caplog):

10 with caplog.at_level(logging.INFO):
11 do_work()
12
13 assert len(caplog.records) == 2
14 for record in caplog.records:
15 assert record.levelno == logging.INFO

M. Nöthe – TU Dortmund Testing – pytest 23

Temporary paths

→ For tests that need to create files, use the tmp_path fixture
⇒ Avoids cluttering and conflicts when running tests multiple times / between tests

→ tmp_path has scope function, so each test gets its own temporary directory
→ These directories are not cleaned up after the tests, so you can inspect the results
→ If you need a temporary path with a wider scope, add a new fixture using

tmp_path_factory

M. Nöthe – TU Dortmund Testing – pytest 24

Temporary paths

1 from astropy.table import Table
2 import numpy as np
3
4
5 def test_to_csv(tmp_path):
6
7 t = Table({'a': [1, 2, 3], 'b': [4, 5, 6]})
8 t.write(tmp_path / 'test.csv')
9

10 read = Table.read(tmp_path / 'test.csv')
11 assert np.all(read == t)

Run the test and checkout
/tmp/pytest-of-$USER/pytest-current/test_to_csvcurrent

M. Nöthe – TU Dortmund Testing – pytest 25

Fixtures that need a cleanup step

→ Sometimes, resources or data need to be cleaned up after the test have run
→ This can be implemented using a generator fixture that yields the data and cleans up

after the yield

@pytest.fixture()
def database_connection():

connection = database.connect()
yield connection
close after use
connection.close()

@pytest.fixture()
def database_connection():

even better, with a context manager
with database.connect() as connection:

yield connection

M. Nöthe – TU Dortmund Testing – pytest 26

Parametrized Tests and Fixtures

→ Parametrization allows to run the same test on multiple inputs
→ Very useful to reduce code repetition and get clearer messages

A parametrized test
1 import pytest
2
3 n = range(9)
4 fibs = [0, 1, 1, 2, 3, 5, 8, 13, 21]
5
6 @pytest.mark.parametrize('n,expected', zip(n, fibs))
7 def test_fibonacci(n, expected):
8 from fibonacci import fibonacci
9

10 assert fibonacci(n) == expected

M. Nöthe – TU Dortmund Testing – pytest 27

Conditional tests

Some tests can only be run under specific conditions

→ Tests for features requiring optional dependencies
This test is skipped when numpy is not available

5 def test_using_numpy():
6 np = pytest.importorskip("numpy")
7 assert len(np.zeros(5)) == 5

python
→ Tests for specific operating systems or versions

This test is only executed on Windows
9 @pytest.mark.skipif(sys.platform != 'win32', reason="windows only")

10 def test_windows():
11 assert os.path.exists('C:\\')

M. Nöthe – TU Dortmund Testing – pytest 28

Expected failures

It sometimes makes sense to implement tests that are expected to fail:

→ Planned but not yet implemented features
→ Known but not yet fixed bugs
→ These tests shouldn’t make your whole test suite fail

This test is expected to fail
1 import pytest
2
3 @pytest.mark.xfail
4 def test_this_fails():
5 import math
6 assert math.pi == 3

M. Nöthe – TU Dortmund Testing – pytest 29

Choosing which tests to run

pytest offers fine-grained control over which tests to run

→ Select a specific test:
$ pytest test_module.py::test_name

→ Run only tests that failed the last time pytest was run
$ pytest --last-failed

→ Stop after N failures $ pytest --maxfail=2

→ Using matching expressions $ pytest -k "fib"

→ Run tests for an installed package $ pytest --pyargs fibonacci

M. Nöthe – TU Dortmund Testing – pytest 30

Choosing which tests to run – Using markers

→ Define markers in pyproject.toml
[tool.pytest.ini_options]
markers = ["slow"]

→ Add the marker to a test
4 @pytest.mark.slow
5 def test_slow():
6 time.sleep(2)
7 assert 1 + 1 == 2

→ Run tests using marker expressions
$ pytest -m "not slow"
$ pytest -m "slow"

M. Nöthe – TU Dortmund Testing – pytest 31

Debugging

→ Unit tests can be very useful for debugging
→ E. g. Write a new test that triggers the bug → investigate → make it pass
→ pytest allows you to jump into pdb when a test fails:

$ pytest --pdb

→ or any other debugger, e. g. ipython’s:
$ pytest --pdb --pdbcls=IPython.terminal.debugger:TerminalPdb

M. Nöthe – TU Dortmund Testing – pytest 32

Test Coverage

M. Nöthe – TU Dortmund Testing – Test Coverage 33

Test Coverage

→ Test coverage is a metric measuring how much of the code is tested:

coverage =
Lines of code executed during tests

Total lines of code

→ Can be helpful to find parts of code that are not tested (enough).
→ Especially useful in CI system to check that new / changed code is tested

→ One more badgeSMILE-WINK! codecovcodecov 90%90%

M. Nöthe – TU Dortmund Testing – Test Coverage 34

Create a coverage report

→ Print coverage after test suite
$ pytest --cov=fibonacci

→ Create a detailed report in html format
$ pytest --cov=fibonacci --cov-report=html

→ Serve the report using python’s built-in http server and explore in the browser:
$ python -m http.server -d htmlcov

M. Nöthe – TU Dortmund Testing – Test Coverage 35

Limitations of line coverage

Executed number of lines of code are not a perfect measure.

if some_condition is True:
do_stuff()

do_other_stuff()

When during the tests some_condition is True, this code will have 100% coverage.
But what about some_condition is not True?

result = scipy.optimize.minimize(likelihood, ...)

Calling functions from other packages can have arbitrarily many branches

Run pytest with branch coverage
$ pytest --cov=fibonacci --cov-report=html --cov-branch

M. Nöthe – TU Dortmund Testing – Test Coverage 36

Limitations of line coverage

Executed number of lines of code are not a perfect measure.

if some_condition is True:
do_stuff()

do_other_stuff()

When during the tests some_condition is True, this code will have 100% coverage.
But what about some_condition is not True?

result = scipy.optimize.minimize(likelihood, ...)

Calling functions from other packages can have arbitrarily many branches

Run pytest with branch coverage
$ pytest --cov=fibonacci --cov-report=html --cov-branch

M. Nöthe – TU Dortmund Testing – Test Coverage 36

Limitations of line coverage

Executed number of lines of code are not a perfect measure.

if some_condition is True:
do_stuff()

do_other_stuff()

When during the tests some_condition is True, this code will have 100% coverage.
But what about some_condition is not True?

result = scipy.optimize.minimize(likelihood, ...)

Calling functions from other packages can have arbitrarily many branches

Run pytest with branch coverage
$ pytest --cov=fibonacci --cov-report=html --cov-branch

M. Nöthe – TU Dortmund Testing – Test Coverage 36

Limitations of line coverage

Executed number of lines of code are not a perfect measure.

if some_condition is True:
do_stuff()

do_other_stuff()

When during the tests some_condition is True, this code will have 100% coverage.
But what about some_condition is not True?

result = scipy.optimize.minimize(likelihood, ...)

Calling functions from other packages can have arbitrarily many branches

Run pytest with branch coverage
$ pytest --cov=fibonacci --cov-report=html --cov-branch

M. Nöthe – TU Dortmund Testing – Test Coverage 36

Mocking / Monkeypatching

M. Nöthe – TU Dortmund Testing – Mocking / Monkeypatching 37

Mocking / Monkeypatching

→ Sometimes, classes or functions have behaviour that prevents unit testing
→ E. g. code that speaks to specific hardware, makes web requests, relies on system

time ...
→ This is usually a sign of insufficient modularization / separation of concerns
→ A solution can be mocking or monkeypatching, if it is not possible to improve the

actual code

M. Nöthe – TU Dortmund Testing – Mocking / Monkeypatching 38

Mocking / Monkeypatching

1 import requests
2 import json
3
4 def is_server_healthy():
5 ret = requests.get('https://example.org/healthcheck')
6 ret.raise_for_status()
7 return ret.json()['healthy']
8
9 def test_healthy(monkeypatch):

10 with monkeypatch.context() as m:
11 def get(url):
12 resp = requests.Response()
13 resp.url = url
14 resp.status_code = 200
15 resp._content = json.dumps({'healthy': True}).encode('utf-8')
16 return resp
17
18 m.setattr(requests, 'get', get)
19 assert is_server_healthy()

M. Nöthe – TU Dortmund Testing – Mocking / Monkeypatching 39

Test Driven Development

M. Nöthe – TU Dortmund Testing – Test Driven Development 40

Test Driven Development (TDD)

→ Test Driven Development is a powerful paradigm
→ Essentially, to implement a new feature

1. Write the tests before any implementation code
2. Run the tests → they should all fail
3. Write the minimal implementation that makes the test pass
4. All tests should now pass
5. Cleanup, refactor, tests must keep passing

M. Nöthe – TU Dortmund Testing – Test Driven Development 41

Test Drive Development

→ TDD forces you to think about requirements and API before writing the actual code
→ Especially usefull when

→ you have clear specifications
→ investigating / trying to fix a bug
→ working on a new greenfield project

→ Not so easy to use when
→ working in a large, historic codebase without good test coverage
→ doing explorative work

M. Nöthe – TU Dortmund Testing – Test Driven Development 42

Doctests

M. Nöthe – TU Dortmund Testing – Doctests 43

Doctests

→ Examples are an important part of every documentations
1 def fibonacci(n):
2 '''Calculate the nth fibonacci number using recursion
3
4 Examples
5 --------
6 >>> fibonacci(7)
7 13
8 '''

→ Important to verify that the examples stay up to date and are correct
→ Solution: run all the examples and check the expected output

$ pytest --doctest-glob="*.rst" --doctest-modules

→ This will find and execute code blocks in docstrings and documentation rst-files
→ Checks the output is what is expected

M. Nöthe – TU Dortmund Testing – Doctests 44

Continuous Integration

M. Nöthe – TU Dortmund Testing – Continuous Integration 45

Continuous Integration

→ CI systems run the build, unit tests and code quality checks automatically
→ They should run for each push event / opened pull request
→ All architectures, operating systems and versions you support should be tested
→ Many tools provide detailed reporting that help with code reviews
→ You should require the passing of the CI system for pull requests
→ All providers also support encrypted secrets for confidential information

→ Automatize upload of releases
→ Access private data needed for tests
→ ...

M. Nöthe – TU Dortmund Testing – Continuous Integration 46

Providers

GitHub Actions https://docs.github.com/en/actions
→ Free for all public GitHub repositories
→ Linux, Mac and Windows builds
→ Support for custom runners that you can self-host
→ Recommended for projects on GitHub

GitLab CI https://docs.gitlab.com/ee/ci/
→ 400 minutes of build time per month with gitLab.com Free
→ Support for custom runners that you can self-host
→ Also available for self-hosted GitLabs (you have to setup at least one

runner)
Jenkins https://www.jenkins.io/

→ Open-Source CI platform you can self-host

Many more, including Travis CI, AppVeyor, circleci, Azure Pipelines

M. Nöthe – TU Dortmund Testing – Continuous Integration 47

https://docs.github.com/en/actions
https://docs.gitlab.com/ee/ci/
https://www.jenkins.io/
https://travis-ci.com/
https://www.appveyor.com/
https://circleci.com/
https://azure.microsoft.com/de-de/services/devops/pipelines/

Defining a CI Workflow

→ All of these providers use different configuration files to specify a workload
→ Despite these differences, the idea is always the same

→ Define environments, operating systems, software versions
→ Get the code
→ Install dependencies
→ Compile / build / install the software
→ Run the tests
→ Upload results

M. Nöthe – TU Dortmund Testing – Continuous Integration 48

A minimal github actions example

→ See the demo project at https://github.com/maxnoe/pyfibonacci

M. Nöthe – TU Dortmund Testing – Continuous Integration 49

https://github.com/maxnoe/pyfibonacci

Some CI helpful Tools

https://codecov.io/ Explore coverage reports and adds coverage checks to pull
requests

https://reviewnb.com/ Makes reviewing jupyter notebooks easier / possible
https://codacy.com/ Static code analysis, e. g. style linting

M. Nöthe – TU Dortmund Testing – Continuous Integration 50

https://codecov.io/
https://reviewnb.com/
https://codacy.com/

	Introduction
	pytest
	Test Coverage
	Mocking / Monkeypatching
	Test Driven Development
	Doctests
	Continuous Integration

