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Inverse Problems

Analysis problems are inverse problems: given some data, we want to
infer something about the process that generated the data

Generally harder than predicting the outcome, given a physical process

The latter is called forward modelling, or a generative model

Typical classes of problem:

Parameter inference
Model comparison
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How do we do science?

⇔ ÷÷¥÷
them

statistic
⇐function
g.
data)

something

We need to know the sampling distribution (often called the likelihood)

p({d1, d2, d3}|Theory ,θ)

where θ represents model parameters.
We may know it (gaussian, Poisson etc), but it may be complex (selection
effects, complicated physics).
Without it how can we do science?
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Case study: WMAP Cosmic Microwave Background Data

Typically we compress the data into some ‘summary statistics’, such as the
correlation function of the temperature values, or the power spectrum.
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WMAP Cosmic Microwave Background Data

ΛCDM fits WMAP data well:
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WMAP Cosmic Microwave Background Data

ΛCDM fits WMAP data well:
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Notation

Data d ; Model M; Model parameters θ
Rule 1: write down what you want to know

Usually, it is the probability distribution for the parameters, given the
data, and assuming a model.

It is the Posterior: p(θ|d,M)

To compute it, we use Bayes theorem:

p(θ|d ,M) =
p(d |θ,M)p(θ|M)

p(d |M)

where the Likelihood is L(d|θ) = p(d|θ,M)

and the Prior is π(θ) = p(θ|M)

p(d|M) is the Bayesian Evidence, which is important for Model
Comparison, but not for Parameter Inference.

Dropping the M dependence

p(θ|d) =
L(d |θ)π(θ)

p(d)
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It is all probability

The Posterior

Everything is focussed on getting at the whole posterior p(θ|d). Not just a
point estimate of ‘best-fit’ parameters.

Computing the posterior

p(θ|d) ∝ L(θ)π(θ).

We need to analyse the problem:

What are the data, d?
What is the model for the data?
What are the model parameters?
What is the likelihood function L(θ)? Do we even know it?
What is the prior π(θ)?

Alan Heavens, Imperial College Introduction to Bayesian Modelling June 20, 2022 9 / 35



Priors

Bayesian: prior = (usually) the state of knowledge before the new
data are collected.

For parameter inference, the prior becomes unimportant as more data
are added and the likelihood dominates. (For model comparison, the
prior remains important.)

Issues: One usually wants an ‘uninformative’ prior, but what does this
mean?

Typical choices: π(θ) = constant (for location parameters);
π(θ) ∝ 1/θ (for scale parameters) - so-called Jeffreys prior (by
Astronomers)
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Uninformative prior
Flat prior? Seems natural, but consider this problem. Imagine cartesian
coordinates in N dimensions, with the prior range being (−1

2 ,
1
2) for all

coordinates. The prior probability of being inside the N-sphere which just
fits inside the prior volume is

πN/2

2NΓ(1 + N/2)

log10p vs N
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An apparently uninformative prior may be highly informative when viewed
in a different way.

Alan Heavens, Imperial College Introduction to Bayesian Modelling June 20, 2022 11 / 35



Simple Bayesian Analysis

Likelihood (sampling distribution) known. E.g. if gaussian,

p(d |θ) =
1√
2πσ

exp

[
−(d − µ)2

2σ2

]

If (as usual) the data d are multidimensional, they may be correlated, and
if they are gaussian, we need the covariance matrix

Σ = 〈(d− µ)(d− µ)T 〉.

The sampling distribution/likelihood is then

p(d|θ) =
1√
|2πΣ|

exp

[
−1

2
(d− µ)TΣ−1(d− µ)

]

Are the data gaussian? Do you know the covariance matrix?
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Bayesian Hierarchical Models (BHMs)

Real data can be more complex. E.g. Data = Planck pixel values, ∆̂T .
What is the likelihood p(∆̂T |θ)? Hard, but not impossible.

BRIEF ARTICLE

THE AUTHOR

∆̂T

∆T

a`m

C`

θ

N

N = 4096

N = 1.7× 106

1
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Bayesian Hierarchical Models (BHMs)

Real data can be more complex. E.g. Data = Planck pixel values, ∆̂T .
What is the likelihood p(∆̂T |θ)? Hard, but not impossible.2 THE AUTHOR

d�T

�T

a`m

C`

✓

N

⇠ ⇡(✓)

⇠ N (0, diag(C`))

⇠ N (0, N)

N = 4096

N = 1.7 ⇥ 106
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Bayesian Hierarchical Models, for more complex problems
If you can, this is how to do it

BHM

We split the inference problem into steps, where the full model is
made up of a series of sub-models

The Bayesian Hierarchical Model (BHM) links the sub-models
together, correctly propagating uncertainties in each sub-model from
one level to the next.

At each step ideally we will know the conditional distributions

The aim is to build a complete model of the data

Principled way to include systematic errors, selection effects
(everything, really)
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Case study: straight line fitting

Let us illustrate with an example. We
have a set of data pairs (x̂ , ŷ) of noisy
measured values of x and y

Model: y = mx

Parameter: m.

Complication: x̂ and ŷ are both noisy.

How do we infer m?

First, apply Rule 1: write down what
you want to know.

It is
p(m|x̂ , ŷ)

We will take x̂ = 10, ŷ = 15, with
independent unit gaussian errors.

y

x

y=mx
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Straight line fitting
How would you forward model it?

BRIEF ARTICLE

THE AUTHOR

ŷ x̂

y

x

m

σ2y σ2x

LATENT VARIABLES

N

1

Break problem into steps.
There are extra unknowns in this problem (so-called latent
variables), namely the unobserved true values of x̂ and ŷ .
The model connects the true variables. i.e.,

y = mx .

The latent variables x and y are nuisance parameters - we are
(probably) not interested in them, so we marginalise over them.
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Hierarchical Bayes vs Ordinary Bayes

Hierarchical Bayes:

p(m|x̂ , ŷ) ∝ p(x̂ , ŷ |m) p(m)

We do not know the likelihood p(x̂ , ŷ |m) directly, and we introduce
the latent variables and marginalise over them:

p(m|x̂ , ŷ) ∝
∫

p(x̂ , ŷ , x , y |m) p(m) dx dy

Let us now analyse the problem. Manipulating the last equation

p(m|x̂ , ŷ) ∝
∫

p(x̂ , ŷ |x , y ,��m) p(x , y |m) p(m) dx dy
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Analysis

p(m|x̂ , ŷ) ∝
∫

p(x̂ , ŷ |x , y) p(y |x ,m) p(x |��m) p(m) dx dy

This splits the problem into a noise term, a theory term, and priors.
We can write all of these down.

Here, the theory is deterministic:

p(y |x ,m) = δ(y −mx)

Integration over y is trivial with the Dirac delta function:

p(m|x̂ , ŷ) ∝
∫

p(x̂ , ŷ |x ,mx) p(x) p(m) dx .

Choose some priors, and integrate, or sample from the joint distribution of
m and x :

p(m, x |x̂ , ŷ) ∝ p(x̂ , ŷ |x ,mx) p(x) p(m)
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Sampling
The posterior is rarely a simple function, and evaluating it on a parameter
grid can be prohibitively expensive with > 2 or 3 parameters.

MCMC

Standard technique is MCMC (Markov Chain Monte Carlo), where random
steps are taken in parameter space, according to a proposal distribution,
and accepted or rejected according to the Metropolis-Hastings algorithm.
This gives a chain of samples of the posterior (or the likelihood), with an
expected number density proportional to the posterior.

MCMC example
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Sampling algorithms

There are several generic MCMC (Markov Chain Monte Carlo) algorithms,
where random steps are taken in parameter space, according to a proposal
distribution. We will concentrate on three common ones:

Metropolis-Hastings

Gibbs Sampling

Hamiltonian Monte Carlo (HMC)

Goal: generate samples of the target distribution (usually the posterior or
the likelihood), with an expected number density proportional to the
posterior. This will be satisfied asymptotically if the algorithm satisfies
detailed balance.
The target distribution need not be normalised, but it needs to be
everywhere positive, and normalisable (i.e. the integral is finite).
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Markov processes

Sequential process where new element depends only on the previous
element.
The general algorithm is as follows:

Choose a starting point θ0. e.g. randomly from a prior.

θs+1 generated from θs by generating a trial point randomly from a
proposal distribution, and which is either accepted or rejected
(depending on the algorithm)1

If accepted, trial becomes the next sample. If rejected, the previous
sample is repeated.

The chain is stopped at some point. There is no magic answer as to
when to stop, but the main idea is to reach convergence. e.g.
Gelman-Rubin test. Must do convergence tests!

1Some algorithms, such as Gibbs, may always accept, dependent on some factors.
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Metropolis-Hastings algorithm

For low-dimensional problems. Draw from a proposal distribution to
generate a new proposed sample θs+1

q(θs+1|θs) (1)

Often this is a function of |θs+1 − θs |, but it doesn’t have to be, and a
common choice is a gaussian centred on the previous sample in the chain.
The algorithm specifies that the point is accepted with probability

α = min

[
1,
ρ(θs+1)

ρ(θs)

q(θs+1|θs)

q(θs |θs+1)

]
. (2)

As a rule of thumb, an acceptance rate of ∼ 0.3 is usually efficient.
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Burn-in and marginalisation
Throw away exploratory phase: e.g. find first sample within some factor
(e.g. 10) of the highest value, and discard all the previous samples.

Figure: 2D posterior for LHC background parameters.

Marginalisation from samples
Trivial. Each sample has values for all of the parameters. If you want the
distribution of θ1, simply ignore the values of the other parameters.
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Correlated samples

Figure: Correlation coefficient of samples for uncorrelated samples (top) and
badly-correlated samples (bottom). From D. Mortlock.
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Gibbs sampling
Powerful if the conditional distributions are known. Algorithm:

θs+1
1 ∼ p(θ1|θs2, θs3, . . . , θsn)

θs+1
2 ∼ p(θ2|θs+1

1 , θs3, . . . , θ
s
n)

etc . . .

Repeat, randomizing (or reversing) the order.

Figure: From Mackay (2003). Slow if target is highly correlated.
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Hamiltonian Monte Carlo

 

Figure: Credit: Alex Rogozhnikov

HMC defines a potential U(θ) = − ln p(θ), where p(θ) is the target
distribution. Think of θ as a position vector. Define a kinetic energy

K (u) =
1

2
u · u (3)

where u is a momentum, drawn randomly, e.g. ui ∼ N (0, σ2).
The Hamiltonian (energy) is conserved:

H(θ,u) = U(θ) + K (u) (4)

Alan Heavens, Imperial College Introduction to Bayesian Modelling June 20, 2022 27 / 35



Hamiltonian Monte Carlo

Define new target distribution in the 2n-dimensional parameter space:

T (θ, u) = exp[−H(θ, u)]. (5)

HMC explores this phase space using Hamilton’s equations:

θ̇i =
∂H

∂ui
= ui

u̇i = −∂H
∂θi

=
∂ ln p

∂θi
(6)

Solve numerically, e.g. leapfrog (symmetric forward-back, to satisfy
detailed balance).
Integrate for a while2, a new proposed sample is generated, and accepted
or rejected3, then a new random momentum is generated.

2How long? e.g. until trajectory turns round: No U-turn (NUTS)
3H is not quite conserved, because of numerical integration.
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Hamiltonian Monte Carlo
Full HMC algorithm is (from Hajian 2006):

1: initialize θ(0)

2: for i = 1 to Nsamples

3: u ∼ N (0, 1) (Normal distribution)
4: (θ∗

(0),u
∗
(0)) = (θ(i−1),u)

5: for j = 1 to N
6: make a leapfrog move: (θ∗

(j−1),u
∗
(j−1)) →

(θ∗
(j),u

∗
(j))

7: end for
8: (θ∗,u∗) = (θ(N),u(N))
9: draw α ∼ Uniform(0,1)
10: if α < min{1, e−(H(θ∗,u∗)−H(θ,u))}
11: θ(i) = θ∗

12: else
13: θ(i) = θ(i−1)

14: end for
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Gibbs sampling of errors in x and y problem.

Find the conditional distributions, and sample from m and x in a
random order, to sample p(m, x |x̂ , ŷ), and marginalise over x . Here,
x̂ = 10, ŷ = 15, and both have gaussian errors with unit variance.

Figure: Gibbs sampling of
the latent variable x , and
the slope m.

Figure: Gibbs sampling of
the slope m.
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Question: is this the most probable slope?

0 5 10 15
0

5

10

15

Figure: Noisy data

0 5 10 15
0

5

10

15

Figure: Yes! - there is a
prior on x . . .

Alan Heavens, Imperial College Introduction to Bayesian Modelling June 20, 2022 31 / 35



Sampling in very high dimensions

Metropolis-Hastings: Good for small (maybe up to ∼ 10)
dimensions. Fails in very high dimensions, since it is very hard to
devise a proposal distribution that does not always reject

Gibbs sampling: can work if conditional distributions are known

Hamiltonian Monte Carlo: can work well in very high dimensions, if
model is differentiable (e.g. using Stan, jax, tensorflow)
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Conclusions

Standard way for non-trivial parameter inference is to sample the
posterior, using MCMC

More complex problems may be tackled with BHMs, usually with
HMC, where autodifferentiation (jax, tensorflow probability) is
amazing (see Junpeng Lao’s lecture)

If we can’t construct an explicit likelihood, likelihood-free (or
simulation-based) inference can be used (LFI/SBI).

Data choice: Massive data compression may well be necessary, e.g.
using the MOPED algorithm, score compression, or IMNN (See Ben
Wandelt’s lecture)

As forward modelling techniques, BHMs and LFI can include
systematics and fully propagate errors.

Neural Networks (see François Lanusse’s lecture) can also be useful in
approximating the distribution of samples, e.g. with Normalising
Flows.
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Some books for further reading

D. Silvia & J. Skilling: Data Analysis: a Bayesian Tutorial (CUP) P.
Saha: Principles of Data Analysis. (Capella Archive)
http://www.physik.uzh.ch/∼psaha/pda/pda-a4.pdf
T. Loredo: Bayesian Inference in the Physical s
http://www.astro.cornell.edu/staff/loredo/bayes/

M. Hobson et al: Bayesian Methods in Cosmology (CUP)

D. Mackay: Information Theory, Inference and Learning Algorithms.
(CUP)
http://www.inference.phy.cam.ac.uk/itprnn/book.pdf

A. Gelman et al: Bayesian Data Analysis (CRC Press)
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More details: straight line fit with errors in x and y

Data: x̂ = 10, ŷ = 15.

Choose some priors, and sample from the joint distribution of m and
x :

p(m, x |x̂ , ŷ) ∝ p(x̂ , ŷ |x ,mx) p(x) p(m)

For uniform priors, the joint distribution is (for HMC):

p(x̂ , ŷ |x ,mx) p(x) p(m) ∝ exp

[
−(x̂ − x)2

2

]
exp

[
−(ŷ −mx)2

2

]

For Gibbs, the conditional distributions are, for m given x :

p(m|x , x̂ , ŷ) ∼ N
(
ŷ

x
,

1

x2

)

The conditional distribution of x given m is another normal
distribution (in x now):

p(x |m, x̂ , ŷ) ∼ N
(
x̂ + mŷ

1 + m2
,

1

1 + m2

)

Alan Heavens, Imperial College Introduction to Bayesian Modelling June 20, 2022 35 / 35


	Inverse Problems
	Parameter Inference
	The posterior p(parameters | data)
	How to set up a problem
	Priors

	Simple Bayesian Analysis
	Bayesian Hierarchical Models
	Case study: straight line fitting with errors in x and y

	Sampling
	Markov Chain Monte Carlo (MCMC)
	Metropolis-Hastings algorithm
	Gibbs sampling
	Hamiltonian Monte Carlo


