Bayesian Deep Learning for Cosmology and Time-Domain Astrophysics *June 22, 2022*

Simulation-based inference for gravitational waves

Stephen R. Green

Max Planck Institute for Gravitational Physics

with

Maximilian Dax

Jonathan Gair Jakob Macke Alessandra Buonanno Bernhard Schölkopf

Outline

- * Gravitational-waves: Why use Bayesian deep learning?
- Neural posterior estimation
- Using symmetries to simplify data
- * Validating / improving results with importance sampling

Gravitational-wave astronomy

LIGO Hanford LIGO Livingston

Operational Planned

Gravitational Wave Observatories

and a state of

LIGO India

Masses in the Stellar Graveyard

LIGO-Virgo-KAGRA | Aaron Geller | Northwestern

Binary neutron star mergers

* GW170817: Sky localization enables multimessenger astrophysics

ApJ Lett 848:L12 (2017)

Applications of deep learning in gravitational waves

Signal detection Waveform modeling 10⁰ 0.2 $\theta = \pi/3$ 0.1 10^{-1} $W/^+ \eta$ True alarm probability -0.1SEOBNRv4PHM -0.2CNN -4000-500010⁻³ Matched filtering — SNR2 -- SNR4 — · - SNR6 10^{-4} 10^{-4} 10^{-1} 10^{-3} 10-2 10^{0} False alarm probability

Glitch classification

Binary black hole signal models

15 for binary black holes

- masses (m_1, m_2)
- spins $(a_1, a_2, \theta_1, \theta_2, \phi_{12}, \phi_{JL})$
- distance d_L
- sky position (α, δ)
- coalescence time t_c
- reference phase ϕ_c
- polarization ψ

 $R_{ab}(g) - \frac{1}{2}R(g)g_{ab} = 0$ waveforms *h*

$\approx 10^4 - 10^5$ dimensions

- *f* ∈ [20, 1024] Hz
- T = 8 s
- 2 or 3 detectors

Data are noisy

data

_

signal

 $h(\theta)$

noise

+

Model

Likelihood assumes stationary Gaussian detector noise

$$p(d \mid \theta) = \mathcal{N}(h_{I}(\theta), S_{n,I})$$

waveform model

power spectral density

Prior

e.g., uniform in masses, spins uniformly sky position and orientation

Why deep learning for inference?

Speed / amortization

- Model evaluation is expensive, with classical inference taking hours to weeks.
- Rapid electromagnetic alerts
- Large number of events

* Likelihood-free

- * The stationary-Gaussian likelihood is an approximation.
- Noise transients (glitches) could be included.

* Train with real noise.

This talk

Outline

- * Gravitational-waves: Why use Bayesian deep learning?
- Neural posterior estimation
- Using symmetries to simplify data
- * Validating / improving results with importance sampling

Neural posterior estimation

Train a **conditional normalizing flow** to approximate the Bayesian posterior. *

- **Properties of** f_d *
 - 1. invertible
 - 2. simple Jacobian determinant

 $q(\theta \mid d)$ has fast sampling and density evaluation

Simulation-based inference

Loss function

 $L = \mathbb{E}_{p(d)} D_{\mathrm{KL}}(p \| q)$ $= \int dd \, p(d) \int d\theta$ $\simeq \int d\theta \, p(\theta) \int d\theta$ \approx $\begin{array}{c} \theta^{(i)} \sim p(\theta) \\ d^{(i)} \sim p(d|\theta^{(i)}) \end{array} \end{array}$

)

$$heta p(heta|d) \log rac{p(heta|d)}{q(heta|d)}$$

 $d p(d| heta) [-\log q(heta|d)]$
 $\log q(heta^{(i)}|d^{(i)})$

Generate training data by (1) sampling from the prior, (2) simulating a signal + noise.

Neural Posterior Estimation Network Dax, SRG+ (PRL 2021)

- * Train for a week...
- * Results are not bad... but clear deviations from MCMC.

Results

Outline

- * Gravitational-waves: Why use Bayesian deep learning?
- Neural posterior estimation
- Using symmetries to simplify data
- * Validating / improving results with importance sampling

Time shifted signals

- * Frequency-domain data
 - Sources Corresponds to multiplication by $e^{-2\pi i f \delta t}$
- Variation in sky position + overall coalescence time
 - Time shifts in each detector $\delta t \approx 0.1$ s

Hard to learn!

Equivariance in deep learning

Want to enforce a covariant posterior

 $p(t_c \mid d) = p$

- **Equivariant architectures** commonly used to incorporate symmetries: **
 - E.g., convolutional network (translational symmetry) — cannot propagate equivariance through normalizing flow
 - E.g., equivariant flows — not suitable for joint transformation of data and parameters
- * Our approach: Iterative transformation to "standardized" data

$$p(t_c + \delta t | d * e^{-2\pi i f \delta t})$$

* Sample a joint (*x*, *y*) distribution by alternately sampling $x|_{y}$ and $y|_{x}$

$$p(x,y) \longrightarrow \begin{cases} p(x|y) \\ p(y|x) \end{cases}$$

(1)
$$x \sim p(x|y)$$

(2) $y \sim p(y|x)$

Gibbs sampling

Gibbs sampling + normalizing flows Dax, SRG+ (ICLR, 2022)

- (e.g., time of coalescence) $x \to \theta$ * Take $y \to \hat{\theta}$ "blurred" parameters
- Joint distribution *

Transform based on $\hat{\theta}$

 $p(\theta, \hat{\theta}|d) \longrightarrow \begin{cases} p(\theta|d, \hat{\theta}) & \text{normalizing flow} \\ p(\hat{\theta}|\theta) & \text{fixed kernel} \end{cases}$

Group Equivariant NPE

$$p(\theta, \hat{\theta}|d) \longrightarrow \begin{cases} p(\theta, \theta) \\ p(\theta, \theta) \end{cases}$$

Gibbs sampling enables us to apply a $\hat{\theta}$ -dependent * transformation to *d*,

$$p(\theta \,|\, d, \hat{\theta}) \equiv q(\theta \,|\, T_{\hat{\theta}} d, \hat{\theta})$$

* To enforce a symmetry, e.g., time translation,

Dax, SRG+ (ICLR, 2022)

 $heta|d, \hat{ heta})$ normalizing flow $\hat{\theta}|\theta)$ fixed kernel

Generic method to incorporate symmetries:

- Any symmetry connecting data and parameters
- Any architecture •
- Minimal changes needed

Group-Equivariant NPE

Dax, SRG+ (ICLR, 2022)

Real-time convergence with GNPE

- Application to sky position + time of coalescence:
 - * Aligns waveforms in each detector.
 - Trade-off between wide kernel (fast convergence) and narrow (data simplification).
 - $1 \text{ ms kernel} \implies 30 \text{ iterations}$

GW170814

Example

Dax, SRG+ (ICLR, 2022)

Results: P-P plot

- * Perform inference on 1000 simulated data sets
 - * "within-distribution" test

Dax, SRG+ (PRL 2021)

p

GW150914

- * Real data "out of distribution"
 - Noise not perfectly stationary Gaussian
 - Signal model not perfectly accurate
- * Inference times:
 - NPE: < minute
 MCMC: ~ day

Amortized inference

Dax, SRG+ (PRL 2021)

Quantitative comparisons

1D marginals: < 2 nat \implies "indistinguishable" *

	mi	mz	Ø	dz	a ₁	az	01	02	Ø12	ØJL	OJN.	Ķ	Q	5	
GW150914 -	0.8	1.1	0.2	0.8	0.2	0.3	0.5	0.5	0.1	0.3	0.8	0.2	0.7	1.4	- 20
GW151012 -	2.7	1.6	0.1	0.9	0.4	0.2	0.5	0.5	0.1	0.1	0.6	0.1	1.4	0.5	JS d
GW170104 -	6.4	2.6	0.2	0.4	0.7	0.1	0.7	0.4	0.1	0.1	0.3	0.3	0.8	0.6	- 15 iverg
GW170729 -	0.9	1.5	0.4	6.3	0.2	0.2	1.0	0.8	0.2	0.3	3.4	0.3	1.2	1.2	L 10
GW170809 -	0.5	0.8	0.1	0.5	0.2	0.1	0.4	0.4	0.1	0.5	1.4	0.2	2.2	5.5	
GW170814 -	1.2	1.3	0.2	1.5	0.2	0.2	0.4	0.3	0.2	1.4	1.4	1.2	2.5	2.0	
GW170818 -	1.6	1.3	0.2	1.1	1.0	0.2	1.9	0.5	0.1	2.4	1.8	0.4	3.8	2.4	nat]
GW170823 -	0.5	0.6	0.1	0.9	0.2	0.2	0.4	0.2	0.2	0.2	0.5	0.2	0.4	0.4	

Dax, SRG+ (PRL 2021)

- Compare posteriors in 15D *
- Train a classifier to distinguish * posteriors

c2st score

Dax, SRG+ (ICLR, 2022)

Questions I get asked at this point

- * How can I trust your black box? Nobody understands why deep learning works.
- * What if the real data don't match the training data? How do I know if the results are any good?
- If I have to run a classical sampler to check each result, * what is the point of this?

Outline

- * Gravitational-waves: Why use Bayesian deep learning?
- Neural posterior estimation
- Using symmetries to simplify data
- * Validating / improving results with importance sampling

Importance sampling

Define importance weights as post-processing step. *

Key ingredients: *

- Access to density, not just samples V **
- Excellent proposal in 15D 🗸
- GW likelihood available (with IS, no longer likelihood-free) *

target (prior x likelihood) $w_i \propto \frac{p(\theta_i)_i}{w_i}$ proposal (NPE)

PRELIMINARY

Importance sampling

Advantages

- * **Correct any inaccuracies** in NPE samples.
- Far fewer likelihood evaluations than standard samplers (and parallelizable).
- * Effective sample size $(\sum_{i} w_{i})^{2} / \sum_{i} w_{i}^{2}$ as **validation of results,** independent of other samplers.
- * Provides estimate of the **evidence**.

Example

ESS = 28k (14%)

Conclusions

- Neural posterior estimation produces accurate inference results for binary black holes in seconds. ** Enables rapid alerts and a means to address large numbers of events.
- Taking advantage of known symmetries / equivariances can make the problem simpler.
- When a likelihood is available, **importance sampling** can be used to validate and improve upon SBI ** results.

Outlook

- SBI can go beyond likelihood-based methods by treating more realistic noise. *
- Many other applications, including populations and cosmology; LISA inference.

Thank You!

