Interpreting non-Gaussian posterior distributions of cosmological parameters with normalizing flows

Cyrille Doux

LPSC GRENOBLE / IN2P3 / CNRS

BAYESIAN DEEP-LEARNING WORKSHOP #2

JUNE 23RD 2022

Willustration by Claire Scully <u>aeon.co</u>

GRENOBLE | MODANI

CNIS

Collaborators

Marco Raveri

Tara Dacuhna

Minsu Park

Bhuvnesh Jain

arXiv:2105.03324 10.1103/PhysRevD.104.043504 Non-Gaussian estimates of tensions in cosmological parameters Authors: <u>Marco Raveri</u>, <u>Cyrille Doux</u>

arXiv:2112.05737 10.1103/PhysRevD.105.063529 What does a cosmological experiment really measure? Covariant posterior decomposition with normalizing flows Authors: Tara Dacunha, Marco Raveri, Minsu Park, Cyrille Doux, Bhuvnesh Jain

1. Non-Gaussian tension metrics for cosmology

ACDM and cosmic shear

- Tensions in current Λ CDM paradigm on H_0 , σ_8
 - 1. Early (CMB) vs late Universe (BAO, SNIa, LSS+WL)
 - 2. Geometry vs growth, aka background vs structure
- Weak lensing by large-scale structure

RECOMBINATION

380000 years

BIGBANG

- Ongoing precursor surveys : Dark Energy Survey, HSC, KiDS
- Next-gen surveys : Rubin/LSST, Euclid, Roman

FIRSTSTARS

Agreement or disagreement?

Do these agree?

Agreement or disagreement?

Nope, it's Planck and local Hubble constant measurements,

which disagree at the 5σ level !

What's going on?

In practice : DES vs Planck

- Why is it difficult?
 - Data complexity: soon O(10⁴) data points
 - Model complexity:
 O(50) parameters
 - Marginals vs full distribution
 - Projection effects
 (unconstrained params)
 - Gaussian approximation
 can be inadequate

arXiv:2105.03324

Distribution of parameter differences for independent experiments 1 and 2

$$\mathcal{P}(\Delta\theta) = \int_{V_{\pi}} \mathcal{P}_{1}(\theta) \mathcal{P}_{2}(\theta - \Delta\theta) \,\mathrm{d}\theta$$

arXiv:2105.03324

Distribution of parameter differences for independent experiments 1 and 2

$$\mathcal{P}(\Delta\theta) = \int_{V_{\pi}} \mathcal{P}_1(\theta) \mathcal{P}_2(\theta - \Delta\theta) \, \mathrm{d}\theta \quad \text{We have samples!}$$

arXiv:2105.03324

Distribution of parameter differences for independent experiments 1 and 2

$$\mathcal{P}(\Delta\theta) = \int_{V_{\pi}} \mathcal{P}_1(\theta) \mathcal{P}_2(\theta - \Delta\theta) \, \mathrm{d}\theta \, \mathrm{d}\theta \, \mathrm{d}\theta \, \mathrm{d}\theta$$
 We have samples!

Define a tension metric

$$\Delta = \int_{\mathcal{P}(\Delta\theta) > \mathcal{P}(\mathbf{0})} \mathcal{P}(\Delta\theta) \, \mathrm{d}\Delta\theta$$

arXiv:2105.03324

Distribution of parameter differences for independent experiments 1 and 2

$$\mathcal{P}(\Delta\theta) = \int_{V_{\pi}} \mathcal{P}_1(\theta) \mathcal{P}_2(\theta - \Delta\theta) d\theta$$
 We have samples!

Define a tension metric

$$\Delta = \int_{\mathcal{P}(\Delta\theta) > \mathcal{P}(\mathbf{0})} \mathcal{P}(\Delta\theta) \, \mathrm{d}\Delta\theta$$

Wait a minute! These are two high-dimensional integrals!

Distribution of parameter differences for independent experiments 1 and 2

$$\mathcal{P}(\Delta\theta) = \int_{V_{\pi}} \mathcal{P}_1(\theta) \mathcal{P}_2(\theta - \Delta\theta) d\theta$$
 We have samples!

Define a tension metric

$$\Delta = \int_{\mathcal{P}(\Delta\theta) > \mathcal{P}(\mathbf{0})} \mathcal{P}(\Delta\theta) \, \mathrm{d}\Delta\theta$$

Wait a minute! These are two high-dimensional integrals!

arXiv:2105.03324

Distribution of parameter differences for independent experiments 1 and 2

$$\mathcal{P}(\Delta\theta) = \int_{V_{\pi}} \mathcal{P}_1(\theta) \mathcal{P}_2(\theta - \Delta\theta) \, d\theta \quad \forall We have samples!$$

Define a tension metric

$$\Delta = \int_{\mathcal{P}(\Delta\theta) > \mathcal{P}(\mathbf{0})} \mathcal{P}(\Delta\theta) \, \mathrm{d}\Delta\theta$$

- The solution? Learn the distribution, i.e. find a way to
 - 1) sample from and 2) compute the density of the distribution

arXiv:2105.03324

MAF normalizing flows

- Normalizing flow
 - An *invertible*, *differentiable* mapping $\Delta \theta \rightarrow z = T_{\varphi}(\Delta \theta)$ where we know the distribution of z

$$\mathcal{P}(\Delta\theta) \approx q(\Delta\theta) = \varphi_D(z) |\det\{\nabla_{\Delta\theta} T_{\varphi}(z)\}|$$

- Masked Autoregressive Flows for density estimation
 - Introduced by Papamakarios+17 [arXiv:1705.07057]
 - Autoregressive (*invertible*) transformations $y \mapsto z$ parametrised by *neural networks* μ and σ

$$y_1 = \mu_1 + \sigma_1 z_1$$

$$y_i = \mu(y_{1...i-1}) + \sigma(y_{1...i-1}) z_i$$

Stack a bunch of such transforms with random permutations of components

Normalizing flow training

Benchmark tests

arXiv:2105.03324

┫╼┝╴

- We ran a whole bunch of tests with analytical distributions
 - With complex non-Gaussian distributions in 2D where we can integrate numerically

Flows outperforms standard Monte Carlo estimations based on Kernel Density Estimates

Application to DES and Planck

Application to DES and Planck

arXiv:2105.03324

Application to DES Y1 vs Planck

• $n_{\sigma} = 3.0 \pm 0.1 \longrightarrow \text{tension}!$

Application to DES Y1 lensing vs clustering

• $n_{\sigma} = 0.5 \pm 0.1 \longrightarrow \text{internal agreement}$

2. What is an experiment really measuring?

What is an experiment measuring?

arXiv:2112.05737

- Comparing results from different experiments is tricky because they
 - 1. have different parameter *degeneracies*
 - 2. use different parametrisation, eg $\Omega_m vs \omega_m \equiv \Omega_m h^2$
 - 3. use different prior(s)
- Can we automatically *learn* what experiments are measuring?

arXiv:2112.05737

Local Fisher information matrix *

$$\mathcal{F}_{\mu
u} = \left(rac{\partial\phi^b}{\partial\theta^
u}
ight)^T ilde{\mathcal{F}}_{ab} rac{\partial\phi^a}{\partial\theta^\mu}$$

- Defines a metric
- NF+TFP to compute Jacobian

- * (Fisher is *identity* everywhere in abstract space, ie both spaces are flat!)
- * (Technically, we're forgetting about the data dependence here, but it matches in the Gaussian case, and it's way more practical)

Cyrille Doux | Interpreting non-Gaussian posteriors with normalising flows | BDL #2 | June 23rd 2022

arXiv:2112.05737

Local Fisher information matrix *

$$\mathcal{F}_{\mu\nu} = \left(\frac{\partial\phi^b}{\partial\theta^\nu}\right)^T \tilde{\mathcal{F}}_{ab} \frac{\partial\phi^a}{\partial\theta^\mu}$$

- Defines a metric
- NF+TFP to compute Jacobian
- Constrained directions in parameter space given by
 - ► PCA ?

arXiv:2112.05737

Local Fisher information matrix *

$$\mathcal{F}_{\mu\nu} = \left(\frac{\partial\phi^b}{\partial\theta^\nu}\right)^T \tilde{\mathcal{F}}_{ab} \frac{\partial\phi^a}{\partial\theta^\mu}$$

- Defines a metric
- NF+TFP to compute Jacobian
- Constrained directions in parameter space given by
 - PCA ? No, depends on scale

arXiv:2112.05737

Local Fisher information matrix *

$$\mathcal{F}_{\mu\nu} = \left(\frac{\partial\phi^b}{\partial\theta^\nu}\right)^T \tilde{\mathcal{F}}_{ab} \frac{\partial\phi^a}{\partial\theta^\mu}$$

- Defines a metric
- NF+TFP to compute Jacobian
- Constrained directions in parameter space given by
 - PCA ? No, depends on scale
 - CPCA: *joint diagonalisation* of prior and posterior Fisher metrics

$$\mathcal{F}^p_{\mu\nu}u^\nu = \alpha \mathcal{F}^\Pi_{\mu\nu}u^\nu$$

Toy model 1

arXiv:2112.05737

Toy model 2

arXiv:2112.05737

Applications

- CPCA recovers power law degeneracies automatically!
- Hubble from LSS alone ?
 - 1. DES clustering + lensing constrains $\sigma_8 \Omega_m^{+0.9}$
 - 2. CMB lensing constrains $\sigma_8 \Omega_m^{-0.8} H_0^{-1}$
 - 3. Add RSD from BOSS (to get σ_8), we get $H_0 = 73.8 \pm 7.5$ km/s/Mpc

Take-away messages

- Normalizing flows can be used to tackle otherwise difficult statistical inference questions (arXiv:2105.03324, arXiv:2112.05737)
 - Tensions between experiments
 - Opens up information geometry questions
- It's all in <u>tensiometer.readthedocs.io</u>
- More to come !
 - Symbolic regression of local/non-linear CPCA

THANKS!

Thanks!

Dark Energy Survey

- Blanco 4-meter telescope at Cerro Tololo (CTIO) in Chile
- Dark Energy Camera (DECam)
 - 3.0 deg² field-of-view, 70 CCD chips, 570 Mpix, griz(Y) filters
 - ▶ Seeing ~0.9' in *r*-band, magnitude *i*_{AB}<23.0, *r*<23.5
- Survey(s)
 - 5000 deg² footprint + deep fields, observed 2013-2019
 - Overlaps with SPT, BOSS and COSMOS
 - DR2 (6 years) of 543M galaxies + 145M stars to i~23.8

 $\xi_{\pm}(\theta) = \text{COSMIC SHEAR}$ $\gamma_{t}(\theta) = \text{GALAXY-GALAXY LENSING}$ $w(\theta) = \text{CLUSTERING}$

The solution? Learn that distribution!

$$\Delta = \int_{\mathcal{P}(\Delta\theta) > \mathcal{P}(\mathbf{0})} \mathcal{P}(\Delta\theta) \, \mathrm{d}\Delta\theta$$

- What do we need to compute this?
 - Being able to *sample* from the distribution
 - Compute its *density* for every sample (quickly if possible)
- Sampling the distribution
 - A. Uncorrelated experiments

$$\mathcal{P}(\Delta\theta) = \int_{V_{\pi}} \mathcal{P}_1(\theta) \mathcal{P}_2(\theta - \Delta\theta) \, \mathrm{d}\theta$$

- 1. Run two chains
- 2. Take differences
- B. Correlated case (*eg* DES/LSST lensing and clustering)
 - 1. Duplicate all common parameters
 - 2. Compute d_1 with θ_1 , d_2 with θ_2
 - 3. Run one bigger chain for $\mathcal{L}(\theta_1, \theta_2)$

Local principal components

- Principal component analysis
 - Eigenvectors of the covariance, or its inverse, ie the Fisher matrix
 - Locally, this reads

$$\mathcal{F}_{\mu\nu}u^{\nu} = \alpha \eta_{\mu\nu}u^{\nu}$$

with

$$u^{\mu}\eta_{\mu\nu}u^{\nu}=1$$

- Connect the dot with... parallel transport ! (note they're not geodesics!)
- ... but $\eta_{\mu\nu}$ is not a tensor...
- PCA depends on parametrisation and units!