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Fast Parameter Estimation
for MBHBs with Normalising Flows
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LASER INTERFEROMETER SPACE ANTENNA

* Space based gravitational wave detector

* Based on the principle of laser interferometry
e Following the Earth on the Heliocentric orbit
® Peak sensitivity at 20 mHz
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LASER INTERFEROMETER SPACE ANTENNA

* Space based gravitational wave detector

* Based on the principle of laser interferometry
e Following the Earth on the Heliocentric orbit
® Peak sensitivity at 20 mHz

e Planned launch in 2034

2022 2024 2034
Mission ‘ Mission l aunch
Formulation adoption

Review



MASSIVE BLACK HOLE BINARIES
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MASSIVE BLACK HOLE BINARIES
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MASSIVE BLACK HOLE BINARIES

* Electromagnetic counterparts
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* Electromagnetic counterparts
e During merger
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MASSIVE BLACK HOLE BINARIES

* Electromagnetic counterparts

® During merger

* or even during inspiral
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MASSIVE BLACK HOLE BINARIES

* Electromagnetic counterparts

e During merger

* or even during inspiral

* EM counterparts can occur £
due to presence of Z
- matter %-
- magnetic fields J | | | ' '
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MASSIVE BLACK HOLE BINARIES
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image: Marsat S. et al 2020 (arXiv:2003.00357)



INFERENCE

p(x|0)p(6)

p(f|r) = (@)



INFERENCE

p(xle)p(e) e data model:
p(2) r = h(0) +n

/

« wavetorm template»

p(f|r) =




INFERENCE

p(xl@)p(@) e data model:
p(2) r = h(0) +n

i

« wavetorm template»

p(f|r) =

physical parameters



INFERENCE

p(xle)p(e) e data model:
p(2) r = h(0) +n

i

« wavetorm template»

p(f|r) =

measurement

\

ohysical parameters ~ NOISE



INFERENCE

p(x|9)p(9) problem:
p(9|$) — - marginal likelihood
has no exact solution

p(z) = / p(2|0)p(6)d0
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requires likelihood evaluation

we can do it, but it is slow
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solutions:
® approximate inference:
p(9|$) — p(az|¢9)p(6’) - MCMC/Nested sampling
requires likelihood evaluation

we can do it, but it is slow

- Variational inference
approximate the posterior distribution
with a tractable distribution
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INFERENCE

solutions:

p($|9)p(9) * simplification to the model:

- Gaussian mixture models

too simple

- Invertible models

p(f|r) =

will talk about them today
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NORMALISING FLOWS

1. We have simple random generator
2. We want to sample from a more complex distribution
3. We can estimate a bijective transtormation which will allow us to do that
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CHANGE OF VARIABLE EQUATION

p(y) =a(f(y)) det(Js(y))

° f has to be a bijection

e [ and f_l have to be differentiable

e Jacobian determinant has to be tractably invertable



JACOBIAN

 The calculation of determinant Jacobian will take O(NA3)
* We need to speed it up
* For example, make Jacobian triangular matrix



JACOBIAN




JACOBIAN

Determinant of triangular matrix is a product of the elements on the diagonal



AFFINE TRANSFORM

| ocation-scale transformation

T(2;) = ;2 + B

log-Jacobian becomes

log | det J,-1(2)| = Z log |y



COUPLING TRANSFORM

in a complex way.

@ @ @ @ The other part is left unchanged.

In each simple bijection,
part of the input vector

is updated using a function
which is simple to invert,

but which depends on the
remainder of the input vector




REAL NVP

Coupling transtormation combined with affine

transformation and its invention
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What is t and s?

https://arxiv.org/abs/1605.08803



FUNCTION APPROXIMATION

can be parameterised by any NN:
- Fully connected
Residual

qb(b-l—Zwixi) =5 CNN
=1

o

output

non-linearity

inputs weights . bias



NEURAL SPLINE FLOWS

e Coupling transform  Monotonic rational-quadratic

spline transtorm

~B 0 B
X

image: Duncan C. et al, Neural Spline Flows

— RQ Spline

WELE
Knots
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CONDITIONING Condition map

. on simulated data
* Do not have access to samples from posterior

* Have access to samples from prior +
e Can generated simulated data I = h(@) + 1N

p(0)
I

Therefore have access to the joint sample p(at, 9) — P($|9)P(9)



CONDITIONING Condition inverted map

on real data
* Do not have access to samples from posterior

* Have access to samples from prior +
e Can generated simulated data I = h(@) + 1N

e F(v) (0l
&= e




COMPOSING FLOW




OPTIMISATION

* The flow is trained to maximise the total log likelihood of the data
with respect to the parameters of the transform.

log p(y|A) = zlog (i |A)])



WAVEFORM EMBEDDING

* Low frequency sensitivity -> long wavetforms
e Construct reduced orthogonal basis
e Use coefticients of the wavetorm projection on a new basis



WAVEFORM EMBEDDING

Decompose a matrix constructed of the set of waveforms

H=VXU?!



WAVEFORM EMBEDDING

Decompose a matrix constructed of the set of waveforms

H=VXU?!

Project sample simulated data on this basis
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CONCLUSIONS

e Alternative sampling methoa

e Can be used for low latency pipeline

e Can be used to approximate complex distributions
e Can use embedded data representations



