Fast Parameter Estimation for MBHBs with Normalising Flows

Natalia Korsakova
Laboratoire
AstroParticule \& Cosmologie

LASER INTERFEROMETER SPACE ANTENNA

- Space based gravitational wave detector

LASER INTERFEROMETER SPACE ANTENNA

- Space based gravitational wave detector
- Based on the principle of laser interferometry

LASER INTERFEROMETER SPACE ANTENNA

- Space based gravitational wave detector
- Based on the principle of laser interferometry
- Following the Earth on the Heliocentric orbit

LASER INTERFEROMETER SPACE ANTENNA

- Space based gravitational wave detector
- Based on the principle of laser interferometry
- Following the Earth on the Heliocentric orbit
- Peak sensitivity at 20 mHz

CMB polarisation

Pulsar timing

Ground based

LASER INTERFEROMETER SPACE ANTENNA

- Space based gravitational wave detector
- Based on the principle of laser interferometry
- Following the Earth on the Heliocentric orbit
- Peak sensitivity at 20 mHz
- Planned launch in 2034

MASSIVE BLACK HOLE BINARIES

- Mergers of the two black holes of the mass $\sim 10^{\wedge} 4-10^{\wedge 7}$ Msun

MASSIVE BLACK HOLE BINARIES

- Mergers of the two black holes of the mass $\sim 10^{\wedge} 4-10^{\wedge} 7$ Msun

MASSIVE BLACK HOLE BINARIES

- Electromagnetic counterparts

MASSIVE BLACK HOLE BINARIES

- Electromagnetic counterparts
- During merger

MASSIVE BLACK HOLE BINARIES

- Electromagnetic counterparts
- During merger
- or even during inspiral

MASSIVE BLACK HOLE BINARIES

- Electromagnetic counterparts
- During merger
- or even during inspiral
- EM counterparts can occur due to presence of
- matter
- magnetic fields

MASSIVE BLACK HOLE BINARIES

image: Marsat S. et al 2020 (arXiv:2003.00357)

INFERENCE

$$
p(\theta \mid x)=\frac{p(x \mid \theta) p(\theta)}{p(x)}
$$

INFERENCE

$$
p(\theta \mid x)=\frac{p(x \mid \theta) p(\theta)}{p(x)}
$$

- data model:

$$
x=h(\theta)+n
$$

« waveform template»

INFERENCE

$$
p(\theta \mid x)=\frac{p(x \mid \theta) p(\theta)}{p(x)}
$$

- data model:

$$
x=h(\theta)+n
$$

physical parameters

INFERENCE

$$
p(\theta \mid x)=\frac{p(x \mid \theta) p(\theta)}{p(x)}
$$

- data model:
physical parameters

INFERENCE

$$
p(\theta \mid x)=\frac{p(x \mid \theta) p(\theta)}{p(x)}
$$

problem:

marginal likelihood has no exact solution

$$
p(x)=\int p(x \mid \theta) p(\theta) \mathrm{d} \theta
$$

INFERENCE

$$
p(\theta \mid x)=\frac{p(x \mid \theta) p(\theta)}{p(x)}
$$

solutions:

- approximate inference:
- MCMC/Nested sampling requires likelihood evaluation we can do it, but it is slow

INFERENCE

$$
p(\theta \mid x)=\frac{p(x \mid \theta) p(\theta)}{p(x))}
$$

solutions:

- approximate inference:
- MCMC/Nested sampling requires likelihood evaluation we can do it, but it is slow
- Variational inference approximate the posterior distribution with a tractable distribution

INFERENCE

$$
p(\theta \mid x)=\frac{p(x \mid \theta) p(\theta)}{p(x))}
$$

solutions:

- simplification to the model:
- Gaussian mixture models too simple

INFERENCE

$$
p(\theta \mid x)=\frac{p(x \mid \theta) p(\theta)}{p(x)}
$$

solutions:

- simplification to the model:
- Gaussian mixture models too simple
- Invertible models
will talk about them today

NORMALISING FLOWS

1. We have simple random generator

$$
q(z)=\mathcal{N}(0,1)
$$

NORMALISING FLOWS

1. We have simple random generator
2. We want to sample from a more complex distribution

NORMALISING FLOWS

1. We have simple random generator
2. We want to sample from a more complex distribution
3. We can estimate a bijective transformation which will allow us to do that

CHANGE OF VARIABLE EQUATION

$$
p(y)=q(f(y))\left|\operatorname{det}\left(J_{f}(y)\right)\right|
$$

CHANGE OF VARIABLE EQUATION

$$
p(y)=q(f(y))\left|\operatorname{det}\left(J_{f}(y)\right)\right|
$$

- f has to be a bijection

CHANGE OF VARIABLE EQUATION

$$
p(y)=q(f(y)) \operatorname{det}\left(J_{f}(y)\right)
$$

- f has to be a bijection
- f and f^{-1} have to be differentiable
- Jacobian determinant has to be tractably invertable

JACOBIAN

- The calculation of determinant Jacobian will take $\mathrm{O}(\mathrm{N} \wedge 3)$
- We need to speed it up
- For example, make Jacobian triangular matrix

JACOBIAN

JACOBIAN

Determinant of triangular matrix is a product of the elements on the diagonal

AFFINE TRANSFORM

Location-scale transformation

$$
\tau\left(z_{i}\right)=\alpha_{i} z_{i}+\beta_{i}
$$

log-Jacobian becomes

$$
\log \left|\operatorname{det} J_{g^{-1}}(z)\right|=\sum \log \left|\alpha_{i}\right|
$$

COUPLING TRANSFORM

In each simple bijection, part of the input vector is updated using a function which is simple to invert, but which depends on the remainder of the input vector in a complex way.
The other part is left unchanged.

REAL NVP

Coupling transformation combined with affine transformation and its invention

$$
\begin{gathered}
\begin{cases}y_{1: d} & =x_{1: d} \\
y_{d+1: D} & =x_{d+1: D} \odot \exp \left(s\left(x_{1: d}\right)\right)+t\left(x_{1: d}\right)\end{cases} \\
\Leftrightarrow \begin{cases}x_{1: d} & =y_{1: d} \\
x_{d+1: D} & =\left(y_{d+1: D}-t\left(y_{1: d}\right)\right) \odot \exp \left(-s\left(y_{1: d}\right)\right),\end{cases}
\end{gathered}
$$

What is t and s ?

FUNCTION APPROXIMATION

can be parameterised by any NN:

- Fully connected

NEURAL SPLINE FLOWS

- Coupling transform

- Monotonic rational-quadratic spline transform

image: Duncan C. et al, Neural Spline Flows

CONDITIONING

- Do not have access to samples from posterior

$$
q(z)=\mathcal{N}(0,1)
$$

$$
f^{-1}(z)
$$

CONDITIONING

- Do not have access to samples from posterior
- Have access to samples from prior +

CONDITIONING

- Do not have access to samples from posterior
- Have access to samples from prior +
- Can generated simulated data $x=h(\theta)+n$

$$
p(\theta)
$$

CONDITIONING

- Do not have access to samples from posterior
- Have access to samples from prior +
- Can generated simulated data $x=h(\theta)+n$

Condition map on simulated data

$$
q(z)=\mathcal{N}(0,1)
$$

$$
p(x, \theta)=p(x \mid \theta) p(\theta)
$$

CONDITIONING

Condition inverted map on real data

- Do not have access to samples from posterior
- Have access to samples from prior +
- Can generated simulated data $x=h(\theta)+n$

COMPOSING FLOW

OPTIMISATION

- The flow is trained to maximise the total log likelihood of the data with respect to the parameters of the transform.

$$
\left.\log p(y \mid \lambda)=\sum_{i=1}^{N} \log \left[p\left(y \prime_{i} \mid \lambda\right)\right]\right)
$$

WAVEFORM EMBEDDING

- Low frequency sensitivity -> long waveforms
- Construct reduced orthogonal basis
- Use coefficients of the waveform projection on a new basis

WAVEFORM EMBEDDING

Decompose a matrix constructed of the set of waveforms

$$
\mathrm{H}=\mathrm{V}^{\mathrm{L}} \mathrm{U}^{\mathrm{T}}
$$

WAVEFORM EMBEDDING

Decompose a matrix constructed of the set of waveforms

$$
\mathrm{H}=\mathrm{V} \boldsymbol{\Sigma} \mathrm{U}^{\mathrm{T}}
$$

Project sample simulated data on this basis

$$
v_{\alpha \mu}^{\prime}=\frac{1}{\sigma_{\mu}} \sum_{j=1}^{N} h_{\alpha j} u_{\mu j}
$$

RESULTS

CONCLUSIONS

- Alternative sampling method
- Can be used for low latency pipeline
- Can be used to approximate complex distributions
- Can use embedded data representations

