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LASER INTERFEROMETER SPACE ANTENNA
• Space based gravitational wave detector 
• Based on the principle of laser interferometry 
• Following the Earth on the Heliocentric orbit 
• Peak sensitivity at 20 mHz 
• Planned launch in 2034
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MASSIVE BLACK HOLE BINARIES
• Mergers of the two black holes 
  of the mass ~10^4 — 10^7 Msun 
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MASSIVE BLACK HOLE BINARIES
• Electromagnetic counterparts 
• During merger 
• or even during inspiral 

• EM counterparts can occur  
  due to presence of  
         - matter 
         - magnetic fields 



image: Marsat S. et al 2020 (arXiv:2003.00357)
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INFERENCE

 problem: 
  marginal likelihood 
  has no exact solution 
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  - Variational inference 
      approximate the posterior distribution  
      with a tractable distribution 
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 solutions: 

• simplification to the model: 
   - Gaussian mixture models 
      too simple 

  - Invertible models 
      will talk about them today 
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CHANGE OF VARIABLE EQUATION

•       has to be a bijection 

•        and             have to be differentiable  

•   Jacobian determinant has to be tractably invertable 



JACOBIAN
• The calculation of determinant Jacobian will take O(N^3) 
• We need to speed it up 
• For example, make Jacobian triangular matrix
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JACOBIAN

Determinant of triangular matrix is a product of the elements on the diagonal



AFFINE TRANSFORM
 Location-scale transformation

log-Jacobian becomes



COUPLING TRANSFORM

In each simple bijection,  
part of the input vector  
is updated using a function  
which is simple to invert, 
but which depends on the  
remainder of the input vector  
in a complex way. 
The other part is left unchanged.



REAL NVP
Coupling transformation combined with affine 
transformation and its invention 

but which depends on the remainder of the input vector in a complex way

What is t and s? 
but which depends on the remainder of the input vector in a complex way

https://arxiv.org/abs/1605.08803 
but which depends on the remainder of the input vector in a complex way



FUNCTION APPROXIMATION
can be parameterised by any NN: 

- Fully connected 
- Residual 
- CNN 
- …



NEURAL SPLINE FLOWS
• Coupling transform

image: Duncan C. et al, Neural Spline Flows

• Monotonic rational-quadratic  
  spline transform 
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CONDITIONING
• Do not have access to samples from posterior 
• Have access to samples from prior +  
• Can generated simulated data 

Condition inverted map 
on real data



COMPOSING FLOW



OPTIMISATION

• The flow is trained to maximise the total log likelihood of the data 
  with respect to the parameters of the transform. 



WAVEFORM EMBEDDING
• Low frequency sensitivity -> long waveforms 
• Construct reduced orthogonal basis 
• Use coefficients of the waveform projection on a new basis



WAVEFORM EMBEDDING
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WAVEFORM EMBEDDING
Decompose a matrix constructed of the set of waveforms

Project sample simulated data on this basis



RESULTS

PRELIMINARY



CONCLUSIONS
• Alternative sampling method 
• Can be used for low latency pipeline 
• Can be used to approximate complex distributions 
• Can use embedded data representations


