### SNAD: anomaly detection for large scale time-domain astronomy

Patrick Aleo (UIUC), Emille Ishida (CNRS-LPC), Matwey Kornilov (SAI MSU), Vladimir Korolev, <u>Konstantin Malanchev (UIUC)</u>, Maria Pruzhinskaya (SAI MSU), Etienne Russeil (CNRS-LPC), Sreevarsha Sreejith (BNL), Alina Volnova (IKI RAS)

on the behalf of the SNAD team + all our side collaborators

Paris, 2022.06.21



### **Anomaly detection** We look for anomalies

- Def. Outlier is an object located in a sparse region of the feature space
- Def. Anomaly is an astrophysical source having unusual properties for its class or a representative of some rare class





Chandola+ 2009



►X

### Discovery **ML only produces recommendations**







### **Machine learning**

#### Potentially interesting anomalies:

- Candidate 1
- Candidate 2
- Candidate 3
- . . .
- . . .

metadata images simulations catalogs







### **Outlier detection: Isolation Forest**

iTree



Shallower leaf nodes have higher anomaly scores, whereas, deeper leaf nodes have lower anomaly scores.

Leaf instance arXiv:1708.0944



Liu+ 2008, Liu+ 2012

# 

#### Darker is more anomalous



arXiv:1905.11516



### **Isolation Tree**



(a) Isolating  $x_i$ 

(b) Isolating  $x_o$ 

#### Liu et al 2008, Liu et al 2012

$$c(\psi) = \begin{cases} 2H(\psi - 1) - 2(\psi - 1)/\psi & \text{for } \psi > 2\\ 1 & \text{for } \psi = 2\\ 0 & \text{otherwise} \end{cases}$$

$$s(x,\psi)=2^{-\frac{-c(\psi)}{c(\psi)}},$$



### Case: Open Supernova Catalog (OSC) arXiv:1905.11516

- 1999 SNe in gri, g'r'i' & BRI taken from the OSC (Guillochon+ 2017)
- Multivariate Gaussian process approximation (Semenikhin+ in prep.) & t-SNE
- 30/100 anomaly candidates
  - Two known SLSNe
  - Several known peculiar SNe
  - Several known cases of misclassification, including binary µ-lens
  - 16 previously unknown cases of misclassification (10 stars and 6 AGNs), including SN 2006kg suggested as a "template" SN II (Okumara+ 2014)



### **Multivariable Gaussian processes**

We implement it via correlation between components (passbands), not via 2D kernels  $\boldsymbol{y}(t) = M[\boldsymbol{\nu}(t)] \equiv \int \boldsymbol{\nu} p_{\boldsymbol{\nu}}(\boldsymbol{\nu}, t; \boldsymbol{\theta}) d\boldsymbol{\nu}$ 

$$\Sigma = \begin{pmatrix} \sigma_1^2 & 0 & \cdots & 0 & \sigma_1^2 K_1(t_1, t_2) & 0 & \cdots & 0 \\ 0 & \sigma_2^2 & \cdots & 0 & \sigma_1^2 K_1(t_1, t_2) & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \sigma_k^2 & 0 & 0 & \sigma_1^2 X_2(t_1, t_2) & \cdots & 0 \\ \sigma_1^2 K_1(t_1, t_2) & 0 & \cdots & 0 & \sigma_1^2 & 0 & \cdots & 0 \\ \sigma_1^2 K_1(t_1, t_2) & 0 & \cdots & 0 & \sigma_1^2 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \sigma_k^2 & 0 & 0 & \sigma_2^2 X_2(t_1, t_2) & \cdots & 0 \\ 0 & \sigma_2^2 K_2(t_1, t_2) & \cdots & 0 & \sigma_1^2 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \sigma_k^2 K_k(t_1, t_2) & 0 & \cdots & \sigma_k^2 K_k(t_1, t_2) \end{pmatrix}$$





### **OCS anomaly detection pipeline**



### Three OCS feature sets

- 1. 364 Gaussian processes approximated points: 3 passbands × 121 points  $\in [-20; 100]$  days after peak in r normalized to peak, and peak flux itself
- 2. 10 parameters of Gaussian process fit: 6 values of correlation matrix, 3 lengths  $\{\log L, l_g, l_r, l_i, M_{gg}, M_{rr}, M_{ii}, M_{gr}, M_{gi}, M_{ri}\}$ of kernels, likelihood
- 3. Eight datasets obtained by reducing 374 Gaussian process features to 2–9 t-SNE dimensions







### **Case: Zwicky Transient Facility DR3** arXiv:2012.01419

- Three fields of ZTF DR3
- ~2×10<sup>6</sup> objects total
- Four outlier detection algorithms
- 89/227 anomaly candidates
  - Six (5/6 are new!) SN Ia candidates
  - RS CVn (confirmed by our spectra)
  - Mira binary candidate
- 188/277 bogus light curves ullet
  - Double star defocusing
  - Bright Mira "echos"
  - Asteroid overlap
  - Bad columns, satellites, spikes, ghosts, etc













## Anomaly Detection Pipeline <a href="https://github.com/snad-space/zwad">https://github.com/snad-space/zwad</a>



#### per field per algo



### **SNAD ZTF DR3 Supernova Candidates** Six candidates from DEEP field (400 000 objects), only one is in TNS

Table 2. Results of the light curve fit with the SALT2 model for supernova candidates from the DEEP field.

nagnitude

nitude

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | OID                          |                          | Host galaxy*                        | $z_{\rm ph}$      | z                                       | $t_0$                   | $x_1$                          | с                         | Comments <sup>†</sup> |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|--------------------------|-------------------------------------|-------------------|-----------------------------------------|-------------------------|--------------------------------|---------------------------|-----------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 795202100005941              | L/ZTF18aanbnjh           | SDSS J163437.92+521642.2            | $0.424 \pm 0.103$ | _                                       |                         | _                              |                           | Blazar                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 795204100013041/ZTF18abgvctp |                          | SDSS J160913.83+521251.3            | $0.375 \pm 0.138$ | ~0.24                                   | $58320.9336 \pm 0.4389$ | $1.71 \pm 0.51$                | $-0.044 \pm 0.035$        |                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 795205100007271              | l/ZTF18aayatjf           | —                                   |                   | ~0.20                                   | $58285.8334 \pm 0.1810$ | $-0.54 \pm 0.18$               | $-0.075 \pm 0.021$        | SN Ia                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 795209200003484              | 4/ZTF18abbpebf           | —                                   | —                 | ~0.11                                   | $58299.7269 \pm 0.0008$ | $0.60 \pm 0.12$                | $-0.013 \pm 0.012$        | SN Ia                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 795212100007964              | 4/ZTF18aanbksg           | SDSS J161144.90+555740.7            | $0.288 \pm 0.122$ | ~0.18                                   | $58214.4470 \pm 0.0002$ | $0.40 \pm 0.20$                | $-0.282 \pm 0.020$        | Blazar                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 795213200000671              | l/ZTF18aaincjv           |                                     |                   | _                                       |                         | _                              |                           | AGN-I                 |
| 18 - SNIa, z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <b>≃</b> 0.24                | - SNIbc, $z \simeq 0.24$ | - SNIIP, $z \simeq 0.45$            |                   | SNIa, $z \simeq 0.0$                    | 09                      | Ibc, $z \simeq 0.02$           | $ $ SNIIP, $z \simeq 0.4$ | 0                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                              |                          |                                     |                   | 10       20       22       24           |                         |                                |                           |                       |
| 20 - SNIIL,<br>20 - Control SNIIL,<br>22 - Control SNIIL,<br>24 - Control SNIIL,<br>25 - Control SNIIL,<br>26 - Control SNIIL,<br>27 - Control S | $z \simeq 0.24$              | - SNIIn, $z \simeq 0.51$ | - SALT2, <i>z</i> ≃0.24             |                   | 18 SNIIL, <i>z</i> ≃0<br>20<br>22<br>24 |                         | IIn, $z \simeq 0.02$           | · SALT2, z ≃0.2           |                       |
| 20 58300 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8320 58340 58360 58380       | 58300 58320 58340        | 58360 58380 58300 58320 58340 58360 | 0 58380           | 58275                                   | 58300 58325 58350       | 58275 58300 58325              | 5 58350 58275 5           | 8300 58325 58350      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                              | MJD<br>795204100013      | zg-1.5 zr<br>3041                   | z1+1.5            |                                         | 79                      | <sup>MJD</sup><br>520510000727 | zg—                       | 1.5 zr zi+1.5         |



### **Classification of RS CVn (binary w/ spots) Our spectra + period change + flare activity**



2.5m CMO SAI MSU spectra of the object at different phases of the orbital cycle

### Mira Binary Candidate Light curve may indicate the presence of a companion



#### 807206200023036

- Diamonds are our observations (the right group of observations)
- Red circles were considered by the outlier detection algorithms
- Squares are other light curves of the same source





### **Bogus Detections** The objects are in the frame centers

Satellite or Plane Track



Diffraction Spike

Bad Column



Cosmic Ray









#### Close to M31 Centre













#### **Double Stars Defocusing** If a separation is about 2" (typical FWHM) then defocusing can cause the false variability





### W Dra "Echos" All four objects are found by the outlier detection pipeline

Mira-like IW Dra



#### Echo 1



#### Applying expert bias to anomaly detection From outlier to anomaly detection algorithm Data

- How to discriminate annoying non-anomalies sources and bogus light curves?
  - We can ask an expert interactively about each new outlier
  - If it is not an anomaly, set lower probability to objects like this
  - Retrain, ask the expert again
- We can do the opposite: highlight interesting class of objects for classification of rare objects. Listen Emille Ishida's talk about this



**Train initial model** 

#### **Machine**

The best outlier up date

**Update model** with the outlier label



**Inspect ouliers** using external data

#### SVAD **Active anomaly detection (AAD)** Implementation of the machine—expert loop, Das+2018

Algorithm:

- Initialize isolation forest, set equal  $W_i$  to each iTree
- 2. Ask the forest for the outlier with the largest score
- 3. Ask an expert to classify the object as normal or anomaly
- 4. If anomaly, go to step 2 and ask next outlier
- 5. If normal, update  $\{w_i\}$  to give lower influence to wrong detectors, go to step 2

There are other algorithms to solve this problem, we are developing a (better) alternative (Korolev+, in prep)





#### **Pine Forest** Cutting bad trees and growing good trees, Korolev+ in prep.



x1

x1



### Case: PLAsTiCC & OSC arXiv:1909.13260 PLAsTiCC (LSST sims)



Lessons learnt:

- AAD works
- Anomaly definition (expert bias) matters
- Real data is much harder!



OSC





Anomaly

forest













#### **By-product:** light-curve feature extractor https://github.com/light-curve median Magnitude

- **Performant** Rust/Python code: processing of ~10<sup>6</sup> light-curves, Nobs  $\ge$  100, takes few CPU hours
- Rich feature set
  - Magnitude statistics: mean-, median-, momentum- quartile-based
  - Shape-based: Stetson (1996) K,  $\eta^e$  (Kim+ 2014)
  - "Fast" Lomb–Scargle periodogram peaks and other derivatives
  - Parametric fits: linear, SN-like functions (Bazin+ 2009, Villar+ 2019)
  - New Otsu-split extractor: powerful features to classify recurrent outbursts, eclipsing binaries, etc (Lavrukhina & Malanchev in prep.)
- Hundreds of unit tests, packages for Linux and Intel Macs
- Serves three ZTF/LSST brokers: Ampel, Antares, Fink
- python3 -m pip install light-curve







Anastasia Lavrukhina

6200

6400

OGLE-BLG-DN-0054

HJD-245000





maximum slope

5400

Date

18.6 18.8 18.8









### light-curve benchmarks

- 1.5—140 times faster than feets
- Periodogram is few times faster than "fast" implementation in astropy and gatspy.
- Large set of "cheap" features (w/o periodogram and parametric fits) can be done in few ms \* CPU for Nobs=1000
- Realistic feature set including periodogram, Bazin and Villar fits is ~25 ms \* CPU for six ugrizy LSST 3-year light curves (tested on the ELAsTiCC training set).
- Single CPU is (almost?) enough to process all LSST alerts in real time!



#### feets

vs Python implementation of light-curve (lc\_py) vs Rust implementation of light-curve (rust). Smaller is better









#### SNAD101 - 633207400004730 Self-matched ZTF light-curve



#### Download PNG, PDF, CSV

"Short" light curve:  $58194.0 \le MJD \le 58972.0$ 

Full light curve
 Folded light curve

Closest Antares object, diff-photometry Closest Pan-STARRS object, apparent Magnitude Flux odiff Magnitude diff Flux

Summarv



| d.space/dr8/view/633207400004730 |  | <br>$\bigcirc$ |
|----------------------------------|--|----------------|
|                                  |  |                |
|                                  |  |                |
|                                  |  |                |
|                                  |  |                |





Open in JS9 Download FITS Product

directory

ZTF science image for any detection Aladin

11

🔒 ztf.sna









Download PNG, PDF, CSV

"Short" light curve:  $58194.0 \le MJD \le 58972.0$ 

• Full light curve Folded light curve

Closest Pan-STARRS object, apparent Closest Antares object, diff-photometry Magnitude Flux O diff Magnitude diff Flux

#### Summary

Name: ZTF18aabpzic (0.266" Alerce), ZTF18aabpzic (0.353" Fink), J254.4575+35.3423 (0.124" ATLAS), 1338822021487330304 (0.115" Gaia EDR3 Distances), HZ Her (0.711" GCVS), PSO J254.4575+35.3423 (0.109" Pan-STARRS DR2 Stacked), V\* HZ Her (0.081" Simbad), 15037 (0.720" VSX), ZTFJ165749.81+352032.4 (0.124" ZTF Periodic)

Type: LMXB (0.353" Fink), IRR (0.124" ATLAS), XPR+E (0.711" GCVS), LowMassXBin (0.081" Simbad), LMXB:/XPR+E (0.720" VSX), EW (0.124" ZTF Periodic)

Period, days: 1.700 (periodogram S/N=78.620), 1.700 (0.124" ATLAS), 1.700 (0.711" GCVS), 1.700 (0.081" Simbad), 34.875 (0.720" VSX), 3.400 (0.124" **ZTF Periodic**)

Distance: 7.00 kpc (0.115" Gaia EDR3 Distances), 6.60 kpc (0.081" Simbad)

Average mag (including neighbourhood): zg 13.55, zr 13.68, (zg-zr) -0.13

Extinction: SFD E(B-V) = 0.01, Bayestar & Gaia EDR distance Ag = 0.07 Ar = 0.05 Ai = 0.03

Search in brokers: <u>ALeRCE</u>, <u>Antares</u>, <u>Fink</u>, <u>MARS</u>

Coordinates: Eq 254.45752 35.34235, Gal 58.149 37.5231

Name, type, period, distance & extension from other catalogs and our periodogram



④ ① + 品

#### Aladin

C







#### Home page



#### Welcome to SNAD ZTF object viewer!

This is a tool developed by the SNAD team in order to enable quick expert investigation of objects within the public Zwicky Transient Facility (ZTF) data releases

It was developed as part of the <u>3rd SIAD Workshop</u>, held remotely in July, 2020.

The viewer allows visualization of raw and folded light curves and metadata, as well as cross-match information with the the General Catalog of Variable Stars, the International Variable Stars Index, the ATLAS Catalog of Variable Stars, the ZTF Catalog of Periodic Variable Stars, the Transient Name Server, the Open Astronomy Catalogs, the OGLE III Catalog of Variable Stars, the Simbad Astronomical Data Base, Gaia EDR3 distances (Bailer-Jones+, 2021), Vizier.

The viewer is also available for ZTF DR2, ZTF DR3, ZTF DR4

© 2022 SIAD. Version 2022.5.2. Developed by Konstantin Malanchev, based on the ZTF Caltech data. See the source code on GitHub. If you use this web-site in your research, please cite this paper as well as all relevant data source papers.



|    | ztf.snad.space |              |              | + 88     |
|----|----------------|--------------|--------------|----------|
|    |                |              | Konstantin M | alanchev |
| er |                |              |              |          |
|    | ZTF obi        | iect ID / SN | NAD ID       |          |
|    |                |              |              |          |
|    | Eq coo         | ordinates /  | commo        | n name   |





| <pre></pre>                |                                                                |            |                               | ztf.snad.space/dr8/search/hz%20her/1 |  |  |  |  |
|----------------------------|----------------------------------------------------------------|------------|-------------------------------|--------------------------------------|--|--|--|--|
| SNAD ZTF DR8 object viewer |                                                                |            |                               |                                      |  |  |  |  |
| Coordinates hz her         | r                                                              | adius (arc | esec) 1 🗘 Go                  |                                      |  |  |  |  |
| Objects                    | Objects inside cone (254.45755 deg. 35.34236 deg). $r = 1.0''$ |            |                               |                                      |  |  |  |  |
| ,                          |                                                                |            | <b>X</b>                      | 0/                                   |  |  |  |  |
| OID                        | separation, arcsec                                             | filter     | Number of "good" observations | Duration, days                       |  |  |  |  |
| <u>1722207400009164</u>    | 0.069                                                          | zr         | 43                            | 459.824                              |  |  |  |  |
| <u>680113300005170</u>     | 0.078                                                          | zg         | 734                           | 1253.823                             |  |  |  |  |
| 680213300009232            | 0.082                                                          | zr         | 686                           | 1255.902                             |  |  |  |  |

© 2022 SIAD. Version 2022.5.2. Developed by Konstantin Malanchev, based on the ZTF Caltech data. See the source code on GitHub. If you use this web-site in your research, please cite this paper as well as all relevant data source papers

#### Same source, different OIDs ----->





Konstantin Malanchev



#### Period folding and third-party photometry (Pan-STARRS)



ZTFJ165749.81+352032.4 (0.124" ZTF Periodic)



Х



Period folding and third-party diff photometry (ZTF alert stream from Antares broker)





|           | ztf.snad.space/dr8/view/680213300009232 | Ś          |                              | (   | ᠿ | + |  |
|-----------|-----------------------------------------|------------|------------------------------|-----|---|---|--|
| 12        |                                         |            |                              |     |   |   |  |
|           |                                         | Click on c | observation point to show im | age |   |   |  |
|           |                                         |            |                              |     |   |   |  |
|           | 0.6 0.8 1                               |            |                              |     |   |   |  |
| ▶ zg, 680 | 113300005170 🗱 ant_g, ANT2020bph6g      |            |                              |     |   |   |  |
|           |                                         |            |                              |     |   |   |  |

Х



#### Tags and description DB frontend

| $\square \sim < >$                                                                                                                                                                                                                                                                                              |                              | ztf.snad.space/dr8/view/680213300009232 |                        |                       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-----------------------------------------|------------------------|-----------------------|
| SNAD ZTF DI                                                                                                                                                                                                                                                                                                     | R8 object vie                | wer                                     |                        | Konstantin Malanchev  |
| OID E.g. 633207400004730 Go<br>Coordinates 00h00m00s +00d00m00s radius                                                                                                                                                                                                                                          | a (arcsec) 1 🗘 Go            |                                         |                        |                       |
| 680213300009232                                                                                                                                                                                                                                                                                                 |                              |                                         |                        |                       |
| artefact column bright_star cosmic defor                                                                                                                                                                                                                                                                        | cusing ghost M31 spike track | r frame_edge<br>Tags                    | Description            | Changed by Changed at |
| VAR transient AGN QSO STAR Galaxy   SN SNIa CCSN SLSN   Eclipsing EA EB EW   Pulsating CEP DCEP L LPV M RR F   DSCT Cataclysmic AM N UG UGSS UGZ   Eruptive INS SDOR TTS YSO M_dwarf   Rotating BY RSCVn   uncertain non-catalogued 1-point   Point tag name to see its description. See instruct   Description | RRAB RSG SR                  | 1495                                    | Click on observation p | oint to show image    |
| 13<br>13.5                                                                                                                                                                                                                                                                                                      |                              |                                         |                        | ant to snow image     |







#### SNAD experts tagged >2000 objects, >70 are submitted to the TNS!



|                        | Tags                                | Description Changed by                                                                                                     | Changed at                           |
|------------------------|-------------------------------------|----------------------------------------------------------------------------------------------------------------------------|--------------------------------------|
| filter data            |                                     | SNAD AA                                                                                                                    |                                      |
| 633207400004730        | SN, uncertain                       | SNAD101 maria                                                                                                              | 2021-08-<br>02T07:46:53.429000+00:00 |
| <u>633216300024691</u> | SN, uncertain                       | SNAD102 maria                                                                                                              | 2021-08-<br>02T07:47:54.227000+00:00 |
| 634108100006647        | AGN, SN, uncertain                  | SNAD158 maria                                                                                                              | 2021-10-<br>21T22:22:11.362000+00:00 |
| <u>643105300009229</u> | AGN, SN, uncertain                  | SNAD153 maria                                                                                                              | 2021-10-<br>21T21:39:27.291000+00:00 |
| 676212400013135        | SN, uncertain                       | SNAD122 maria                                                                                                              | 2021-08-<br>02T07:52:47.557000+00:00 |
| 679108100003227        | SNIa, uncertain, non-<br>catalogued | photo-z of host: 0.303 +/- 0.116 Possible absolute mag between -20.6 and -22.6. SLSN? Too bright for patrick SN Ia SNAD150 | 2021-10-<br>21T14:19:32.575000+00:00 |
| <u>680109100003419</u> | SN                                  | SNAD168, PCA+ k-D tree maria                                                                                               | 2021-11-<br>12T20:32:32.823000+00:00 |
| 682102200004200        | SN, uncertain                       | SNAD176 maria                                                                                                              | 2022-03-<br>03T14:49:49.398000+00:00 |
| 682209200018910        | SN, uncertain                       | SNAD143 maria                                                                                                              | 2021-08-<br>02T09:48:05.990000+00:00 |
| 684215200016923        | SN, uncertain, non-catalogued       | SNAD157 maria                                                                                                              | 2021-10-<br>21T22:17:58.390000+00:00 |
| 692106300027877        | SN, uncertain                       | SNAD174 novinskaya                                                                                                         | 2022-02-<br>28T15:02:40.405000+00:00 |
| 718205300006523        | AGN, uncertain, non-<br>catalogued  | SNAD155 maria                                                                                                              | 2021-10-<br>22T09:30:51.131000+00:00 |
| 719202100004008        | AGN, SN, uncertain                  | SNAD154 maria                                                                                                              | 2021-10-<br>21T22:06:23.389000+00:00 |
| 720209400014960        | SN, uncertain                       | SNAD123 maria                                                                                                              | 2021-08-<br>02T10:06:24.720000+00:00 |
| 721210100012349        | SN, uncertain                       | SNAD129 maria                                                                                                              | 2021-08-<br>02T10:47:48.325000+00:00 |
|                        |                                     |                                                                                                                            | 2021 00                              |





A 🔁

ztf.snad.space/akb

Konstantin Malanchev



### Conclusion

- Using real data from the very beginning
- Astronomical experts are queens: their opinion matters from the start of the algorithm construction to the last stage
- Developing new tools and sharing them with the community
- Recent and ongoing projects:
  - Developing new active anomaly detection algorithm for new features, better computation and detection performance (Korolev+ in prep., ask me about it!)
  - Using AAD for classification, listen talk by Emille Ishida about SNe
  - Mining transients with k-D tree, see **poster by Patrick Aleo** (presented by me)



