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Linear inverse problems
y = Ax + n 

A is known and encodes our physical understanding of the problem. 
⟹  When non-invertible or ill-conditioned, the inverse problem is ill-posed with no unique solution x

Deconvolution Inpainting Denoising
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The Weak Lensing Mass-Mapping as an Inverse Problem
Shear γ Convergence κ 

γ = Pκ + n
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Bayesian Modeling

γ = Pκ + n

P is known and encodes our physical understanding of the problem 

 γ

 κ

⟹  Non-invertible (survey mask, shape noise), the inverse problem is ill-posed  
with no unique solution κ

The Bayesian view of the problem: 

p(κ | γ) ∝ p(γ | κ) p(κ)

 

p(γ | κ) is the data likelihood, which contains the physics 

p(κ) is the prior knowledge on the solution.

In this perspective we can provide point estimates: Posterior Mean, Max, Median, etc.  
and the full posterior p(κ | γ) with Markov Chain Monte Carlo or Variational Inference methods

How do you choose the prior ?
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Classical examples of signal priors
Sparse

 

Gaussian Total Variation

log 𝑝(𝑥) =∥ 𝐖𝑥∥1 log 𝑝(𝑥) = 𝑥𝑥
𝑡
𝚺

−1 log 𝑝(𝑥) =∥ ∇𝑥∥1
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But what about learning the prior  
with deep generative models?
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Writing down the convergence map log posterior
logp(κ | e) = logp(e | κ)

⏟

≃ −
1
2 ∥ e−Pκ∥

2
Σ

+ logp(κ) + cst

The likelihood term is known analytically.
There is no close form expression for the full non-Gaussian prior of the convergence. 
However:

κTNG (Osato et al. 2021)

We do have access to samples of full implicit prior through simulations: X = {x0, x1, …, xn} with xi ∼ P 

⟹  Our strategy: Learn the prior from simulation, and then sample the full posterior.
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The score is all you need!

Whether you are looking for the MAP or sampling with
HMC or MALA, you only need access to the score of the
posterior:

∂logp(x | y)
∂x

Gradient descent: xt+ 1 = xt + τ∇xlogp(xt | y)
Langevin algorithm: xt+ 1 = xt + τ∇xlogp(xt | y) + √2τnt

The score of the full posterior is simply:

∇xlogp(x | y) = ∇xlogp(y | x)
⏟

known

+ ∇xlogp(x)
⏟

can be learned

⟹  all we have to do is model/learn the score of the prior.
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Neural Score Estimation by Denoising Score Matching
Denoising Score Matching: An optimal Gaussian denoiser learns the score of a given distribution.

If x ∼ P is corrupted by additional Gaussian noise u ∈ N(0, σ2) to yield

x′ = x + u

Let's consider a denoiser rθ trained under an ℓ2 loss:

L =∥ x − rθ(x
′, σ)∥2

2

The optimal denoiser rθ ⋆  veri�es:

rθ ⋆(x ′ , σ) = x ′ + σ2∇xlogpσ2(x
′ )



Sampling method: Annealed Hamiltonian Monte Carlo
Sampling convergence maps κ ∼ p(κ | γ) is very dif�cult due to the high dimensionality of the space  
( 360 × 360 ≈ 105 parameters). 

Especially for MCMC algorithms because of curse of dimensionality leading to highly correlated chains.

We need to design an ef�cient sampler.     κ1, κ2, . . . , κN ∼ p(κ | γ)

Hamiltonial Monte Carlo proposal for a step size α:

mt+
α

2
= mt +

α
2
∇κlogp(κt | γ)

κt+α = κt + αM − 1κt+
α
2

mt+α = mt+
α
2

+
α
2
∇κlogp(κt+α | γ)

Annealing: convolve the posterior with a wide gaussian to always remain on high probability density.

pσ(x) = ∫pdata(x
′ )N(x | x ′ , σ2)dx ′ ,         σ1 > σ2 > σ3 > σ4
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Sampling method: Annealed Hamiltonian Monte Carlo

Target σ0 ≈ 0
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Illustration on -TNG simulations𝜅

log (𝜅|𝛾) = log (𝛾|𝜅) + log (𝜅)∇𝜅 𝑝𝜎 ∇𝜅 𝑝𝜎 ∇𝜅 𝑝𝜎
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Illustration on κ-TNG simulations

 
True convergence map

 
 Traditional Kaiser-Squires
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Illustration on κ-TNG simulations

 
True convergence map

 
 Wiener Filter
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Illustration on κ-TNG simulations

 
True convergence map

 
 Posterior Mean (ours)

 
Posterior samples
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Reconstruction of the HST/ACS COSMOS field
1.637 square degree, 64.2 gal/arcmin2 

Massey et al. (2007) Remy et al. (2022) Posterior mean
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Reconstruction of the HST/ACS COSMOS field
1.637 square degree, 64.2 gal/arcmin2 

Massey et al. (2007) Remy et al. (2022) Posterior samples
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Reconstruction of the HST/ACS COSMOS field
1.637 square degree, 64.2 gal/arcmin2 

Massey et al. (2007) Remy et al. (2022)
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Ramzi, Remy, Lanusse et al. 2020 

Uncertainty quantification in Magnetic Resonance Imaging (MRI)
 
 

y = MFx + n

stat.MLstat.ML arXiv:2011.08698arXiv:2011.08698

⟹  We can see which parts of the image are well constrained by data, and which regions are uncertain.
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Takeaways

Hybrid physical/deep learning modeling:
Deep generative models can be used to provide data driven (simulation based) priors.
 
Explicit likelihood, uses of all of our physical knowledge. 
⟹  The method can be applied for varying PSF, noise, or even different instruments!

 
Demonstrated the ef�ciency of annealing Hamiltoninan Monte Carlo for high dimensional posterior sampling.
 
We implemented a new class of mass mapping method, providing the full posterior  
⟹  Find the highest quality convergence map of the COSMOS �eld online: https://zenodo.org/record/5825654

 
 (JAX & TFP!)

astro-ph.COastro-ph.CO arXiv:2201.05561arXiv:2201.05561

github.com/CosmoStat/jax-lensing

Thank you!
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Validating Bayesian Posterior in Gaussian case
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Training a Neural Score Estimator in practice

A standard UNet

We use a very standard residual UNet, and we adopt a
residual score matching loss:

LDSM = E
x∼P

E
u∼N(0 , I )
σs∼N(0 , s2 )

∥ u + σsrθ(x + σsu, σs)∥
2
2

⟹  direct estimator of the score ∇logpσ(x)

Lipschitz regularization to improve robustness: 

Without regularization With regularization



The likelihood term is known analytically.
There is no close form expression for the full non-Gaussian prior of the convergence. 
We learn a hybrid Denoiser: theoretical Gaussian on large scale, data-driven on small scales using N-body
simulations.

∇κlogp(κ)
⏟

full prior

= ∇κlogpth(κ)
⏟

gaussian prior

+ rθ(κ, ∇κlogpth(κ))
⏟

learned residuals
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