Sampling high-dimensional posterior with a simulation based prior

astro-ph.CO arXiv:2201.05561 stat.ML arXiv:2011.08698

Benjamin Remy

With : <u>Francois Lanusse</u>, Zaccharie Ramzi, Niall Jeffrey, Jia Liu, <u>J.-L. Starck</u>

slides at b-remy.github.io/talks/Paris2022

Linear inverse problems

 $y = \mathbf{A}x + n$

A is known and encodes our physical understanding of the problem. \implies When non-invertible or ill-conditioned, the inverse problem is ill-posed with no unique solution x

Deconvolution

Inpainting

The Weak Lensing Mass-Mapping as an Inverse Problem

Shear <mark>y</mark>

Convergence **k**

 $\gamma = \mathbf{P}_{\mathcal{K}} + n$

Bayesian Modeling

 $\gamma = \mathbf{P}\kappa + n$

P is known and encodes our physical understanding of the problem \implies Non-invertible (*survey mask, shape noise*), the inverse problem is ill-posed **with no unique solution** κ

The Bayesian view of the problem:

 $p(\kappa | \gamma) \propto p(\gamma | \kappa) p(\kappa)$

- $p(\gamma | \kappa)$ is the data likelihood, which **contains the physics**
- $p(\kappa)$ is the prior knowledge on the solution.

In this perspective we can provide point estimates: Posterior Mean, Max, Median, etc. and the full posterior $p(\kappa | \gamma)$ with Markov Chain Monte Carlo or Variational Inference methods

How do you choose the prior?

Classical examples of signal priors

 $\log p(x) = \| \nabla x \|_1$

 $\log p(x) = \| \mathbf{W} x \|_1$

 $\log p(x) = x^t \Sigma^{-1} x$

But what about learning the prior with deep generative models?

Writing down the convergence map log posterior

$$\log p(\kappa | e) = \log p(e | \kappa) + \log p(\kappa) + cst$$

 $\simeq -\frac{1}{2} \| e - P\kappa \|_{\Sigma}^2$

- The likelihood term is **known analytically**.
- There is no close form expression for the full non-Gaussian prior of the convergence. However:
 - We do have access to samples of full implicit prior through simulations: $X = \{x_0, x_1, ..., x_n\}$ with $x_i \sim P$

κTNG (Osato et al. 2021)

⇒ Our strategy: Learn the prior from simulation, and then sample the full posterior.

The score is all you need!

• Whether you are looking for the MAP or sampling with HMC or MALA, you **only need access to the score** of the posterior:

 $\frac{\partial \mathrm{log} p(x \,|\, y)}{\partial x}$

- Gradient descent: $x_{t+1} = x_t + \tau \nabla_x \log p(x_t|y)$
- Langevin algorithm: $x_{t+1} = x_t + \tau \nabla_x \log p(x_t | y) + \sqrt{2\tau} n_t$

• The score of the full posterior is simply:

$$\nabla_x \log p(x|y) = \nabla_x \log p(y|x) + \nabla_x \log p(x)$$

known

can be learned

 \implies all we have to do is **model/learn the score of the prior**.

Neural Score Estimation by Denoising Score Matching

- Denoising Score Matching: An optimal Gaussian denoiser learns the score of a given distribution.
 - If $x \sim P$ is corrupted by additional Gaussian noise $u \in N(0, \sigma^2)$ to yield

x' = x + u

• Let's consider a denoiser r_{θ} trained under an ℓ_2 loss:

$$\mathbf{L} = \| \mathbf{x} - \mathbf{r}_{\theta}(\mathbf{x}', \sigma) \|_{2}^{2}$$

• The optimal denoiser $r_{\theta^{\star}}$ verifies:

$$\boldsymbol{r}_{\theta} \star (\boldsymbol{x}', \sigma) = \boldsymbol{x}' + \sigma^2 \nabla_{\boldsymbol{x}} \log p_{\sigma^2}(\boldsymbol{x}')$$

Sampling method: Annealed Hamiltonian Monte Carlo

Sampling convergence maps $\kappa \sim p(\kappa | \gamma)$ is very difficult due to the high dimensionality of the space ($360 \times 360 \approx 10^5$ parameters).

Especially for MCMC algorithms because of *curse of dimensionality* leading to *highly correlated chains*.

We need to design an efficient sampler. $\kappa_1, \kappa_2, \ldots, \kappa_N \sim p(\kappa | \gamma)$

• Hamiltonial Monte Carlo proposal for a step size *α*:

$$m_{t+\frac{\alpha}{2}} = m_{t} + \frac{\alpha}{2} \nabla_{\kappa} \log p(\kappa_{t} | \gamma)$$

$$\kappa_{t+\alpha} = \kappa_{t} + \alpha \mathbf{M}^{-1} \kappa_{t+\frac{\alpha}{2}}$$

$$m_{t+\alpha} = m_{t+\frac{\alpha}{2}} + \frac{\alpha}{2} \nabla_{\kappa} \log p(\kappa_{t+\alpha} | \gamma)$$

• Annealing: convolve the posterior with a wide gaussian to always remain on high probability density.

$$p_{\sigma}(x) = \int p_{\text{data}}(x') N(x | x', \sigma^2) dx', \qquad \sigma_1 > \sigma_2 > \sigma_3 > \sigma_4$$

Sampling method: Annealed Hamiltonian Monte Carlo

Target $\sigma_0 \approx 0$

Temperature $\sigma_t \searrow$

 $\nabla_{\kappa} \log p_{\sigma}(\kappa|\gamma) = \nabla_{\kappa} \log p_{\sigma}(\gamma|\kappa) + \nabla_{\kappa} \log p_{\sigma}(\kappa)$

True convergence map

Traditional Kaiser-Squires

True convergence map

Wiener Filter

Posterior Mean (ours)

Posterior samples

Reconstruction of the HST/ACS COSMOS field

1.637 square degree, 64.2 gal/arcmin²

ra 150°00' 149°40' 40' 20' 2°40' 40'20' - 20' pos.eq.dec 001 2°00' 1°40' - 1°40' 10^h03^m 9h59m 02^m 58^m 01^m 00ⁿ pos.eq.ra

Massey et al. (2007)

Remy et al. (2022) Posterior mean

Reconstruction of the HST/ACS COSMOS field

1.637 square degree, 64.2 gal/arcmin²

ra 150°00' 149°40' 40 20' 2°40' 4020' - 20' pos.eq.de 001 · 2°00' 1°40' · 1°40' 10^h03^m 9h59m 02^m 00ⁿ 58^mpos.eq.ra

Massey et al. (2007)

Remy et al. (2022) Posterior samples

Reconstruction of the HST/ACS COSMOS field

1.637 square degree, 64.2 gal/arcmin²

Massey et al. (2007)

Uncertainty quantification in Magnetic Resonance Imaging (MRI)

stat.ML arXiv:2011.08698

Ramzi, Remy, Lanusse et al. 2020

 $y = \mathbf{MF}x + n$

 \implies We can see which parts of the image are well constrained by data, and which regions are **uncertain**.

Takeaways

- Hybrid physical/deep learning modeling:
 - Deep generative models can be used to provide data driven (simulation based) priors.
 - Explicit likelihood, uses of all of our physical knowledge.
 - \implies The method can be applied for varying PSF, noise, or even different instruments!
- Demonstrated the efficiency of annealing Hamiltoninan Monte Carlo for high dimensional posterior sampling.
- We implemented a new class of mass mapping method, providing the full posterior
 - ⇒ Find the highest quality convergence map of the COSMOS field online: https://zenodo.org/record/5825654

astro-ph.CO arXiv:2201.05561

github.com/CosmoStat/jax-lensing (JAX & TFP!)

Thank you!

Validating Bayesian Posterior in Gaussian case

Training a Neural Score Estimator in practice

A standard UNet

• We use a very standard residual UNet, and we adopt a residual score matching loss:

$$L_{DSM} = \mathop{\mathrm{E}}_{\boldsymbol{x} \sim P} \mathop{\mathrm{E}}_{\substack{\boldsymbol{u} \sim \mathrm{N}(0,I)\\\sigma_{s} \sim \mathrm{N}(0,s^{2})}} \| \boldsymbol{u} + \sigma_{s} \boldsymbol{r}_{\theta} (\boldsymbol{x} + \sigma_{s} \boldsymbol{u}, \sigma_{s}) \|_{2}^{2}$$

- \implies direct estimator of the score $\nabla \log p_{\sigma}(x)$
- Lipschitz regularization to improve robustness:

Without regularization

With regularization

- The likelihood term is **known analytically**.
- There is **no close form expression for the full non-Gaussian prior** of the convergence.
- We learn a **hybrid Denoiser**: theoretical Gaussian on large scale, data-driven on small scales using N-body simulations.

