When (not) to use uncertainties for ML in particle physics

Anja Butter, ITP Heidelberg

Bayesian Deep Learning for Cosmology and Time Domain Astrophysics

Before the particle accelerator

Setting

- Large Hadron Collider at CERN
- Independent proton collisions at 13 TeV
- Recorded by ATLAS, CMS, LHCb, ALICE
- **Huge** dataset ~1Pb/s before trigger selection

Setting

- Large Hadron Collider at CERN
- Independent proton collisions at 13 TeV
- Recorded by ATLAS, CMS, LHCb, ALICE
- **Huge** dataset ~1Pb/s before trigger selection

Setting

- Large Hadron Collider at CERN
- Independent proton collisions at 13 TeV
- Recorded by ATLAS, CMS, LHCb, ALICE
- **Huge** dataset ~1Pb/s before trigger selection

 $\left(\right)$

Goal

- Understand full dataset from 1st principles
- Precision measurements of the SM
- Find signs of new physics (eg dark matter)

Setting

- Large Hadron Collider at CERN
- Independent proton collisions at 13 TeV
- Recorded by ATLAS, CMS, LHCb, ALICE
- **Huge** dataset ~1Pb/s before trigger selection

Goal

- Understand full dataset from 1st principles
- Precision measurements of the SM
- Find signs of new physics (eg dark matter)

LHC analyses in a nutshell

Theory/Hypothesis

Detector simulation

Reconstruction

Reconstruction

LHC analyses in a nutshell

Reconstruction

Reconstruction

Limit setting for standard analyses

We want to set a limit on new physics parameter θ

$$p(data \mid \theta, \nu) = \prod_{i=1}^{n_{bins}} P\left(n_i \mid s_i(\theta, \nu) \cdot \epsilon_i(\nu) + b_i(\nu)\right)$$

Likelihood $\rightarrow L(\theta) = p(data | \theta)$

Best estimate $\rightarrow \hat{\theta} = \arg \max_{\theta} L(\theta)$

p-value $\rightarrow p_{\theta} = \int_{n_{obs}}^{\infty} \mathrm{d}n \ p(n \mid \theta)$ 68% confidence limit $\rightarrow [\theta_{\min}, \theta_{\max}]$ with $p_{\theta_{\min}} < 0.16$

LHC discovery = 5 sigma $\rightarrow p < 3 \times 10^{-7}$

Illustration by Nicolas Berger

Not a statuent on the probability of $\theta \parallel \parallel$

Types of uncertainties to build the likelihood

	Statistical uncertainties	Systematic uncertainties	Theory uncertaintes
What for?	Counting $n_{event} = p_{event} \cdot N_{collisions}$	Anything that is calibrated Efficiencies, Luminosity,	Scale dependence prediction Two point correlations (Eg. Sherpa vs MadGraph)
Shape	Poisson	Gaussian	Flat/Gaussian
	$\frac{\lambda^x}{x!} \exp(-\lambda)$	$\frac{1}{\sigma\sqrt{2\pi}}\exp^{-(x-\mu)^2/2\sigma^2}$	$\theta(x - \mu_{min})\theta(\mu_{max} - x)$
Correlation	Independent between bins	Correlated Covariance matrix from toys	Correlated Eg. Nuissance parameters

How does ML enter in this?

First HEP NN papers

Track finding Denby (LAL, Orsay) '87 Peterson (Lund) '88 → Jet identification

1987/88

First HEP NN papers

Track finding Denby (LAL, Orsay) '87 Peterson (Lund) '88 → Jet identification

1987/88

2014

Relaunch

Deep Learning in HEP Signal vs Background

P. Baldi, P. Sadowski, D. Whiteson

First HEP NN papers

Track finding Denby (LAL, Orsay) '87 Peterson (Lund) '88 \rightarrow Jet identification

1987/88

P. Baldi, P. Sadowski, D. Whiteson

First community Paper

Machine Learning Landscape of TopTagging G. Kasieczka, et al.

2019

104

Background rejection $\frac{1}{\epsilon_B}$ 10³

First HEP NN papers

Track finding Denby (LAL, Orsay) '87 Peterson (Lund) '88 \rightarrow Jet identification

1987/88

P. Baldi, P. Sadowski, D. Whiteson

First community Paper

Machine Learning Landscape of TopTagging G. Kasieczka, et al.

2019

104

ction 80 103

Background 10⁵

2019

First attempts at "understanding" neural networks

Deep Thinking

J. Thaler

First HEP NN papers

Track finding Denby (LAL, Orsay) '87 Peterson (Lund) '88 \rightarrow Jet identification

1987/88

First community Paper

Machine Learning Landscape of TopTagging G. Kasieczka, et al.

2019

ML for big data in particle physics

Top tagging

Anomaly detection

- B. Dillon et al. [2108.04253]
- **Detector simulation**

E. Buhmann et al. [2112.09709]

Jet calibration & uncertainties

Complete citations $\mathcal{O}(800)$ https://iml-wg.github.io/HEPML-LivingReview/

ML examples and their uncertainties

Classification

Simulations

Unfolding

Jet classification

- How to distinguish **top** from **QCD** jets?
- Immensely important for top & Higgs physics studies

E. Moreno et al. [1909.12285]

Jet classification

- How to distinguish **top** from **QCD** jets?
- Immensely important for top & Higgs physics studies
- Standard supervised classification task

E. Moreno et al. [1909.12285]

Jet representation I

Pooling layer

 \rightarrow Invariance

G. Kasieczka et al. [1701.08784]

Our image ain't a very good image... No continuity, no edges, no cats....

Jet representation II

How to represent a graph

Image vs Graph

pixels neighbouring pixel \rightarrow node

 \rightarrow neighbouring node (graph edges)

CNN

$$\rightarrow \text{edge convolution} \overrightarrow{x}'_{i} = \frac{1}{k} \sum_{j=1}^{k} h_{\Theta}(\overrightarrow{x}_{i}, \overrightarrow{x}_{i_{j}} - \overrightarrow{x}_{i})$$

The ML landscape of top taggers

(a) ParticleNet

H. Qu, L. Gouskos [1902.08570]

Where are the uncertainties?

Difference in performance for various different approaches!

A perfect network has learned the likelihood ratio $\frac{p(x \mid top)}{p(x \mid QCD)}$

Classification loss function

$$\mathscr{L} = \sum_{x_i} -\log C(x_i) y_i - \log(1 - C(x_i)) (1 - y_i)$$

$$= -\int dx p_{top}(x) \log C(x) + p_{QCD} \log(1 - C(x))$$
Variance yields $\rightarrow \frac{p_{top}(x)}{p_{QCD}(x)} = \frac{C(x)}{1 - C(x)}$

A perfect network has learned the likelihood ratio $\frac{p(x \mid top)}{p(x \mid QCD)}$

Classification loss function

$$\mathscr{L} = \sum_{x_i} -\log C(x_i) y_i - \log(1 - C(x_i)) (1 - y_i)$$

$$= -\int dx p_{top}(x) \log C(x) + p_{QCD} \log(1 - C(x))$$
Variance yields $\rightarrow \frac{p_{top}(x)}{p_{QCD}(x)} = \frac{C(x)}{1 - C(x)}$

A perfect network has learned the likelihood ratio $\frac{p(x \mid top)}{p(x \mid QCD)}$

A suboptimal network will label more tops "wrong"

Classification loss function

$$\mathscr{L} = \sum_{x_i} -\log C(x_i) y_i - \log(1 - C(x_i)) (1 - y_i)$$

$$= -\int dx p_{top}(x) \log C(x) + p_{QCD} \log(1 - C(x))$$
Variance yields $\rightarrow \frac{p_{top}(x)}{p_{QCD}(x)} = \frac{C(x)}{1 - C(x)}$

A perfect network has learned the likelihood ratio $\frac{p(x \mid top)}{p(x \mid QCD)}$

A suboptimal network will label more tops "wrong"

Applies to prediction & data!

Equivalent to poor efficiency in

$$p(data \mid \theta, \nu) = \prod_{i=1}^{n_{bins}} P\left(n_i \mid s_i(\theta, \nu) \cdot \epsilon_i(\nu) + b_i(\nu)\right) P\left(\nu \mid aux\right)$$

What is the network supposed to learn?

Classification loss function

$$\mathscr{L} = \sum_{x_i} -\log C(x_i) y_i - \log(1 - C(x_i)) (1 - y_i)$$

$$= -\int dx p_{top}(x) \log C(x) + p_{QCD} \log(1 - C(x))$$
Variance yields $\rightarrow \frac{p_{top}(x)}{p_{QCD}(x)} = \frac{C(x)}{1 - C(x)}$

A perfect network has learned the likelihood ratio $\frac{p(x \mid top)}{p(x \mid QCD)}$

A suboptimal network will label more tops "wrong"

Applies to prediction & data!

Equivalent to poor efficiency in

$$p(data \mid \theta, \nu) = \prod_{i=1}^{n_{bins}} P\left(n_i \mid s_i(\theta, \nu) \cdot \epsilon_i(\nu) + b_i(\nu)\right) P\left(\nu \mid aux\right)$$

What is the network supposed to learn?

Classification loss function

$$\mathscr{L} = \sum_{x_i} -\log C(x_i) y_i - \log(1 - C(x_i)) (1 - y_i)$$

$$= -\int dx p_{top}(x) \log C(x) + p_{QCD} \log(1 - C(x))$$
Variance yields $\rightarrow \frac{p_{top}(x)}{p_{QCD}(x)} = \frac{C(x)}{1 - C(x)}$

A perfect network has learned the likelihood ratio $\frac{p(x \mid top)}{1 + 1}$ $p(x \mid QCD)$

A suboptimal network will label more tops "wrong"

Applies to prediction & data!

Equivalent to poor efficiency in

$$p(data \mid \theta, \nu) = \prod_{i=1}^{n_{bins}} P\left(n_i \mid s_i(\theta, \nu) \cdot \epsilon_i(\nu) + b_i(\nu)\right) P\left(\nu \mid aux.\right)$$

The result is not optimal - but still correct!

ML examples and their uncertainties

Classification

No uncertainty needed

Simulations

Unfolding

Event generation at the LHC

Monte carlo event generation

1. Generate phase space points

 \rightarrow set of four-momenta p_i

2. Calculate event weight

3. Unweighting * keep events with $\frac{w_i}{w_{\text{max}}} > r \in [0,1]$

17

Monte carlo event generation

1. Generate phase space points

 \rightarrow set of four-momenta p_i

2. Calculate event weight

3. Unweighting * keep events with $\frac{w_i}{w_{\text{max}}} > r \in [0,1]$

*** Bottlenecks**

Slow matrix element calculation 1. Complexity grows exponentially with

- # final state particles
- Precision (LO, NLO, NNLO, ...)

Low **unweighting** efficiency 2.

• Discard most events if $w_i \ll w_{max}$ • Optimize phase space mapping

$$\Rightarrow J(p_i(r)) = (f \times \mathscr{M})^{-1}$$

Approximating Amplitudes

- Approximate squared matrix element with NN
- Regression problem
- Minimize distance between prediction and truth $\Rightarrow \mathscr{L} = \left(NN(p_i) - \mathscr{M}(p_i)\right)^2$
- + Generalization of interpolation
- + Better scaling than grids for large dimensions
- Open questions
 - Limited precision ?
 - Overtraining vs interpolation ?

Problem

Wrong estimation leads to wrong prediction!

 \rightarrow assign uncertainties

Badger, Bullock [2002.07516]

Estimating uncertainties on amplitude predictions

Extend standard network **output** to include uncertainty 1.

$$\rightarrow (\mu(x), \sigma(x))$$

• Gaussian approximation

•
$$\mathscr{L}_{\text{Gauss}} = -\log(\sqrt{2\pi\sigma(x)})$$

- Captures only $\mathbf{p}(\mathbf{y} | \mathbf{x}, \mathbf{w})$ for fixed network weights
- *w* varies for different trainings!

$$\frac{1}{2} \frac{(\mu(x) - y)^2}{\sigma(x)^2}$$

Estimating uncertainties on amplitude predictions

Estimating $\mathbf{p}(\mathbf{y} | \mathbf{x}, \mathbf{D})$ with training dataset D 2. $\cdot p(y|x,D) = \int dw \ p(y|x,w) \ p(w|D)$ \mathscr{L}_{Gauss} BNN $q(\omega)$ х

Bayesian Neural Network

Ensemble of networks

$$\mathscr{L}_{\text{BNN}} = \int d\omega \ q(\omega) \ \sum_{\text{points } j} \left[\left| \overline{A_j}(\omega) - A_j^{(\text{truth})} \right|^2 / 2\sigma_{\text{stoch},j}(\omega)^2 + \log \sigma_{\text{stoch},j}(\omega) \right] + \text{KL}[q(\omega), p(\omega)]$$

Results BNN

Multi-loop calculations with NNs

Precision predictions based on loop diagrams

Analytic expression for loop amplitude

$$G = \int_{-\infty}^{\infty} \left(\prod_{l=1}^{L} \frac{\mathrm{d}^{D} k_{l}}{i\pi^{\frac{D}{2}}} \right) \prod_{j=1}^{N} \frac{1}{(q_{j}^{2} - m_{j}^{2} + i\delta)^{\nu_{j}}}$$
$$= \int_{0}^{1} \prod_{j=1}^{N-1} \mathrm{d} x_{j} x_{j}^{\nu_{j}-1} \frac{U^{\nu-(L+1)D/2}}{F^{\nu-LD/2}} = \int_{0}^{1} \prod_{j=1}^{N-1} \mathrm{d} x_{j} I(\vec{x})$$
Rewrite with

Feynman parameters

Still contains singularities

Multi-loop calculations with NNs

Precision predictions based on loop diagrams

Analytic expression for loop amplitude

$$G = \int_{-\infty}^{\infty} \left(\prod_{l=1}^{L} \frac{\mathrm{d}^{D} k_{l}}{i\pi^{\frac{D}{2}}} \right) \prod_{j=1}^{N} \frac{1}{(q_{j}^{2} - m_{j}^{2} + i\delta)^{\nu_{j}}}$$
$$= \int_{0}^{1} \prod_{j=1}^{N-1} \mathrm{d} x_{j} x_{j}^{\nu_{j}-1} \frac{U^{\nu-(L+1)D/2}}{F^{\nu-LD/2}} = \int_{0}^{1} \prod_{j=1}^{N-1} \mathrm{d} x_{j} I(\vec{x})$$
Rewrite with

Feynman parameters

Still contains singularities

Solved by contour deformation due to Cauchy's theorem

$$\int_{0}^{1} \prod_{j=1}^{N} \mathrm{d}x_{j} I(\overrightarrow{x}) = \int_{0}^{1} \prod_{j=1}^{N} \mathrm{d}x_{j} \det\left(\frac{\partial \overrightarrow{z}(\overrightarrow{x})}{\partial \overrightarrow{x}}\right) I(\overrightarrow{z}(\overrightarrow{x}))$$

Optimal parametrization = minimal variance

Integration with normalizing flows

Numeric evaluation of integral
$$G = \int_{0}^{1} dx_{j} \det\left(\frac{\partial \vec{z}(\vec{x})}{\partial \vec{x}}\right) I(\vec{z}(\vec{x}))$$

Parametrization $\rightarrow z = INN(x)$
Minimize variance $\rightarrow loss \mathscr{L} = \sigma_{n}^{2} = \frac{1}{n-1} \sum_{i=1}^{n} \left| \det\left(\frac{\partial \vec{z}(\vec{x}_{(i)})}{\partial \vec{x}_{(i)}}\right) I(\vec{z}(\vec{x}_{(i)})) - \langle I \rangle \right|^{2}$

- + Bijective mapping
- + Tractable Jacobian
- + Combine many blocks

Normalizing flow networks

Multi-loop calculations with INNs Profiting from the Jacobian

Precision predictions based on loop diagrams

Analytic expression for loop amplitude

$$G = \int_{-\infty}^{\infty} \left(\prod_{l=1}^{L} \frac{\mathrm{d}^{D} k_{l}}{i\pi^{\frac{D}{2}}} \right) \prod_{j=1}^{N} \frac{1}{(q_{j}^{2} - m_{j}^{2} + i\delta)^{\nu_{j}}}$$
$$= \int_{0}^{1} \prod_{j=1}^{N-1} \mathrm{d} x_{j} x_{j}^{\nu_{j}-1} \frac{U^{\nu-(L+1)D/2}}{F^{\nu-LD/2}} = \int_{0}^{1} \prod_{j=1}^{N-1} \mathrm{d} x_{j} I(\vec{x})$$
ewrite with

Rewrite with Feynman parameters

Still contains singularities

Solved by contour deformation due to Cauchy's theorem

$$\int_{0}^{1} \prod_{j=1}^{N} \mathrm{d}x_{j} I(\overrightarrow{x}) = \int_{0}^{1} \prod_{j=1}^{N} \mathrm{d}x_{j} \, \det\left(\frac{\partial \overrightarrow{z}(\overrightarrow{x})}{\partial \overrightarrow{x}}\right) I(\overrightarrow{z}(\overrightarrow{x}))$$

Optimal parametrization = minimal variance

Turn it into an ML Problem

Parametrization $\rightarrow z = INN(x)$ Variance $\rightarrow \mathscr{L}$

Better network \rightarrow smaller variance

Monte carlo event generation

1. Generate phase space points

 \rightarrow set of four-momenta p_i

2. Calculate event weight

3. Unweighting * keep events with $\frac{W_i}{1} > r \in [0,1]$ *w*max

*** Bottlenecks**

Slow matrix element calculation Complexity grows exponentially with

- # final state particles
- Precision (LO, NLO, NNLO, ...)

Low **unweighting** efficiency 2.

• Discard most events if $w_i \ll w_{max}$ • Optimize phase space mapping

$$\Rightarrow J(p_i(r)) = (f \times \mathcal{M})^{-1}$$

Phase space sampling with generative networks (GAN, VAE, NF)

Normalizing flows Invertible networks for complex transformations

- + Bijective mapping
- + Tractable Jacobian $\rightarrow p_x(x) = p_z(z) \cdot J_{NN}$
- + Fast evaluation in both direction

Training on density t(x) \rightarrow Minimize difference

$$\mathscr{L} = \log p_x(x)/t(x)$$
$$= \log p_z(z(x)) J_{NN}/t(x)$$

 $\mathcal{L} = \log p(\theta | x)$ $= \log p(z | \theta) + \log J_{NN} + p(\theta)$

Normalizing flows Invertible networks for complex transformations

- + Bijective mapping
- + Tractable Jacobian $\rightarrow p_x(x) = p_z(z) \cdot J_{NN}$
- + Fast evaluation in both direction

Training on density t(x) \rightarrow Minimize difference

> $\mathscr{L} = \log p_x(x) / t(x)$ $= \log p_z(z(x)) J_{NN} / t(x)$

Training on samples *x* \rightarrow Maximize the log-likelihood

$$\mathcal{L} = \log p(\theta | x)$$
$$= \log p(z | \theta) + \log J_{NN} + p(\theta)$$

Putting flows to work **Event generation**

• Train normalizing flow on 4-momenta • Include symmetries in feature representation • Excellent performance for direct output

Bayesian Neural Network

Ensemble of networks

$$\mathscr{L} = \mathscr{L}_{INN} + KL_{prid}$$
$$= \sum_{n=1}^{N} \langle \log p_X(x_n) \rangle$$

ior

 $\langle \theta \rangle_{\theta \sim q_{\Phi}(\theta)} - KL(q_{\Phi}(\theta), p(\theta))$

Bayesian generative networks

 \Rightarrow BINN captures uncertainty related to convergence and statistical uncertainties \Rightarrow BINN does not capture lack of expressiveness

Challenges for normalizing flows

- Narrow features
- Topological holes (eg ΔR cuts)
 - no bijecive mapping possible
 - can only be approximated

Reweighting for Precision

Classifier loss

$$\mathscr{L} = -\sum_{x \sim p_{data}} \log(D(x)) - \sum_{x \sim p_{INN}} \log(1 - D(x))$$
$$= -\int dx \, p_{data}(x) \, \log(D(x)) + p_{INN}(x) \, \log(1 - D(x))$$

Upon convergence obtain reweighting factor

$$\Rightarrow \frac{p_{data}(x)}{p_{INN}(x)} = \frac{D(x)}{1 - D(x)} = w_D$$

- Improve precision through reweighting
- Quantifies deviation

Reweighting for Precision

Classifier loss

$$\mathscr{L} = -\sum_{x \sim p_{data}} \log(D(x)) - \sum_{x \sim p_{INN}} \log(1 - D(x))$$
$$= -\int dx \, p_{data}(x) \, \log(D(x)) + p_{INN}(x) \, \log(1 - D(x))$$

Upon convergence obtain reweighting factor

$$\Rightarrow \frac{p_{data}(x)}{p_{INN}(x)} = \frac{D(x)}{1 - D(x)} = w_D$$

- Improve precision through reweighting
- Quantifies deviation

Reweighting for Precision

Classifier loss

$$\mathscr{L} = -\sum_{x \sim p_{data}} \log(D(x)) - \sum_{x \sim p_{INN}} \log(1 - D(x))$$
$$= -\int dx \, p_{data}(x) \, \log(D(x)) + p_{INN}(x) \, \log(1 - D(x))$$

Upon convergence obtain reweighting factor

$$\Rightarrow \frac{p_{data}(x)}{p_{INN}(x)} = \frac{D(x)}{1 - D(x)} = w_D$$

- Improve precision through reweighting
- Quantifies deviation

Putting flows to work Event generation

- Basis: INN
 - Phase space symmetries in architecture
- Control via classifier D $\frac{p_{\text{truth}}(x)}{p_{\text{INN}}(x)} = \frac{D(x)}{1 - D(x)}$
- Precision via reweighting
 - Correct deviations of p_{INN}
- ➡ Uncertainty estimation via Bayesian NN
- ➡ Uncertainty propagation via conditioning

ML examples and their uncertainties

Classification

Amplitude estimation -> yes (BNN) Loop integration -> no Phase space sampling -> no Data compression -> yes (BNN & classifier) 36

No uncertainty needed

Simulations

Unfolding

- **Highdimensional**
- Bin independent
- \square Statistically well defined

cINN unfolding

Given a reconstructed event: What is the probability distribution at particle level?

Training

Unfolding

38

Inverting inclusive distributions

$pp > WZ > q\bar{q}l^+l^- + ISR \rightarrow 2/3/4$ jet events

Evaluate exclusive 2/3/4 jet events

Migh-dimensional

M. Bellagente et al. [2006.06685]

M Bin-independent

☐ Statistically well defined ?

Event-wise unfolding

Statistically well defined

No deterministic mapping! Check calibration of probability density for individual event unfolding

Migh-dimensional

M. Bellagente et al. [2006.06685]

M Bin-independent

ML examples and their uncertainties

Classification

Amplitude estimation -> yes (BNN) Loop integration -> no Phase space sampling -> no Data compression -> yes (BNN & classifier) 41

No uncertainty needed

Simulations

Unfolding

Probability distributions from generative networks Uncertainties on pdfs?

Open questions towards HL-LHC A biased selection

- Facing **25 times** the amount of data
- What do we need to understand the data? (*read*: find new physics)

ML can help tackle all of these problems. Uncertainties included.

• Optimized analysis for high-dimensional data

- Likelihood free inference
 - Optimal Observables, Unfolding
- Anomaly detection •
- Uncertainty treatment

