NewSolChem Nouveau solveur pour la chimie à l'équilibre

Christophe Bourel

Jérôme Carrayrou, Carole Rosier, Philippe Ackerer

23-25 mai 2022

Conférence Needs Clermont-Ferrand

A piece of a global problem

Reactive transport in shallow aquifers

A piece of a global problem

Reactive transport in shallow aquifers

Involved processes

- Unsaturated water flow in porous media
- Transport of chemical species by the water
- Chemical reaction : kinetic or at the equilibrium

Difficulties: high numerical cost

Unsaturated water flow in porous media

Classically described by **3d-Richards equations** \hookrightarrow non-linear, degenerative, 3d

Difficulties: high numerical cost

Unsaturated water flow in porous media

Classically described by **3d-Richards equations** \hookrightarrow non-linear, degenerative, 3d

Transport of chemical species by the water

For each specie \hookrightarrow non-linear, 3d

Difficulties: high numerical cost

Unsaturated water flow in porous media

Classically described by **3d-Richards equations** \hookrightarrow non-linear, degenerative, 3d

Transport of chemical species by the water

For each specie \hookrightarrow non-linear, 3d

Chemical reactions

• At the equilibrium: non-linear algebrical system

 $\hookrightarrow \text{ill-conditioned}$

 \hookrightarrow hold at each mesh of the 3d domain

Kinetic: not yet

How to deal with those dificulties

New strategy to solve the chemical equilibrium

- \hookrightarrow avoid the problem "ill-conditioned"
- \hookrightarrow reduce the computational time

How to deal with those dificulties

New strategy to solve the chemical equilibrium

- \hookrightarrow avoid the problem "ill-conditioned"
- \hookrightarrow reduce the computational time

Aquifer large and shallow

• For the flow/transport:

 \hookrightarrow more 2d than 3d ?

 \hookrightarrow what for the recharge ?

• For the chemical part:

 \hookrightarrow reduce the number of mesh ?

Unsaturated flow in porous media: Richards equation

Richards Equation in]0, $T[\times \Omega_{3d}]$

$$\frac{\partial s(P)}{\partial t} - \operatorname{div} \left(k(P) \nabla H \right) = 0, \qquad + \text{ Boundary conditions,}$$

P: **pressure**, H = P - z: **hydraulic head** *s*(*P*): water saturation, k(P): hydraulic conductivity.

Unsaturated flow in porous media: Richards equation

Richards Equation in]0, $T[\times\Omega_{3d}]$ $\frac{\partial s(P)}{\partial t} - \operatorname{div}(k(P)\nabla H) = 0, + \operatorname{Boundary conditions},$ *P*: **pressure**, H = P - z: **hydraulic head** s(P): water saturation, k(P): hydraulic conductivity.

Objective: Propose a simplified model for shallow aquifers

- With the same dominant components than 3d-Richards flow
- For a large range of time scale

Short-time scale: 1d vertical Richards problem

$$\frac{\partial s(\overline{P}_0)}{\partial \overline{t}} - \frac{\partial}{\partial \overline{z}} \left(\overline{k}(\overline{P}_0) \frac{\partial \overline{H}_0}{\partial \overline{z}} \right) = 0 \tag{1}$$

No time for the water to have a significant horizontal displacement.

Short-time scale: 1d vertical Richards problem

$$\frac{\partial s(\overline{P}_0)}{\partial \overline{t}} - \frac{\partial}{\partial \overline{z}} \left(\overline{k}(\overline{P}_0) \frac{\partial \overline{H}_0}{\partial \overline{z}} \right) = 0 \tag{1}$$

No time for the water to have a significant horizontal displacement.

Long-time scale: 2d horizontal "Dupuit's problem"

$$\begin{cases} \overline{H}_0(\overline{t}, \overline{x}, \overline{z}) = \overline{H}_0(\overline{t}, \overline{x}) \\ + 2d \text{ problem characterizing } \overline{H}_0 \end{cases}$$
(2)

Vertical flow seems instantaneous: stationary state is reached.

Short-time scale: 1d vertical Richards problem

$$\frac{\partial s(\overline{P}_0)}{\partial \overline{t}} - \frac{\partial}{\partial \overline{z}} \left(\overline{k}(\overline{P}_0) \frac{\partial \overline{H}_0}{\partial \overline{z}} \right) = 0 \tag{1}$$

No time for the water to have a significant horizontal displacement.

Long-time scale: 2d horizontal "Dupuit's problem"

$$\begin{cases} \overline{H}_0(\overline{t}, \overline{x}, \overline{z}) = \overline{H}_0(\overline{t}, \overline{x}) \\ + 2d \text{ problem characterizing } \overline{H}_0 \end{cases}$$
(2)

Vertical flow seems instantaneous: stationary state is reached.

Conclusion: 3d-Richards problem \rightarrow effective equations (1)-(2).

Short-time scale: 1d vertical Richards problem

$$\frac{\partial s(\overline{P}_0)}{\partial \overline{t}} - \frac{\partial}{\partial \overline{z}} \left(\overline{k}(\overline{P}_0) \frac{\partial \overline{H}_0}{\partial \overline{z}} \right) = 0 \tag{1}$$

No time for the water to have a significant horizontal displacement.

Long-time scale: 2d horizontal "Dupuit's problem"

$$\begin{cases} \overline{H}_0(\overline{t}, \overline{x}, \overline{z}) = \overline{H}_0(\overline{t}, \overline{x}) \\ + 2d \text{ problem characterizing } \overline{H}_0 \end{cases}$$
(2)

Vertical flow seems instantaneous: stationary state is reached.

Conclusion: 3d-Richards problem \rightarrow effective equations (1)-(2).

Idea:

Propose a simplier problem \longrightarrow effective equations (1)-(2).

Coupled problem \longrightarrow effective equations (1)-(2).

With some rain and infiltration

The same kind of model coupled with transport

Improvements

Aquifer large and shallow: Coupled Dupuit-Richards problem • For the flow/transport:

- \hookrightarrow Coupling 2d with 1ds (instead of 3d)
- \hookrightarrow Good approximation at every time scale,
- For the chemical part:

Improvements

Aquifer large and shallow: Coupled Dupuit-Richards problem

- For the flow/transport:
 - \hookrightarrow Coupling 2d with 1ds (instead of 3d)
 - \hookrightarrow Good approximation at every time scale,
- For the chemical part:

 \hookrightarrow reduce the number of mesh below z = l

Improvements

Aquifer large and shallow: Coupled Dupuit-Richards problem

- For the flow/transport:
 - \hookrightarrow Coupling 2d with 1ds (instead of 3d)
 - \hookrightarrow Good approximation at every time scale,
- For the chemical part:

 \hookrightarrow reduce the number of mesh below z = I

New strategy to solve the chemical equilibrium

 \hookrightarrow avoid the problem "ill-conditioned"

Chemical reactions at thermodynamic equilibrium

Equilibrium reactions :

$$\sum_{j=1}^{n_p} \mu_{ij} \, \chi_j \rightleftharpoons \mathcal{C}_i \qquad \qquad i = 1, ..., n_s$$

 χ_j : components (of cardinal n_p) C_i : secondary species (of cardinal n_s) μ : stoichiometric matrix

$$T_j = \sum_{i=1}^{n_s} \mu_{ij} \, \mathcal{C}_i$$

Mass conservation
$$\mathcal{T}_j = \sum_{i=1}^{n_s} \mu_{ij} \, \mathcal{C}_i$$

Non-linear system of equations:

We search $\chi \in \mathbb{R}^{n_p}$ such that

$$\sum_{i=1}^{n_s} \mu_{ij}(\kappa_i \prod_{k=1}^{n_p} \chi_k^{\mu_{ik}}) - T_j = 0$$

for all $j \in \{1, \ldots, n_p\}$

Non-lineair problem

We search $\chi \in \mathbb{R}^{n_p}$ such that

$$F(\chi)=0,$$

with $F : \mathbb{R}^{n_p} \to \mathbb{R}^{n_p}$ (non-linear)

Non-lineair problem

We search $\chi \in \mathbb{R}^{n_p}$ such that

$$F(\chi)=0,$$

with $F : \mathbb{R}^{n_p} \to \mathbb{R}^{n_p}$ (non-linear)

Strategies:

• Classical method : Newton method

Non-lineair problem

We search $\chi \in \mathbb{R}^{n_p}$ such that

$$F(\chi)=0,$$

with $F : \mathbb{R}^{n_p} \to \mathbb{R}^{n_p}$ (non-linear)

Strategies:

- Classical method : Newton method
 - Problem : needs the jacobian matrix, possibly ill-conditioned

Non-lineair problem

We search $\chi \in \mathbb{R}^{n_p}$ such that

$$F(\chi)=0,$$

with $F : \mathbb{R}^{n_p} \to \mathbb{R}^{n_p}$ (non-linear)

Strategies:

- Classical method : Newton method
 - Problem : needs the jacobian matrix, possibly ill-conditioned
 - Problem : high computational time, even non convergence

Non-lineair problem

We search $\chi \in \mathbb{R}^{n_p}$ such that

$$F(\chi)=0,$$

with $F : \mathbb{R}^{n_p} \to \mathbb{R}^{n_p}$ (non-linear)

Strategies:

- Classical method : Newton method
 - Problem : needs the jacobian matrix, possibly ill-conditioned
 - Problem : high computational time, even non convergence
- Alternative : Positive continuous fraction method (PCF)

Positive continuous fraction method (PCF)

Problem reformulation:

$$T_{j} = \sum_{i=1}^{n_{s}} \mu_{ij} C_{i} = \sum_{\mu_{ij} > 0} \mu_{ij} C_{i} + \sum_{\mu_{ij} < 0} \mu_{ij} C_{i}$$
$$\iff$$
$$SR_{i}(\chi) = SP_{i}(\chi)$$

Sum of reactants:
$$SR_j = \begin{cases} \sum_{\mu_{ij}>0} \mu_{ij} C_i & T_j \ge 0\\ |T_j| + \sum_{\mu_{ij}>0} \mu_{ij} C_i & T_j < 0 \end{cases}$$

Sum of products:
$$SP_j = \begin{cases} T_j + \sum_{\mu_{ij} < 0} |\mu_{ij}| C_i & T_j \ge 0\\ \sum_{\mu_{ij} < 0} |\mu_{ij}| C_i & T_j < 0 \end{cases}$$

14 / 15

Fix-point problem

We build a sequence χ_j^n such that

$$\chi_j^{n+1} = \chi_j^n \left(\frac{SP_j(\chi^n)}{SR_j(\chi^n)}\right)^{\frac{1}{\mu_{i_0j}}}$$

Fix-point problem

We build a sequence χ_i^n such that

$$\chi_j^{n+1} = \chi_j^n \left(\frac{SP_j(\chi^n)}{SR_j(\chi^n)}\right)^{\frac{1}{\mu_{i_0j}}}$$

- Advantage: no Jacobian matrix needed
- Problem: high computational time, even non convergence

Fix-point problem

We build a sequence χ_i^n such that

$$\chi_j^{n+1} = \chi_j^n \left(\frac{SP_j(\chi^n)}{SR_j(\chi^n)}\right)^{\frac{1}{\mu_{i_0j}}}$$

- Advantage: no Jacobian matrix needed
- Problem: high computational time, even non convergence

• Strategy:

coupling with methods of acceleration of the convergence rate

- Anderson acceleration
- Minimale polynomiale extrapolation
- Reduced rank extrapolation