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A piece of a global problem
Reactive transport in shallow aquifers

Involved processes
Unsaturated water flow in porous media

Transport of chemical species by the water

Chemical reaction : kinetic or at the equilibrium
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Difficulties: high numerical cost

Unsaturated water flow in porous media

Classically described by 3d-Richards equations
↪→ non-linear, degenerative, 3d

Transport of chemical species by the water

For each specie
↪→ non-linear, 3d

Chemical reactions
At the equilibrium: non-linear algebrical system

↪→ ill-conditioned

↪→ hold at each mesh of the 3d domain

Kinetic: not yet
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How to deal with those dificulties

New strategy to solve the chemical equilibrium

↪→ avoid the problem “ill-conditioned”
↪→ reduce the computational time

Aquifer large and shallow
For the flow/transport:

↪→ more 2d than 3d ?

↪→ what for the recharge ?

For the chemical part:

↪→ reduce the number of mesh ?
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Unsaturated flow in porous media: Richards equation

z

x

Richards Equation in ]0,T [×Ω3d

∂s(P)

∂t
− div

(
k(P)∇H

)
= 0, + Boundary conditions,

P: pressure, H = P − z : hydraulic head
s(P): water saturation, k(P): hydraulic conductivity.
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z

x

Richards Equation in ]0,T [×Ω3d

∂s(P)

∂t
− div

(
k(P)∇H

)
= 0, + Boundary conditions,

P: pressure, H = P − z : hydraulic head
s(P): water saturation, k(P): hydraulic conductivity.

Objective: Propose a simplified model for shallow aquifers
With the same dominant components than 3d-Richards flow

For a large range of time scale
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Dominant components of the flow

Short-time scale: 1d vertical Richards problem

∂s(P0)

∂t
− ∂

∂z

(
k(P0)

∂H0

∂z

)
= 0 (1)

No time for the water to have a significant horizontal displacement.

Long-time scale: 2d horizontal “Dupuit’s problem”{
H0(t, x , z) = H0(t, x)

+ 2d problem characterizing H0

(2)

Vertical flow seems instantaneous: stationary state is reached.

Conclusion: 3d-Richards problem −→ effective equations (1)-(2).

Idea:
Propose a simplier problem −→ effective equations (1)-(2).
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Coupled model in physical variables

l = interface saturated/unsaturated

Flow in Ω+
l :

1d-Richards problem

∂s(P)

∂t
− ∂

∂z

(
k(P)

∂H

∂z

)
= 0

Γsoil

Γl

Ω+
l

Ω−
l

Flow in Ω−
l :

Dupuit-type model{
H(t, x , z) = H(t, x)

+ 2d problem characterizing H

Coupled problem −→ effective equations (1)-(2).
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With some rain and infiltration
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The same kind of model coupled with transport
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Improvements

Aquifer large and shallow: Coupled Dupuit-Richards problem
For the flow/transport:

↪→ Coupling 2d with 1ds (instead of 3d)

↪→ Good approximation at every time scale,

For the chemical part:

↪→ reduce the number of mesh below z = l

New strategy to solve the chemical equilibrium

↪→ avoid the problem “ill-conditioned”
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Chemical reactions at thermodynamic equilibrium

Equilibrium reactions :

np∑
j=1

µij χj 
 Ci i = 1, ..., ns

χj : components (of cardinal np)
Ci : secondary species (of cardinal ns)
µ: stoichiometric matrix
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Mathematical model

Law of mass action

Ci = Ki

np∏
k=1

χk
µik

K : equilibrium constant

Mass conservation

Tj =
ns∑
i=1

µij Ci

Non-linear system of equations:

We search χ ∈ Rnp such that

ns∑
i=1

µij(Ki

np∏
k=1

χk
µik )− Tj = 0

for all j ∈ {1, . . . , np}
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Mathematical model

Non-lineair problem

We search χ ∈ Rnp such that

F (χ) = 0,

with F : Rnp → Rnp (non-linear)

Strategies:

Classical method : Newton method

Problem : needs the jacobian matrix, possibly ill-conditioned
Problem : high computational time, even non convergence

Alternative : Positive continuous fraction method (PCF)
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Positive continuous fraction method (PCF)

Problem reformulation:

Tj =
ns∑
i=1

µij Ci =
∑
µij>0

µij Ci +
∑
µij<0

µij Ci

⇐⇒
SRj(χ) = SPj(χ)

Sum of reactants: SRj =

{∑
µij>0 µij Ci Tj ≥ 0

|Tj |+
∑
µij>0 µij Ci Tj < 0

Sum of products: SPj =

{
Tj +

∑
µij<0 |µij | Ci Tj ≥ 0∑

µij<0 |µij | Ci Tj < 0
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Fix-point problem

We build a sequence χn
j such that

χn+1
j = χn

j

(
SPj(χ

n)

SRj(χn)

) 1
µi0 j

Advantage: no Jacobian matrix needed

Problem: high computational time, even non convergence

Strategy:
coupling with methods of acceleration of the convergence rate

Anderson acceleration
Minimale polynomiale extrapolation
Reduced rank extrapolation
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