NewSolChem
Nouveau solveur pour la chimie a I’équilibre

Christophe Bourel
Jérdme Carrayrou, Carole Rosier, Philippe Ackerer
23-25 mai 2022

Conférence Needs Clermont-Ferrand




A piece of a global problem

Reactive transport in shallow aquifers




A piece of a global problem

Reactive transport in shallow aquifers

Involved processes
@ Unsaturated water flow in porous media

@ Transport of chemical species by the water

@ Chemical reaction : kinetic or at the equilibrium



Difficulties: high numerical cost
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Classically described by 3d-Richards equations
— non-linear, degenerative, 3d
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Difficulties: high numerical cost

Unsaturated water flow in porous media

Classically described by 3d-Richards equations
— non-linear, degenerative, 3d

Transport of chemical species by the water

For each specie
— non-linear, 3d

Chemical reactions
@ At the equilibrium: non-linear algebrical system
< ill-conditioned
< hold at each mesh of the 3d domain

o Kinetic: not yet
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New strategy to solve the chemical equilibrium

< avoid the problem “ill-conditioned”
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How to deal with those dificulties

New strategy to solve the chemical equilibrium

— avoid the problem “ill-conditioned"
— reduce the computational time

Aquifer large and shallow
@ For the flow/transport:
< more 2d than 3d ?
< what for the recharge ?
@ For the chemical part:

< reduce the number of mesh ?
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Unsaturated flow in porous media: Richards equation

Richards Equation in |0, T[xQ3,4
os(P) . o
5 div (k(P)VH) =0, + Boundary conditions,

P: pressure, H = P — z: hydraulic head
s(P): water saturation, k(P): hydraulic conductivity.
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Unsaturated flow in porous media: Richards equation

Richards Equation in [0, T[xQ34
0s(P)
ot

—div (k(P) VH) =0, + Boundary conditions,

P: pressure, H = P — z: hydraulic head
s(P): water saturation, k(P): hydraulic conductivity.

Objective: Propose a simplified model for shallow aquifers
@ With the same dominant components than 3d-Richards flow

@ For a large range of time scale



Dominant components of the flow

Short-time scale: 1d vertical Richards problem
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No time for the water to have a significant horizontal displacement.
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Dominant components of the flow

Short-time scale: 1d vertical Richards problem

85(50) 0 < (o) 8H0> _0 (1)

ot oz

No time for the water to have a significant horizontal displacement.

Long-time scale: 2d horizontal “Dupuit’s problem”
+ 2d problem characterizing Hy

{ﬁo(f, x,Z) = Ho(E, %) @

Vertical flow seems instantaneous: stationary state is reached.
Conclusion: 3d-Richards problem —; effective equations (1)-(2).

Idea:

. Propose a simplier problem — effective equations (1)-(2). n
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Coupled model in physical variables

| = interface saturated/unsaturated

Flow in Q: 1d-Richards problem

ds(P) 0 (k(P)aH):O

ot 0z 0z

Qf

Flow in Q;": Dupuit-type model

{H(t,x,z) = H(t,x)

+ 2d problem characterizing H

Coupled problem — effective equations (1)-(2).



With some rain and infiltration
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The same kind of model coupled with transport

il
Concentration of specie 1 : —
— hsoil I — oy
Concentration of specie 2 : |
0
-1
-2 ) 05

0

-3 4
-4
-5

0 10 20



Improvements

Aquifer large and shallow: Coupled Dupuit-Richards problem
@ For the flow/transport:

— Coupling 2d with 1ds (instead of 3d)

— Good approximation at every time scale,

@ For the chemical part:
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Impro s

Aquifer large and shallow: Coupled Dupuit-Richards problem
@ For the flow/transport:

— Coupling 2d with 1ds (instead of 3d)

— Good approximation at every time scale,

@ For the chemical part:

< reduce the number of mesh below z = /

New strategy to solve the chemical equilibrium

— avoid the problem “ill-conditioned”



Chemical reactions at thermodynamic equilibrium

Equilibrium reactions :

Mp
E ,u,ij;‘C,' i=1, .., n;g
=1

Xj: components (of cardinal np)
C;: secondary species (of cardinal ny)
w: stoichiometric matrix




Mathematical model

Law of mass action -
Mass conservation

Mp
Ci=Ki || x«"™* &
1l n= e
i=1

K: equilibrium constant




Mathematical model

Law of mass action -
Mass conservation

Mp
Ci=Ki || x«"™* &
1l n= e
i=1

K: equilibrium constant

Non-linear system of equations:
We search y € R" such that

D (K [ xw*) = Tj=0
i=1 k=1

forall je{1,...,n,}
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Mathematical model

Non-lineair problem
We search y € R" such that

F(x) =0,

with F : R" — R (non-linear)

Strategies:
@ Classical method : Newton method

o Problem : needs the jacobian matrix, possibly ill-conditioned
o Problem : high computational time, even non convergence

o Alternative : Positive continuous fraction method (PCF)




Positive continuous fraction method (PCF)

Problem reformulation:

T; = ZNUC—ZHUC+ZMU

i >0 ij <0
<
SRi(x) = SP;(x)

>0 i Ci

Sum of reactants: SR; =
! {lle + 2,50 Hii Ci

Sum of products: SP; = {

T+ 2 u<olmslCi T; >0
2 <o il Ci Tj<0




Fix-point problem

We build a sequence x;' such that

1
n SPi(x") \ *oi
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o Advantage: no Jacobian matrix needed

@ Problem: high computational time, even non convergence




Fix-point problem

We build a sequence x;' such that

n+l _ .n SPj(Xn) Fioi
! 7 \SR;(x")

o Advantage: no Jacobian matrix needed

@ Problem: high computational time, even non convergence

o Strategy:
coupling with methods of acceleration of the convergence rate
o Anderson acceleration
o Minimale polynomiale extrapolation
o Reduced rank extrapolation




