

The implementation of radioluminescent GaN probes for medical physics applications

P. Pittet, Journées thématiques du Réseau Semi-conducteurs June 2-3 2022

nm

From detector to Medical Physics applications

Sem	nico	onductor	based dete	ectors		
Indirect Gap electrical readout			Direct Gap optical readout			
Diode	N	IOSFET	GaN	ZnSe		
Diamar	Diamant		CdTe	CdZnTe		

;	Scintillators (optical readout)							
OSL	TLD		Inorganic scintillators			Organic plastic scintillators		
Al2O3:C	LiF		BGO		LYSO		PVT	PS
BeO	CaF2		Ruby		acene			

	TLD	Diode	MOSFET	Alanine	RL	PSD	<u>ISD</u>
Size	+	+/	+/++	_	++	++	++
Sensitivity	+	++	+	_	++	+/++	
Energy dependence	+	_	_	+	_	++	\cap
Angular dependence	++	-	+	+	++	++	
Dynamic range	++	++	+	_	++	++	++
Calibration	+	++	++	_	-/+	+/++	+/++
procedures, QA,							-/+
stability, robustness,							
size of system, ease							
of operation							
Commercial	++	++	++	++	_	+	\cap
availability							
Online dosimetry	_	++	+	_	++	++	

K. Tanderup et al., Medical Physics, 2013

GaN detector

GaN Radioluminescence

Current On

Electroluminescence

Irradiation On GaN

GaN bulk RL transducer with 300 nm Al backside reflector and a 500 micrometer handler (resin).

GaN Radioluminescence

Current On

Electroluminescence

GaN bulk RL transducer with 300 nm Al backside reflector and a 500 micrometer handler (resin).

Auto-absorption

Auto-absorption

GaN-based dosimetric probe

GaN-based dosimetric probe

Therapeutic X-rays (6 MV)

GaN tranducer gives a linear dosimetric response with no dependence on the accumulated dose

IPHC June 2-3 2022 10

60

Brachytherapy context of QA and IVD

Brachytherapy context of QA and IVD

PDR / HDR afterloader

Gabriel P. Fonseca et al., "In vivo dosimetry in brachytherapy: Requirements and future directions for research, development, and clinical practice", *Physics and Imaging in Radiation Oncology*,16, 2020,

ODSE RATE PER DWELL POSITION

Dose rate in water at any POI can be calculated by TG-43U1 formalism

$$\dot{D}(r,\theta) = S_k \Lambda \frac{G_L(r,\theta)}{G_L(r_0,\theta_0)} g_L(r) F(r,\theta)$$

 S_k Air-kerma strength Λ Dose rate constant in water $G_L(r, \theta)$ Geometry function $g_L(r)$ Radial dose function $F(r, \theta)$ 2D anisotropy function

ANR SECURIDOSE

Steep dose gradient $\rightarrow \odot$ small size

Time resolved measurements $\rightarrow \odot$ direct gap SC

No dose rate dependence of its linear dosimetric respond

GaN bulk RL transducer with 300 nm Al backside reflector and a 500 micrometer handler (resin).

Source position determination in the case of "High Z" point detectors (HZ-PD)

Source

Extended TG43 is used to calculate the response of 4 GaN-based detectors distributed along the treatment channels

Time-resolved dose rate measurements with 4 GaN detectors are used for both dwell time and position determination

Dwell position \rightarrow Correlation (set meas., set TG43_{ext} resp)

P. Guiral et al., Medical Physics, 43, 2016.

Dose perturbation due to GaN transducers (MC simulations)

Limited dose perturbations (~1%) behind the GaN detector on the Source-detector axis

Gynecological applicator instrumented with 4 GaN-based detector for in-vivo quality control

BT Instrumentation challenges

BT On-going research

Path deviation and snaking effect in bended transfer tube

(Eckert & Ziegler BEBIG Co-60 source)

Context

BT Instrumentation challenges

BT On-going research

Path deviation and snaking effect in bended transfer tube

Case 1 (reference)

Case 3

GaN probe for low dose guide wire tracking ANR Newloc

Interventional radiology

Interventional radiology

Rotating collimator

Principle of virtual fluoroscopy for low dose tracking

Guiral P, Pittet P, Grondin Y, Jalade P, Galvan JM, Lu GN, Desbat L, Cinquin P. Fan-Beam Based Virtual Fluoroscopy for Navigated Catheterization in Interventional Radiology. Stud Health Technol Inform. 2019 Aug 21;264:74-78.

$$\begin{cases} D_{FB}(r) \sim D_{CB} \frac{\cos^{-1}\left(\frac{R-0.5w}{r}\right) - \cos^{-1}\left(\frac{R+0.5w}{r}\right)}{\pi} for \ r > R\\ D_{FB}(r) = 0 \ for \ r \le R \end{cases}$$

where \boldsymbol{w} is the width of the slit.

Dose reduction

$$\overline{D_{FB}} = D_{CB} \frac{S_{slit}}{S_{coli}}$$

 $\begin{cases} D_{FB}(r) \sim D_{CB} \frac{\cos^{-1}\left(\frac{R-0.5w}{r}\right) - \cos^{-1}\left(\frac{R+0.5w}{r}\right)}{\pi} for \ r > R\\ D_{FB}(r) = 0 \ for \ r \le R \end{cases}$

where \boldsymbol{w} is the width of the slit.

Photon counting over a sliding window providing good timing resolution and low level detection

FPGA based electronics: 1st prototype Cyclone II

FPGA based electronics: 2nd prototype Xilinx Zynq XC7Z020 System on Chip (SoC).

Instrumentation

Experimental setup for system testing

in

Integration over a sliding window :

High time resolution

but

limited angular resolution due to angular speed variations

Integration over a sliding window :

High time resolution

but

limited angular resolution due to angular speed variations

PMT operated in photocounting mode + photon stamping with its angle of arrival

Fluoroscopy 107 kV@110.8 mA pulse 20.9 ms (SDD~60cm depth =1.5cm) Collimator 3500 rpm (17 ms/turn) (2.3mAs - dose reduction ratio ~70)

Thank you for your attention

- ✓ Brachytherapy QA QC (ANR SECURIDOSE)
 - P. Pittet, P-Y Guiral, R. Wang, G-N Lu, J-M Galvan

- P. Jalade, J. Ribouton
- L. Gindraux, A. Rivoire

Guiral, P., Ribouton, J., Jalade, P., Wang, R., Galvan, J.-M., Lu, G.-N., Pittet, P., Rivoire, A. and Gindraux, L., Med. Phys., 43, 2016

- ✓ Low-dose Virtual fluoroscopy (ANR NEWLOC)
- P. Pittet, P-Y Guiral, J. Esteves, G-N Lu, J-M Galvan, L. Boussetta
- SurgiQual SurgiQual SurgiQual SurgiQual
 - P. Cinquin, L. Desbat, O. Pivot

A. Gaudu

Guiral P, Pittet P, Grondin Y, Jalade P, Galvan JM, Lu GN, Desbat L, Cinquin, Stud Health Technol Inform. 2019 Aug 21;264

TIMC