

Journées thématiques du Réseau Semiconducteurs IN2P3-IRFU

Luc HEBRARD luc.hebrard@unistra.fr

Microcapteurs magnétiques intégrés sur CMOS et applications

Laboratoire ICube

02-06-2022

Journées du réseau SC – IN2P3-IRFU

CMOS compatible magnetic sensors

Hall effect magnetometers : from 1D to 3D sensing

Magnetic tracking of medical tools under MRI

Conclusion

CMOS compatible sensors, even fully compatible (no post-process)

Applied projects :

02-06-2022

Contactless current sensors
Magnetic navigation of catheter
ECG in MRI
Medical tool tracking/positioning in MRI
MR microprobe

CMOS compatible magnetic sensors

 \rightarrow DC to a few kHz bandwidth magnetometers

Journées du réseau SC – IN2P3-IRFU

- Fully compatible with CMOS processes \rightarrow no post-processing
- \implies Easy industrial outlets \rightarrow the most produced micro-magnetometer (1D)
- → Wide range of measurement : few 10µT to several Tesla
- → Two types of Hall devices :
 - HHD : Horizontal Hall device \rightarrow for B_z measurement
 - VHD : Vertical Hall device \rightarrow for B_x and B_y measurement

Horizontal Hall Device

$$V_H = \frac{G \cdot r}{n \cdot q \cdot t} \cdot I_{bias} \cdot B_z = S_I \cdot I_{bias} \cdot B_z$$

S_I : current relative sensitivity

- G < 1: geometrical factor
- *r* : scattering factor \approx 1.15 for Si
- *n* : doping of the plate
- *t* : plate thickness

Biasing current flowing « horizontally » \Rightarrow HHD

Journées du réseau SC – IN2P3-IRFU

 \implies Accurate processing of the fluctuation of the mean free transit time τ

$$V_{H} = \frac{G \cdot r}{n \cdot q \cdot t} \cdot I_{bias} \cdot B_{z} = S_{I} \cdot I_{bias} \cdot B_{z} + S_{IPHE} \cdot I_{bias} \cdot B_{x} \cdot B_{y}$$

$$S_{I} = \frac{G \cdot r}{n \cdot q \cdot t} = \frac{G \cdot \langle \tau^{2} \rangle / \langle \tau \rangle^{2}}{n \cdot q \cdot t} \qquad S_{IPHE} = \frac{\mu_{n}}{n \cdot q \cdot t} \cdot \left[\frac{\langle \tau^{3} \rangle}{\langle \tau \rangle^{3}} - \frac{\langle \tau^{2} \rangle^{2}}{\langle \tau \rangle^{4}} \right]$$

 $S_{IPHE}/S_I \approx 8\% \rightarrow$ not an issue when $B_x \approx B_y \approx B_z \approx$ a few mT

Be careful when you measure a few mT over a few Teslas !

- **-**

HHD current relative sensitivity

Journées du réseau SC – IN2P3-IRFU

HHD geometrical factor

Short circuit by the sensing contacts

Journées du réseau SC – IN2P3-IRFU

ICU3E

HHD biasing

Voltage biasing for highest *I*_{bias}?

Very sensitive to temperature!

Current biasing is better

CITS 02-06-2022

Journées du réseau SC – IN2P3-IRFU

10/35

Université

Three sources :

Sensing contact misalignment

Doping gradients

Shear stress

 \rightarrow Unbalanced equivalent Wheatstone bridge

Typical output $V_{off} = 1$ to 2 mV Typical sensitivity $S_A = 100$ mV/T

 \rightarrow Equivalent input offset of **10mT to 20mT** !!!

11/35

Université

Spinning current – Offset canceling

ÍCU3E

Université

Spinning current – 1/f noise canceling

Journées du réseau SC – IN2P3-IRFU

Spinning current – PHE canceling

Spinning current is magic !

ICU3E

Journées du réseau SC – IN2P3-IRFU

14/35

Université

Spinning current versus HHD in series

Journées du réseau SC – IN2P3-IRFU

15/35

Université

ICU3E Measuring *B* in the plane of the chip

Reproduced from C. Schott, and al., CMOS Three Axis Hall Sensor and Joystick Application,

IEEE Sensor Conference, 2004

2001/2002 : Introduction of Integrated Magnetic Concentrators (ICM) – (*EPFL*)

- Magnetic amplification by a factor of 10
- Soft magnetic material above CMOS
- Low hysteresis...
- Commercial product from Melexis

2002/2004 : Vertical Hall Device in the deep Nwell of HV-CMOS - (EPFL)

2008 : Vertical Hall Device in the shallow Nwell of LV-CMOS - (ICube)

Journées du réseau SC – IN2P3-IRFU

Vertical Hall Device – HV-CMOS

d has to be high to avoid shortcircuit by sensing contacts !

➡ 1984 – 2002 : VHD were discrete devices

 \implies 2002 First VHD in HV-CMOS (d = 7µm), but :

- Low sensitivity (residual short-circuit)
- High offset \rightarrow amplifier saturation
- High 1/f noise \rightarrow 1mT resolution

Journées du réseau SC – IN2P3-IRFU

VHD in LV-CMOS

de Strasbourg

Journées du réseau SC – IN2P3-IRFU

VHD Self-immunity to PHE

19/35

de Strasbourg

02-06-2022

Journées du réseau SC – IN2P3-IRFU

The only way to remove the 1/f noise, as well as PHE, and offset

From the Reverse Magnetic Field Reciprocity theorem, i.e. $\sigma(\mathbf{r}, \mathbf{B}) = \sigma^{t}(\mathbf{r}, -\mathbf{B})$, it can be shown that in a linear material :

You need to make the 5-contact LV-VHD a 4-contact sensor

... and to exchange the biasing and sensing contacts periodically

Journées du réseau SC – IN2P3-IRFU

Université

de Strasbourg

22/35

$$I_{1max} > I_{2max} \implies I = I_1 = I_{2max}$$

iCU3E

Journées du réseau SC – IN2P3-IRFU

iCU3E

Journées du réseau SC – IN2P3-IRFU

Université de Strasbourg

ÍCU3E

Journées du réseau SC – IN2P3-IRFU

24/35

Université

Université

de Strasbourg

25/35

 $I_{1\max} = I_{3\max} > I_{2\max} = I_{4\max}$ \implies I_B (conventional SC) = $I_{2\max}$

However, offset, 1/f noise and PHE are proportional to I_B !

Using the maximum current on each phase $\Rightarrow V_{off1} = -\frac{I_{1max}}{I_{2max}} \cdot V_{off2}$

Experimental results

3 μm wide, 25 μm long and 2 μm deep LV-VHD with external SC conditionning

Journées du réseau SC – IN2P3-IRFU

26/35

Université

Experimental results

 $I_{1\text{max}} = 1100 \ \mu\text{A}$ $I_{2\text{max}} = 550 \ \mu\text{A}$ Over 1.6 kHz bandwidth $R(1-I_{\text{B}} \text{ SC}) = 64 \ \mu\text{T}$ $R(2-I_{\text{B}} \text{ SC}) = 51 \ \mu\text{T}$

51 μ T with an average $I_{\rm B}$ of 825 μ A

Better results expected with Bi-current 4-Phase spinning-current integrated on chip

27/35

Université

Most commercial Hall Devices are 1D HD switches, or 1D HDD for B measurement

A few 3D magnetometers are available commercially :

ST : LSM303D \rightarrow based on AMR and a multi-chips package (with a 3D accelerometer)	2009
Melexis : MLX 90393 \rightarrow based on HHD with Integrated Magnetic Concentrators (Sentron acquired by Melexis on 2004)	2005
Metrolab : MagVector MV2 \rightarrow based on a HHD and two HV-VHD (from Sensima founded in 2008 and delivered by Metrolab)	2015
Allegro : ALS31300 \rightarrow 3D Hall (3x3x0.8mm ³ DFN pack. ±200mT/100µT)	2017
AKM : AK09970N \rightarrow 3D Hall (3x3x0.75mm ³ QFN pack. ±36mT/3µT)	2017

Advantages of MRI scanner :

- High tissue contrast
- Free imaging plane positionning
- No ionising radiation

Need for fast tracking systems for MRI scanner

Magnetic localization device

Journées du réseau SC – IN2P3-IRFU

Magnetic tracking \rightarrow XYZ-IRM

Journées du réseau SC – IN2P3-IRFU

ICU3E

Magnetic tracking \rightarrow XYZ-IRM

Magnetic tracking \rightarrow XYZ-IRM

32/35

Université

Magnetic tracking \rightarrow XYZ-IRM

Journées du réseau SC – IN2P3-IRFU

Université de Strasbourg

Conclusion

Fluxgate \rightarrow the best resolution, but macroscopic device (a few cm-3)

Micro-fluxgate \rightarrow in the future ?

Magnetoresistances : a few nT to a few mT, resolution around 1 nT

Magnetoresistance are CMOS compatible, but multi-chip design remain the state-of-the art

Hall devices remain the state-of-the-art magnetomer for co-integration on CMOS

3D magnetometers now available in LV as well as HV-CMOS

Hall effect in silicon \rightarrow a few μT to tens of Tesla

Hall device resolution : a few μ T over a few kHz of BW

New applications expected with 3D Hall devices

~ 10pT

~ 10nT

~ 10µT

Journées du réseau SC – IN2P3-IRFU

34/35

Université

Thanks to my colleagues

J.-B. Schell, J. Pascal,

V. Frick, J.-B. Kammerer, M. Madec

Thanks for your attention

Journées du réseau SC – IN2P3-IRFU

