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Classical result

Let's assume that a charged lepton like a muon as a charged rigid body rotates
around the z — axis with an angular velocity.
The magnetic moment can be obtain as

M=_—L (1)
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Classical result

From here, Dirac made his prediction from the Dirac equation in the
electromagnetic field.

(i7"0, — m)p — exy" Auyp = 0. (2)

Following by the non-relativistic Schrédinger-Pauli Hamiltonian equation that
can explain the interaction of spin one-half particles:

H= o (5 ) -

¢ 5
5 S B+eg, (3)

M=S25=¢g°3§ (4)
m

where g is called the Landé g-factor.
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Dirac equation’s prediction

Compared to the classical result g must equal to 2. This holds true not only for
muons but for any one-half spin elementary particles.

In higher-order correction, however, QED predicts that g = 2 + O(«). The
anomalous magnetic moment we are looking for refers to this small correction.

a=E22, (5)
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Anomalous magnetic moment from scattering amplitude

We will calculate the muon anomalous magnetic moment through the
scattering matrix (S-matrix) of an imaginary process:

wo(p1,s1) — (P2, 52) + v(p3, As), (6)
The QED Lagrangian density of this system is given by

L= AcDirac + [«photon + £int

- 1 ., - (7)
= D70 — myp — 3 F" Fuu = 7" VA,
Definition of the initial state and the final state is
iy = V2E a0, f) = VAEEsa2 cp3t|0). (8)
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S-matrix

The scattering amplitude is defined

A= (f]Sli), (9)

where the total scattering amplitude A = Ag 4+ A1 + Az + ... is the sum of all
leading terms in each order of perturbation theory, and the scattering matrix S
can be expanded to Dyson'’s series as follows:

s— Z / d*x.. / Ao T{ Lint (51)or-Lint () - (10)
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Form factors

We expand the S-matrix and only keep the orders that have contribution to the
scattering matrix, from which we can derive the muon’s anomalous magnetic
moment in QED at NLO.

i

(Fsli) = —ieﬁ(pz){v“Fl(qz)wL ” o —pz)qu(qz)}u(m)ez, (11)

where form factor F; and factor F, contain the influence of the EM field on the
muon.
The g-factor now is defined

g = 2[R (0) + F(0)]. (12)

The leading 2 is prediction of Dirac equation that we proved above.
—> Find these form factors ?
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Leading order

The Feynman diagram corresponds to LO:

P P2

Figure 1: Tree-level Feynman diagram.

The scattering amplitude at LO can be obtained quickly as
A1 = (p2)(—iev")u(p1)e,. (13)

At the LO, F; =1 and F, = 0 followed by g-factor is equal to 2 — satisfies the
classical result.
The anomalous magnetic moment at LO:

g.—2 2140)—2
2 2 -

au = 0. (14)
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The Feynman diagrams correspond to NLO:

Figure 2: NLO connected Feynman diagrams.
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Amputated Feynman diagram

Due to the on-shell condition, we only keep the amputated diagram.

>

Figure 3: Amputated vertex correction.

d*k v (bt A+ m)y (it A+ m)y
@)t (K2 — N2+ ie)(p1 + k)2 — m? + iel[(pa + k)2 — m? + ie] "11° “(1 :
5

iM, = —€ i,
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UV and IR-divergence

This integral diverges at

@ x — oo: UV-divergence.
= We need to use the dimensional regularization and renormalization

method to cancel UV-divergence.

e x —» 0: IR-divergence.
— Cancelled thanks to the on-shell condition.
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D-dimensional regularization

Calculation of loop integrals in D = 4 — 2¢ dimension with € is called
dimensional regularization parameter.

d'q _ 4D qu
e (2m)P”

where the renormalization scale p has dimension of energy.

(16)
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Conventions

Conventions

Dirac Matrices

YW = =27
{77} =28"" -1
TI’(|4) =4

Space 4-Dimension D-Dimension
Metric Tensor w,v=20,1,23 u,v=01..,.D-1
ghv gl =0,=4 gl =6,=D
dim(y")=4 dim(y*)=2"/2
Y =4 la Y =D-1lp

Y%y = (2= D)y
{v",7"} =2¢"" 1o
Tr(lp) = 4 (per defi-
nition)

Properties

Preserve Lorentz invariant, Gauge invariant

Table 1: Conventions in D-dimension compared to 4-dimension.
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Renormalization

Counterterms

The Lagrangian that we used at the tree level is not sufficient to describe the
divergences that appear in the Feynman diagrams, so we need a tiny impact to
modify the Lagrangian with quantities called " bare quantities” (denoted by
subscript 0).

Lo= 7 (0" A — 0 ALY+ Tli B — mo)o — eoiin " oAo,. (17)

The bare quantities are conventionally associated with the finite renormalized
quantities by renormalization parameters Z; as

Yo = VZath = (1 + 820, AL = VA = (1+3)A.  (18)
mo =Zmm=m+ opm, e = Zee = e+ de. (19)
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Renormalization

Counterterm Lagrangian

Applying these expansions into the bare Lagrangian, we derive the Lagrangian
for renormalized perturbation theory:

Lo =— %FW/FMV + 1/7(’ D — m)w - elz’Y“wAp
— GO F " Fon 4 820 D= ) — i — (B + B2+ 3 05) e 0
=Lr+ L.
(20)

o By rescaling the Lagrangian density, we can split the Lagrangian density
into two terms, which are the renormalized Lagrangian (L% ) and the
counterterm Lagrangian (6£).

@ The renormalization parameters are fixed by the on-shell renormalization
condition (p* = m?).
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Feynman rules

Feynman rules for counterterm vertex:
i vavwv®,vwvwvw v = —id3k2g.

Figure 4: Photon counterterm vertex.

% =i0y(pp —m) — 0,

Figure 5: Fermion counterterm vertex.

= —ieyH(8z + O, + 303).

Figure 6: Photon-fermion counterterm vertex.
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Renormalized functions
Let's go to the renormalized vertex function (denoted by a hat) definition:

oo anoone v =1 (k)

=T (k) + 0T (k) = =ik2gr +ill" (k) = ik2gH 55 .
-
il1e7 (k)

+ =)
=T (p) + 6T (p) = i(p ~m) ~iS(p) + ibs(p ~m) - i6pn.

-i%(p)

~A
s =1 (p,p)

1
= FAff(p, p')+ JI‘Aff(p,p’) = —ieyt —ieN (p,p") —ien* (5, + 8y + 553).

—ieAr(pp')
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Renormalized functions

Renormalization conditions

By imposing renormalization conditions, the renormalization constants are fixed
to cancel out the UV-divergence.

e Condition 1 (Dirac equation):
$(p)u(p) =0
dm
== —Ty(m?) — Zs(m?). (21)

@ Condition 2:

p-k
p m p
> > > =0.
e + &)

i L0 50)] ule) L0
— 6, = Ty(m?) + 2m? (Sy (m?) + Ts(m?)). (22)
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Renormalization conditions

o Condition 3:

. -] vp uv !
lim %n“ (k)] eu(k) =0

— 6, =N7(0). (23)
o Condition 4:

a(p)N* (p, p)u(p) =0
- (Se = - %53 (24)
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Renormalized functions

Summary

Renormalization procedure

Define the new parameters — Separate the bare parameters into renormalized
parameters and counterterm parameters — Choose renormalization conditions
to fix the counterterms.
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Vertex correction

= =i (p1,p)

Figure 7: Vertex correction.

N (pr. p2)
__2een [ 4%k (bt K+ mN (o1t K+ m)y
: @m)P (K2 = N+ ie)[(ps + k)2 — m? + ic][(p2 + k)2 — m® + ic]
_ ¢ (m)tP / 4k v (ot k+ m (bt k+m)y
T (4m)2 im? (k

TN ie)l(pr + K — i iel[(pa + k)P — il
(25)
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Renormalized functions

Let's consider this sophisticated numerator with gamma matrices properties in
D-dimension:

¥ =(2 = DY, (26)
Yy =4g"” + (D — 4", (27)
VAN == 297949 — (D — 4 7. (28)

Expanding the numerator, we got

NY=7" " 1y +9" 7" kv +my”
+7 K v £ K ke Ky
+my Y v+ my " ke + mPy Ry,
==2(p7" ot kY ot o1V k) — (D —4)( " 1t oY K+ K 1)
+4m(p1 + p2 + 2k)* + (D — 4)m( 2"+ k" +4" pr+" k)

+(2—D) ky" k+(2— D)m*y".
(29)
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Renormalized functions

Consequently, sandwich the vertex function:

P
a(p2) {1 Shad ko pu(peg.
P3
P2

a(p2)( — ieN*(p1, p2)) u(p1)e;,

—a(p)(— e Julpr ) {4Bo(m 0, m) — 3Bo(p3, m, m) + (4m? —2p3>co—z}

_ . . 2m
+ U(P2)(_’e)u(P1)5u(Pl + Pz)“m 4n {230([33, m, m) 230("72, Oa m) + 2}
(30)
— Of course, this is not UV-convergence — we need to add the counterterm

diagram.
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Next-to-leading order result

Applying ps = 0 due to on-shell condition to renormalized vertex function:

fl(pz)lA'Aﬁ(pa,—phpz)l

piol(P1)EL
—ied(p)A" (b1, p2)],,_ou(pr)el
= — ied(p2)\ (1, p2), _ou(pr)es, — ied(p2)y" dau(pr)ey,
o= peu(pr)e | 4Bu(o,0,m) — 4Bo(0.m.m) 6 |

=2

= — fed(p2)

s v

_ ,-ea(pz){ o - pz)V%}u(pl)e;.

(31)
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Anomalous magnetic moment at NLO

Total scattering amplitude at NLO:

ANO A4 A
ioch” (32)

=— ien(pz){y“l + (pr — Pz)y%}u(pl)ez.

2m

At NLO, F1 =1 and F, = a/2m, then the Landé g-factor that matches the
QED prediction as

g =2+ % +0(d). (33)

Anomalous magnetic moment of muon at NLO

_&u—2 _ 2F2(0) _ @
ay = =0 = 9 T 0.0011614. (34)
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Conclusions

Here are some results of the anomalous magnetic moment of the muon:

al = o, (LO)
NLO __ —11
= = ~ 11614 1 NL
ay 27r 6140973 x 10~ ', (NLO) (35)
apt = 116592089(54)(33) x 1071, (experimental value)
aﬁNAL 116592061(41) x 10~ . (experimental value)

Where the fine-structure constant o &~ 1/137.035999084 is available on
Particle Data Group.

a2Nb is the result from E821 experiment at Brookhaven National Lab (BNL).
aENAL is the result from he Fermilab National Accelerator Laboratory (FNAL).
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Higher-order correction

The anomalous magnetic moment in QED has been computed up to five loops

s 3
a2 =052 1 0.765857420 (£ )+ 24.05050085(23) (%)

™
4 5 (36)
« «
+130.8785(60) (&) +751.009) () + .
The anomalous magnetic moment in higher-order correction:
a"M% =116554190 x 10,
V10 —116584332 x 1071,
(37)

a"'t0 116584713 x 1071,
a""L0 —116584718 x 10 .

E hep-ph/0507249,arXiv:0706.3496v2,hep-ph /0512330
B hep-ph/0507249,arXiv:0706.3496v2,hep-ph /0512330
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Thank you for your listening!
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