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Introduction

» The creation of a pair muon and anti-muon in the photon-photon
collision cannot be explained by Classical Electrodynamics.

» We will use QED to explain this, it also gives us some results that
can be measure in experiments.

» For leading order, | will apply Wick's theorem and use Feynman rules
to reach the scattering amplitude, then we can calculate the cross
section and differential cross section.

» For next-to-leading order, | will show all contributing Feynman
diagrams and their scattering amplitudes.



Lagrangian for QED

The Lagrangian of Quantum Electrodynamics is:

_ _ 1 _
£QED = iw’yﬂauw - m¢¢ - ZFW’FMV - eAM/W”¢ (1)

The mostly concerned term in this Lagrangian is the interaction term
—eA, vy, which describes the interaction between fermion field and
photon field.



S-matrix

After defining Lagrangian of the process, the next step for us is calculate
the S-matrix, which is defined by:

S = Texp [—i/z dtﬁ,(t)] (2)
_ f:o iy / ‘: i / Z A5 T{LI(a) - Lila)} (3)

From the calculation result of S-matrix, we can get scattering amplitude
by:

(FIS]i) = i(2m)* M&*(pi — pr) (4)

where the delta Dirac function d%(p; — pr) show us the conservation of
momentum of the process.



Wick's theorem

The problem in calculating S-matrix is the time ordering operation
T{E/(Xl) e ,C/(X,,).

Wick's theorem show that the time ordering product can be expressed as
a sum of normal ordering of all possible contractions:

T{1(x1) - d1(xn)} =: d1(x1) - - P1(xa) + all possible contractions :
(5)
where normal ordering, presented with colons, showing every creation
operators are sorted on the left and annihilation operators are sorted on
the right.



Feynman rules and definition of fields
Feynman rules for QED:

Initial fermion :u(s, p) Final fermion : (s, p)
Initial anti fermion : v(s, p) Final anti fermion : v(s, p)
Initial photon : €, (A, p) Final photon: €};(A, p)
Vertex : —iey! _

Photon propagator : iS,,, = ;z'i”lz

Fermion propagator : iDg(x — y) = pz"(_’jn:{:_)ie

Fields definition:
Fermion fields:
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Leading order

The leading order term of the scattering amplitude:

I2
(rist) = 2 / dixd®y (FI T{LI) L1} (8)

The initial and final state of the process are defined by:
|i> =2\/E5 Eg a5t a7 10) (9)
=2/ Ep, B, € ;jrbs” (10)

The time ordering product after expressed by Wick's theorem will give us
two contributing terms:

: l/;xa’Yggwa&ya'VprypAuxAvy : (11)
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Leading order

After calculating, we can see that these two contributing terms give us
the same result:

eru( ki +mea,  e,( ko + m)er,
(k — m?) (k3 —m?)

=27*iMd*(pi — pr)

e1,( k1 + m)ea, €2M(/k2 + m)ey, v,
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=iM = ie2Tlzy" { (13)

where

ki = p>—pa
ko = p1—pa



Feynman diagrams for leading order

After applying Wick's theorem, we got two Feynman diagram:
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Leading order result

Now we can find the scattering amplitude square of the process, sum and
average over spins and polarizations:

DY IMP = Y (MMM M) (16)

spins,pols spins,pols

We have these properties:

» For particle and anti particle when sum over spinors :

2 usp)is(p) = p + m, (17)
2 v(p)Us(p) = — m. (18)

» For photon when we sum over polarizations:

3
Z 6//}/1,6;))\; = —8uv- (19)



Scattering amplitude square

Scattering amplitude square for leading order is:
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Consider our process in center of mass frame:
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Center of mass frame
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Crossing Symmetry

Crossing symmetry is another way to get scattering amplitude square
from a similar process. Applying the crossing symmetry to the result of
Compton scattering v+ e~ — e~ +7:
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We also get the result of ¥+~ — u~ + pu* scattering process:

Z IM|? =

pols

2
1 1 1 1
p24+&+2m2 <+> —m4(+> ]
P14 P24 P14 P24 P12 P24



Cross section result
We can calculate cross section analytically by:
g:/¢EZ‘M|2dQ
3272ES 4

The relation between cross section o and center of mass energy E., is
showed in figure below:
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Differential cross section result

The relation between differential cross section do/d cos(#) and cos(6):
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Next-to-leading order

The next-to-leading order S-matrix is:

(f|1S]i) = % /_OO d*xd*yd*zd* t (F| T{L1(x)Li(y)L1(2)Li(t)}]i)
(20)

Let’s pick a contributing term of Wick theorem’s expression for time
ordering to calculate:
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NLO calculation

After calculating, we got the result:
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It also gives two Feynman diagrams:
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How to eliminate divergences

I guide others to a treasure | cannot possess.




UV divergence resolving- Lagrangian for NLO

To eliminate the UV divergence, we will introduce a new Lagrangian for
Next-to-leading order, by re-define fields and quantities:

Yo = Ly = /1440

A()'u = 4/ ZAA# = 1+ 5AAM
my = Zpn-m = m+6n,
e = Ze-e = e+ de

The Lagrangian now can be split into two Lagrangian: Renormalized
Lagrangian Lg and counter term Lagrangian L:

Lo=Lr+ L
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Counter term Feynman rules

Counter term Lagrangian also give us Feynman diagrams. Rules for these
diagrams are:

» Fermion-fermion vertex:

Lo iy (p— m)— ibm

» Fermion-fermion-photon vertex:

Au
= —iey" (0e + 6y + 364)
» Photon-photon vertex:

q
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Feynman diagrams for the next-to-leading order that contribute to
scattering amplitude include:

» Two-point diagrams - Self-energy diagrams.
» Three-point diagrams - Vertex correction diagrams.
» Four-point diagrams - Box diagrams.

» Counter term diagrams



Self energy diagrams
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Vertex correction diagrams
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Box diagrams
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Two-point counter term diagrams
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Figure: Two-point counter term diagrams
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Three-point counter term diagrams
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Total scattering amplitude for NLO-Virtual

The total scattering amplitude square for Next-to-leading order- virtual is
sum of all scattering amplitude of amputated diagrams and their counter
term diagrams :

’MNLO = IMZp + IM3p + iM4p + iMc2p + iMc3p~



Outlook

» The next step is solving the divergence integrals of NLO scattering
amplitude, however counter term diagrams method can only
eliminate the UV divergence, we need to reconsider our process as
v+ — u~ + uT + ny to eliminate the IR divergence.

» A computer program is needed to help us calculate the scattering
amplitude square up to NLO level.

» We can consider other kinds of interaction such as weak interaction
to make our calculation more accurate.



Thanks for listening
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