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Introduction

I The creation of a pair muon and anti-muon in the photon-photon
collision cannot be explained by Classical Electrodynamics.

I We will use QED to explain this, it also gives us some results that
can be measure in experiments.

I For leading order, I will apply Wick’s theorem and use Feynman rules
to reach the scattering amplitude, then we can calculate the cross
section and differential cross section.

I For next-to-leading order, I will show all contributing Feynman
diagrams and their scattering amplitudes.



Lagrangian for QED

The Lagrangian of Quantum Electrodynamics is:

LQED = iψ̄γµ∂µψ − mψ̄ψ − 1
4FµνFµν − eAµψ̄γµψ (1)

The mostly concerned term in this Lagrangian is the interaction term
−eAµψ̄γµψ, which describes the interaction between fermion field and
photon field.



S-matrix

After defining Lagrangian of the process, the next step for us is calculate
the S-matrix, which is defined by:

S = Texp
[
−i

∫ ∞

−∞
dtLI(t)

]
(2)

=
∞∑

n=0

(−i)n

n!

∫ ∞

−∞
d4x1 · · ·

∫ ∞

−∞
d4xnT{LI(x1) · · · LI(xn)} (3)

From the calculation result of S-matrix, we can get scattering amplitude
by:

〈f |S|i〉 = i(2π)4Mδ4(pi − pf ) (4)

where the delta Dirac function δ4(pi − pf ) show us the conservation of
momentum of the process.



Wick’s theorem

The problem in calculating S-matrix is the time ordering operation
T{LI(x1) · · · LI(xn).
Wick’s theorem show that the time ordering product can be expressed as
a sum of normal ordering of all possible contractions:

T {φ1(x1) · · ·φ1(xn)} =: φ1(x1) · · ·φ1(xn) + all possible contractions :
(5)

where normal ordering, presented with colons, showing every creation
operators are sorted on the left and annihilation operators are sorted on
the right.



Feynman rules and definition of fields
Feynman rules for QED:

Initial fermion :u(s, p)
Initial anti fermion : v̄(s, p)
Initial photon : εµ(λ, p)
Vertex : −ieγµ
Photon propagator : iSFµν =

−igµν

q2+iε

Final fermion : ū(s, p)
Final anti fermion : v(s, p)
Final photon: ε∗µ(λ, p)

Fermion propagator : iDF (x − y) = i( 6p−m)
p2−m2+iε

Fields definition:
Fermion fields:

ψ(x) =
∫ d3p

(2π)3
1√
2E~p

2∑
s=1

[
cs
~pus(~p)e−ipx + bs†

~p v s(~p)e ipx
]

(6)

Photon field:

Aµ(x) =
∫ d3p

(2π)3
1√
2E~p

3∑
λ=0

(
ελµ~paλ~p e−ipx + ελ∗µ~paλ†~p e ipx

)
(7)



Leading order

The leading order term of the scattering amplitude:

〈f |S|i〉 = (−i)2

2!

∫ ∞

−∞
d4xd4y〈f |T{LI(x)LI(y)}|i〉 (8)

The initial and final state of the process are defined by:

|i〉 =2
√

E~p1E~p2a
λ1†
~p1

aλ2†
~p2

|0〉 (9)

|f 〉 =2
√

E~p3E~p4c
s3†
~p3

bs4†
~p4

|0〉 (10)

The time ordering product after expressed by Wick’s theorem will give us
two contributing terms:

: ψ̄xαγ
µ
αβψxβψ̄yσγ

ν
σρψyρAµxAνy : (11)

: ψ̄xαγ
µ
αβψxβψ̄yσγ

ν
σρψyρAµxAνy : (12)



Leading order

After calculating, we can see that these two contributing terms give us
the same result:

2π4ie2ū3γ
µ

[
ε1µ( 6 k1 + m)ε2ν

(k2
1 − m2)

+
ε2µ( 6 k2 + m)ε1ν

(k2
2 − m2)

]
γνv4δ

4(p1 + p2 − p3 − p4)

=2π4iMδ4(pi − pf )

⇒iM = ie2ū3γ
µ

[
ε1µ(6 k1 + m)ε2ν

(k2
1 − m2)

+
ε2µ(6 k2 + m)ε1ν

(k2
2 − m2)

]
γνv4 (13)

where {
k1 = p2 − p4
k2 = p1 − p4



Feynman diagrams for leading order

After applying Wick’s theorem, we got two Feynman diagram:

p1

k1

p3

p2 p4

γ
µ

µ−

γ
ν µ+

(a) M1

p2

k2

p3

p1 p4

γ
µ

µ−

γ
ν µ+

(b) M2

M1 = e2ū3γ
µεµ1

(
6 k1 + m
k2

1 − m2

)
εν2γ

νv4, (14)

M2 = e2ū3γ
µεµ2

(
6 k2 + m
k2

2 − m2

)
εν1γ

νv4. (15)



Leading order result

Now we can find the scattering amplitude square of the process, sum and
average over spins and polarizations:

1
4

∑
spins,pols

|M|2 =
1
4

∑
spins,pols

(M1 +M2)(M∗
1 +M∗

2) (16)

We have these properties:
I For particle and anti particle when sum over spinors :∑2

s=1 us(p)ūs(p) = 6 p + m, (17)∑2
s=1 vs(p)v̄s(p) = 6 p − m. (18)

I For photon when we sum over polarizations:

3∑
λ=0

ελpµε
λ∗
pν = −gµν . (19)



Scattering amplitude square

Scattering amplitude square for leading order is:

1
4

∑
spins,pols

|M|2 = 2e4

[
p14
p24

+
p24
p14

+ 2m2
(

1
p14

+
1

p24

)
− m4

(
1

p14
+

1
p24

)2
]

Consider our process in center of mass frame:

p1 = (E , 0, 0,Ez)

p2 = (E , 0, 0,−Ez)

p3 = (E , 0, p sin(θ), p cos(θ))

p4 = (E , 0,−p sin(θ),−p cos(θ))

|p| =
√

E2 − m2

E = Ecm/2



Center of mass frame

1
4

∑
spins,pols

|M|2 = 2e4
[

E2 + E |p| cos θ
E2 − E |p| cos θ +

E2 − E |p| cos θ
E2 + E |p| cos θ

+ 2m2
(

1
E(E − E |p| cos θ) +

1
E(E + E |p| cos θ)

)
−m4

(
1

E(E − E |p| cos θ) +
1

E(E + E |p| cos θ)

)2
]
.



Crossing Symmetry
Crossing symmetry is another way to get scattering amplitude square
from a similar process. Applying the crossing symmetry to the result of
Compton scattering γ + e− → e− + γ :

1
4

∑
spin,pols.

|M|2 = 2e4

[
q24
q12

+
q12
q24

+ 2m2
(

1
q12

− 1
q24

)
+ m4

(
1

q12
− 1

p24

)2
]

We also get the result of γ + γ → µ− + µ+ scattering process:

1
4
∑
pols.

|M|2 = 2e4

[
p24
p14

+
p14
p24

+ 2m2
(

1
p14

+
1

p24

)
− m4

(
1

p12
+

1
p24

)2
]



Cross section result
We can calculate cross section analytically by:

σ =

∫
|p|

32π2E3
cm

1
4
∑

|M|2dΩ

The relation between cross section σ and center of mass energy Ecm is
showed in figure below:



Differential cross section result

The relation between differential cross section dσ/d cos(θ) and cos(θ):

dσ
d cos θ

=
|p|

32πE3
1
4
∑

|M|2



Next-to-leading order

The next-to-leading order S-matrix is:

〈f |S|i〉 = (−i)2

4!

∫ ∞

−∞
d4xd4yd4zd4t〈f |T{LI(x)LI(y)LI(z)LI(t)}|i〉

(20)

Let’s pick a contributing term of Wick theorem’s expression for time
ordering to calculate:

: ψ̄xαγ
µ
αβψxβψ̄yγγ

µ
γδψyδψ̄zεγ

ρ
εξψzξψ̄tηγ

σ
ηθψtθAµxAνyAρzAσt : (21)



NLO calculation
After calculating, we got the result:

iM2p =e4
∫ d4q

(2π)4 ū3γ
µε1µ

6 k + m
k2 − m2 γ

ν 6 l + m
l2 − m2

−igνρ
q2 γρ

6 p + m
p2 − m2 ε2σγ

σv4

+e4
∫ d4q′

(2π)4 ū3γ
µε2µ

6 k ′ + m
k ′2 − m2 γ

ν 6 l ′ + m
l ′2 − m2

−igνρ
q′2 γρ

6 p′ + m
p′2 − m2 ε1σγ

σv4

It also gives two Feynman diagrams:







How to eliminate divergences



UV divergence resolving- Lagrangian for NLO
To eliminate the UV divergence, we will introduce a new Lagrangian for
Next-to-leading order, by re-define fields and quantities:

ψ0 =
√

Zψψ =
√

1 + δψψ
A0µ =

√
ZAAµ =

√
1 + δAAµ

m0 = Zm · m = m + δm
e0 = Ze · e = e + δe

The Lagrangian now can be split into two Lagrangian: Renormalized
Lagrangian LR and counter term Lagrangian Lct :

L0 =LR + Lct

LR =ψ̄ (iγµ∂µ − m)ψ − 1
4FµνFµν − eψ̄γµAµψ

Lct =− ψ̄δmψ + δψψ̄ (iγµ∂µ − m)ψ − 1
4δAFµνFµν

− eψ̄γµAµψ
(
δe + δψ +

1
2δA

)



Counter term Feynman rules

Counter term Lagrangian also give us Feynman diagrams. Rules for these
diagrams are:
I Fermion-fermion vertex:

p
=iδψ( 6 p − m)− iδm

I Fermion-fermion-photon vertex:

Aµ

= −ieγµ
(
δe + δψ + 1

2δA
)

I Photon-photon vertex:
q

=−iδAq2gµν



Feynman diagrams for the next-to-leading order that contribute to
scattering amplitude include:
I Two-point diagrams - Self-energy diagrams.
I Three-point diagrams - Vertex correction diagrams.
I Four-point diagrams - Box diagrams.
I Counter term diagrams



Self energy diagrams

iM2p =e4
∫ d4q

(2π)4 ū3γ
µε1µ

6 k + m
k2 − m2 γ

ν 6 l + m
l2 − m2

−igνρ
q2 γρ

6 p + m
p2 − m2 ε2σγ

σv4

+e4
∫ d4q′

(2π)4 ū3γ
µε2µ

6 k ′ + m
k ′2 − m2 γ

ν 6 l ′ + m
l ′2 − m2

−igνρ
q′2 γρ

6 p′ + m
p′2 − m2 ε1σγ

σv4



Vertex correction diagrams

iM3p = e4
∫ d4p

(2π)4 ū3γ
µ 6 k + m

k2 − m2 ε1µγ
ν 6 l + m

l2 − m2 γ
ρ−igµρ

q2
6 p + m

p2 − m2 ε
σ
2 γ

σv4

+ e4
∫ d4p′

(2π)4 ū3γ
µ 6 k ′ + m

k ′2 − m2 ε2µγ
ν 6 l ′ + m

l ′2 − m2 γ
ρ−igµρ

q′2
6 p′ + m
p′2 − m2 ε1σγ

σv4

+ e4
∫ d4s

(2π)4 ū3γ
µ 6 n + m

n2 − m2 ε1µγ
ν 6 r + m

r2 − m2 γ
ρ−igνσ

t2
6 s + m

s2 − m2 ε
σ
2 γ

σv4

+ e4
∫ d4s ′

(2π)4 ū3γ
µ 6 n′ + m

n′2 − m2 ε2µγ
ν 6 r ′ + m

r ′2 − m2 γ
ρ−igνσ

t′2
6 s ′ + m
s ′2 − m2 ε1σγ

σv4.

(22)



Box diagrams

iM4p =

∫ d4k
(2π)4 ū3γ

σ

(
i

6 k − m + iε

)
γµε1µ

(
−igρσ
q2 + iε

)
×

(
i

6 k+ 6 p1 +−m + iε

)
γνε2ν

(
i

6 p2− 6 p4 − m + iε

)
γρv4

+

∫ d4k ′

(2π)4 ū3γ
σ

(
i

6 k ′ − m + iε

)
γµε2µ

(
−igρσ
q′ + iε

)
×
(

i
6 k ′+ 6 p1 +−m + iε

)
γνε1ν

(
i

6 p2− 6 p4 − m + iε

)
γρv4. (23)



Two-point counter term diagrams

Figure: Two-point counter term diagrams

iMc2p =
ie2

p2 − m2 ūγµε1µ (iδψ(6 p − m)− iδm) ( 6 p − m) ε2νγ
νv4

+
ie2

q2 − m2 ūγµε2µ (iδψ( 6 q − m)− iδm) ( 6 q − m) ε1νγ
νv4. (24)



Three-point counter term diagrams

Figure: Three-point counter term diagrams

Mc3p =
ie2

p2 − m2 ū3

[
−ieγµ(δe + δψ +

1
2δA)

]
ε1µ (6 p − m) ε2ν (−ieγν) v4

+
ie2

q2 − m2 ū3

[
−ieγµ(δe + δψ +

1
2δA)

]
ε2µ (6 q − m) ε1ν (−ieγν) v4

+
ie2

p2 − m2 ū3 (−ieγµ) ε1µ ( 6 p − m) ε2ν

[
−ieγν(δe + δψ +

1
2δA)

]
v4

+
ie2

q2 − m2 ū3 (−ieγµ) ε2µ ( 6 q − m) ε1ν

[
−ieγν(δe + δψ +

1
2δA)

]
v4.

(25)



Total scattering amplitude for NLO-Virtual

The total scattering amplitude square for Next-to-leading order- virtual is
sum of all scattering amplitude of amputated diagrams and their counter
term diagrams :

iMNLO = iM2p + iM3p + iM4p + iMc2p + iMc3p .



Outlook

I The next step is solving the divergence integrals of NLO scattering
amplitude, however counter term diagrams method can only
eliminate the UV divergence, we need to reconsider our process as
γ + γ → µ− + µ+ + nγ to eliminate the IR divergence.

I A computer program is needed to help us calculate the scattering
amplitude square up to NLO level.

I We can consider other kinds of interaction such as weak interaction
to make our calculation more accurate.



Thanks for listening
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