Exercises

3. Nuclear recoil spectrum in DM direct detection:

(a)
$$v_{\min} = \sqrt{E_R m_N / 2\mu_{\chi N}^2} = \frac{m_{\chi} + m_N}{m_{\chi}} \sqrt{E_R / 2m_N}$$

(b) Shape of nuclear recoil spectrum (dependence on m_{χ})

→ See e.g., [Lewin & Smith, Astroparticle Physics 6 (1996) 87]

- 4. Fluxes of DM annihilation products, e.g., e^{\pm} , \bar{p} :
- (a) Annihilation cross section dependence
- (b) m_{χ} dependence

4. Indirect Detection

DM Indirect Detection

Cosmic Rays from DM

Search for the products of DM annihilation and/or decay: γ, ν, e[±], p, ...

Cosmic Rays from DM: Showering

• Final states from DM annihilation and/or decay: γ , e^{\pm} , p^{\pm} , ν , ...

Cosmic Ray Experiments

- Ground-based
 MAGIC, HESS, CTA, IceCube,
 Super-K, Hyper-K, DUNE, ...
- ✤ Balloon-based: ATIC, PPB-BETS, ...

Satellite-based:

AMS, Chandra, Fermi-LAT, PAMELA, XMM-Newton, DAMPE, ASTROGAM, ...

- ✓ **Great sensitivity** to cosmic-ray signals
- Better chance to have the information for extracting DM properties

Indirect Detection: Cosmic Rays

Indirect Detection: Cosmic Rays

Galaxy Rotation Curve

$$\frac{GMm}{r^2} = \frac{mv^2}{r} \quad \Rightarrow \quad v \propto \sqrt{\frac{GM}{r}}$$
$$v \sim \text{constant} \quad \Rightarrow \quad M(r) \propto r$$

Vera Rubin

DM Halo Profiles

NFW : $\rho_{ m N}$	$_{ m NFW}(r)$	=	$\rho_s \frac{r_s}{r} \left(1 \right)$	$1 + \frac{r}{r_s} \bigg)^{-2}$
Einasto :	$ ho_{ m Ein}(r)$	=	$\rho_s \exp \langle$	$\left\{-\frac{2}{\alpha}\left[\left(\frac{r}{r_s}\right)^{\alpha}-1\right]\right\}$
othermal :	$ ho_{ m Iso}(r)$	=	$\frac{\rho_s}{1 + (r/z)}$	$(r_s)^2$
Burkert : ρ	$p_{\mathrm{Bur}}(r)$	=	(1 + r/	$\frac{\rho_s}{(r_s)(1+(r/r_s)^2)}$
Moore : ρ	$p_{ m Moo}(r)$	=	$\rho_s\left(\frac{r_s}{r}\right)$	$\int^{1.16} \left(1 + \frac{r}{r_s}\right)^{-1.84}$
DM halo	α	r	$_{s} \; [\mathrm{kpc}]$	$\rho_s \; [{\rm GeV/cm^3}]$
NFW	_		24.42	0.184
Einasto	0.17	t.	28.44	0.033
EinastoB	0.11		35.24	0.021
Isotherma	1 –		4.38	1.387
Burkert			12.67	0.712
Moore	-		30.28	0.105
Moore	-		30.20	0.105

Fluxes at Production: Primary Channels

- ✤ Primary channels (including annihilation amplitudes, relative ratios → σv_i): determined by particle physics
- ★ Flux of DM annihilation products: Φ ∝ $\sigma v n^2(r)$ *n*(*r*): the number density of a DM particle

Fluxes at Production: Secondary Channels

Final Fluxes

 $\boldsymbol{\ast}$ Cosmic rays from DM annihilation is described by

$$\Phi_i(\psi, E) = \sigma v \, \frac{\mathrm{d}N_i}{\mathrm{d}E} \frac{1}{8\pi m_{\mathrm{DM}}^2} \int_{\mathrm{line of sight}} \mathrm{d}s \rho^2(r(s, \psi))$$

Final Fluxes

Final Fluxes

Final Fluxes: γ, ν

Final Fluxes: γ, ν

Propagation of Charged Particles

Hints from Cosmic-Rays?

- DM signatures in cosmic-ray observations?
 - > SPI/INTEGRAL (γ → e⁺): 511 keV line
 - > PAMELA (e^{\pm} , p^{\pm} , ...): e^{+} excess
 - > ATIC (e^++e^+): e^-e^+ excess
 - > Fermi-LAT (e^-+e^+ , γ): e^-e^+ excess, 130 GeV line, GeV excess
 - > AMS-02 (e^{\pm} , p^{\pm} , ...): $e^{+}(\bar{p})$ excess
 - > XMM-Newton (X-ray): 3.5 keV line
 - > IceCube (v): PeV events

▶ ...

Hints from Cosmic-Rays?

- DM signatures in cosmic-ray observations?
 - > SPI/INTEGRAL (γ → e⁺): 511 keV line
 - > PAMELA (e^{\pm} , p^{\pm} , ...): <u> e^{+} excess</u>
 - > ATIC (e^++e^+): e^-e^+ excess
 - > Fermi-LAT (e^-+e^+ , γ): <u> e^-e^+ excess</u>, 130 GeV line, GeV excess
 - > AMS-02 (e^{\pm} , p^{\pm} , ...): $e^{+}(\bar{p})$ excess
 - > XMM-Newton (X-ray): 3.5 keV line
 - > IceCube (v): PeV events

▶ ...

DM Indirectly Detected? (e[±])

e⁺ Excesses: AMS-02

Status of Indirect Searches

5. Collider

Direct Production

DM Production @ Colliders

Collider Physics

- * Production of heavy particles (e.g. super-partner, Z', t', B, ...) \leftarrow E=mc²
- ✤ LHC Run I, Belle I: no conclusive evidence of DM yet
- LHC Run II (13 TeV), Belle II (high luminosity): have been upgraded & now running!

DM at Colliders

Pauli(1930) Fermi(1932)

- \mathbf{v} : to explain Missing *E*, *p*, *S* in the beta decay
- Nature(1934): "Too remote from reality!"

DM at Colliders

Pauli(1930) Fermi(1932)

- **♦** v: to explain Missing *E*, *p*, *S* in the beta decay
- Nature(1934): "Too remote from reality!"
- * DM cannot be directly detected
 - \rightarrow regarded as Missing *E*

Collider Searches

✤ LEP/ILC/Belle II/LHC/...: mono-X+E_T

→ limits on σ_{χ -e/N & $\langle \sigma v \rangle_{\chi\chi \rightarrow ll, qq, ...}$

Constraints on DM models

Current Status of LHC Searches

Dark Photon in Belle II

6. New Approaches
Fixed Target (Beam Dump)

Particle Searches: Passive **>** Active

Passive searches

Active searches

DM @ Fixed Target Experiments

Benchmark Experiments

Low E, High luminosity, Pulsed beam

Dark Matter Production I

Detector

***** Meson decays (P1): $\pi^0(\eta) \rightarrow \gamma + \gamma/X$

✓ For example,

 $\kappa_f^X x_f^X \to Q_f \ e\epsilon$ for the dark photon scenario

Dark Matter Production II

★ π^- capture (Panofsky) process (P2): $\pi^- + p \rightarrow n + \gamma/X$ (*X*: single-valued E)

✓ For example,

 $\kappa_f^X x_f^X \to Q_f \ e\epsilon$ for the dark photon scenario

Dark Matter Production III

★ Charge exchange processes (P3): $\pi^{-(+)} + p(n) \rightarrow n(p) + \pi^0 \& \pi^0 \rightarrow \gamma + \gamma/X$

✓ For example,

 $\kappa_f^X x_f^X \to Q_f \ e\epsilon$ for the dark photon scenario

Dark Matter Production IV

★ e^{\pm} -induced cascade (P4): electromagnetic cascade showering & $\gamma \rightarrow X$

✓ For example, $\kappa_f^X x_f^X \to Q_f \ e\epsilon$ for the dark photon scenario

Dark Matter Detection

♦ Nucleus scattering (D1): small E_r (< MeV) → COHERENT, CCM

$$\frac{d\sigma}{dE_{r,N}} = \frac{(\kappa_f^V \kappa_D^V)^2 (Q_{\text{eff}}^V)^2 \cdot |F_V|^2}{4\pi p_\chi^2 (2m_N E_{r,N} + m_V^2)^2} \left\{ 2E_\chi^2 m_N \left(1 - \frac{E_{r,N}}{E_\chi} - \frac{m_N E_{r,N}}{2E_\chi^2} \right) + m_N E_{r,N}^2 \right\}$$

 F_V : form factor, E_{χ} : E of incoming DM, $E_{r,N}$: recoil kinetic E of target nucleus m_N : mass of target nucleus, m_V : mass of a mediator

♦ Electron scattering (D2): large E_r (> MeV) → JSNS2

$$\frac{d\sigma}{dE_{r,e}} = \frac{Z(x_f^V \kappa_f^V \kappa_D^V)^2 m_e^2}{\pi \lambda(s, m_e^2, m_\chi^2) \left\{ 2m_e(m_e - E_{r,e}) - m_V^2 \right\}^2} \times \left[m_e \left\{ E_\chi^2 + (m_e + E_\chi - E_{r,e})^2 \right\} + \left(m_e^2 + m_\chi^2 \right) (m_e - E_{r,e}) \right]$$

*E*_{*r,e*}: recoil kinetic E of target electron *m*_{*e*}: mass of target electron *Z*: atomic number $s = m_e^2 + 2E_{\chi}m_e + m_{\chi}^2$ $\lambda(x, y, z) = (x - y - z)^2 - 4yz$

Backgrounds?

- ✤ Prompt neutrinos from the decay of stopped (positively)-charged pions (kaons → minor)
 - ✓ Mean life time of $\pi^+ = 2.6 \times 10^{-8}$ s ≪ µs.
 - ✓ Neutrino E is single-valued $(E_{\nu} = \frac{m_{\pi}^2 m_{\mu}^2}{2m_{\pi}} \sim 30 \text{ MeV}) \Rightarrow E\text{-cut}$
- Delayed neutrinos from the decay of stopped muons
 - ✓ Mean life time of $\mu^+ = 2.2 \times 10^{-6}$ s > μ s → *t*-cut
 - ✓ Neutrinos are more energetic than prompt neutrinos $(E_{\nu}^{\max} = \frac{m_{\mu}^2 m_e^2}{2m_{\mu}})$.

Backgrounds: E/t-Spectra of v

COHERENT [1803.09183 & 1804.09459], JSNS2 [1705.08629]

Proposed Search Strategy: *E* & *T*-cuts

Various Timing Spectra of DM & v

- Expected unit-normalized *t*-distributions of DM
 v scattering events
- ✓ v events: v scattering cross sections convolved and stacked & collectively unit-normalized.
- With appropriate *t*-cuts, **delayed** *v* can be significantly removed while a large portion of **DM events** are retained.

Er Spectra of DM & v: COHERENT

[Dutta, Kim, Liao, JCP, Shin, Strigari, Thompson, JHEP (2021)

 E_r [keV]

t-cuts: delayed *v* significantly removed & DM events almost retained.

 E_r [keV]

Er Spectra of DM & v: CCM, JSNS² [Dutta, Kim, Liao, JCP, Shin, Strigari, Thompson, JHEP (2021)

t-cuts: delayed *v* significantly removed & DM events almost retained.

No Excess: Constraining Parameter Space [Dutta, Kim, Liao, JCP, Shin, Strigari, Thompson, JHEP (2021)

* Assuming no excess is observed, we can constrain parameter space.

x x x For COHERENT & CCM N N

- Projected sensitivity (3-year exposure)
 for the dark photon mediator scenario
- ✓ Data & information about BGs are available for COHERENT, but not for CCM & JSNS²
- ✓ A different curvature of JSNS²: due to
 - $m_e \ll m_V$, but $m_N \gg m_V$ for others
- \checkmark NA64, BaBar: missing E_T
- ♦ COHERENT & CCM ⇔ JSNS²: Complementary!

Boosted Dark Matter

(BDM)

DM Search Schemes (via Scattering)

DM Search Schemes (via Scattering)

DM Search Schemes (via Scattering)

DM Boosting Scenarios

Boosted DM coming from the universe

❖ Various scenarios: requirements → right DM relic abundance & DM boosting mechanism

✓ Multi-component model: [Belanger & JCP, 1112.4491; Kong, Mohlabeng, JCP, 1411.6632;

Kim, **JCP**, Shin, 1702.02944; Aoki & Toma, 1806.09154; more]

- ✓ Semi-annihilation model: [D'Eramo & Thaler, 1003.5912]
- ✓ Decaying multi-component DM: [Bhattacharya et al., 1407.3280; Kopp, Liu, Wang, 1503.02669;

Cline et al., 1904.13396; Heurtier, Kim, **JCP**, Shin, 1905.13223; more]

- ✓ High velocity (semi-relativistic) DM
 - Anti-DM from DM-induced nucleon decay in the Sun: [Huang & Zhao, 1312.0011]
 - Charged cosmic-ray induced BDM: [Bringmann & Pospelov, 1810.10543; Ema, Sala & Sato, 1811.00520;

Cappiello & Beacom, 1906.11283; Dent et al., 1907.03782;

Jho, JCP, Park & Tseng, 2006.13910; Cho, Choi & Yoo, 2007.04555; more]

- Cosmic-Neutrino-Boosted DM (vBDM): [Jho, JCP, Park & Tseng, 2101.11262]

✓ More ideas~

DM Boosting Scenarios: Dark Sector

Boosted DM coming from the universe

Boosted DM (BDM) Models

- ✓ Mechanism: assisted freeze-out, semi-annihilation, decaying, cosmic-ray induced DM, etc.
- ✓ **Portal**: vector portal, scalar portal, etc.
- ✓ **DM spin**: fermionic DM, scalar DM, etc.
- ✓ *i*BDM-inducing operators: two chiral fermions, two real scalars, dipole moment interactions, etc.

BDM: Production & its Signatures

Boosted DM Searches @ SK/COSINE-100

Boosted DM (BDM) models: Receiving rising attention as an alternative scenario

PHYSICAL REVIEW LETTERS **120**, 221301 (2018)

Editors' Suggestion

Search for Boosted Dark Matter Interacting with Electrons in Super-Kamiokande

PHYSICAL REVIEW LETTERS 122, 131802 (2019)

Editors' Suggestion

First Direct Search for Inelastic Boosted Dark Matter with COSINE-100

- ✓ **Not restricted** to primary physics goals
- ✓ Opened to other (unplanned) physics opportunities

e-Recoil @ XENON1T/nT by BDM

[G. Giudice, D. Kim, **JCP**, S. Shin, 1712.07126]

✤ We, for the first time, pointed out that <u>DM direct detection experiments</u>

including XENON1T would be sensitive enough to energetic e-recoils

induced by BDM by pumping up the BDM flux: e.g. $\mathcal{F}_{\chi_1} \propto \frac{\langle \sigma v \rangle_{\chi_0 \chi_0 \to \chi_1 \chi_1}}{m_0^2}$

COSINE-100: First official direct search for *iBDM* [COSINE-100, 1811.09344]

The First Direct Search for Inelastic Boosted Dark Matter with COSINE-100

C. Ha,¹ G. Adhikari,² P. Adhikari,² E. Barbosa de Souza,³ N. Carlin,⁴ S. Choi,⁵ M. Djamal,⁶ A. C. Ezeribe,⁷ I. S. Hahn,⁸ E. J. Jeon,¹ J. H. Jo,³ H. W. Joo,⁵ W. G. Kang,¹ W. Kang,⁹ M. Kauer,¹⁰ G. S. Kim,¹¹ H. Kim,¹ H. J. Kim,¹¹ K. W. Kim,¹ N. Y. Kim,¹ S. K. Kim,⁵ Y. D. Kim,^{1,2} Y. H. Kim,^{1,12} Y. J. Ko,¹ V. A. Kudryavtsev,⁷ H. S. Lee,^{1,*} J. Lee,¹ J. Y. Lee,¹¹ M. H. Lee,¹ D. S. Leonard,¹ W. A. Lynch,⁷ R. H. Maruyama,³ F. Mouton,⁷ S. L. Olsen,¹ B. J. Park,¹³ H. K. Park,¹⁴ H. S. Park,¹² K. S. Park,¹ R. L. C. Pitta,⁴ H. Prihtiadi,⁶ S. J. Ra,¹ C. Rott,⁹ K. A. Shin,¹ A. Scarff,^{7,†} N. J. C. Spooner,⁷ W. G. Thompson,³ L. Yang,¹⁵ and G. H. Yu⁹ (COSINE-100 Collaboration)

ACKNOWLEDGMENTS

We thank Jong-Chul Park for encouraging this analysis and for insightful discussions. We also acknowledge Seodong Shin for insightful discussions. We thank

DM Boosting Scenarios: Cosmic Rays

Cosmic-Ray-Induced BDM

Cosmic-ray-induced BDM

♦ Energetic cosmic-ray-induced BDM: cosmic-rays kick DM (large $E_{e^{\pm},p^{\pm},\nu,\dots}$)

✤ Interactions between DM & SM particles

- ✓ Couplings to proton: [Bringmann & Pospelov, 1810.10543; Dent et al., 1907.03782]
- ✓ Couplings to electron: [Ema, Sala & Sato, 1811.00520]
- ✓ Couplings to p & e: [Cappiello & Beacom, 1906.11283; Cho, Choi & Yoo, 2007.04555]
- ✓ Couplings to leptons (e & <u>v</u>): [Jho, JCP, Park & Tseng, 2006.13910 & 2101.11262]

Calculation of BDM E-spectrum: quite similar even with different types of cosmic rays

Except the neutrino-induced case!

Cosmic-ray-induced BDM: e^{\pm} , p^{\pm} , ...

* <u>Charged-cosmic-ray</u>-induced BDM: <u>charged cosmic-rays kick DM</u> (large $E_{e^{\pm},p^{\pm},...}$)

- ✓ DM-*i* interaction → Non-relativistic halo DM can be boosted by high E charged cosmic-rays.
- ✓ BDM flux: by convolution of charged cosmic-ray fluxes & DM-*i* differential cross section (charged cosmic-ray fluxes: AMS-02, DAMPE, Fermi-LAT, Voyager, ...)

$$\frac{d\Phi_{\chi}}{dK_{\chi}} = \frac{1}{4\pi} \int d\Omega \int_{\text{l.o.s.}} ds \left(\frac{\rho_{\chi}(r(s,\theta))}{m_{\chi}}\right) \int_{K_{i}^{\text{min}}}^{\infty} dK_{i} \frac{d\sigma_{i\chi \to i\chi}(K_{i})}{dK_{\chi}} \frac{d\Phi_{i}^{\text{LIS}}}{dK_{i}}$$

 ρ_{χ} : the relic density of χ in the galaxy

 $d\Phi_i^{\text{LIS}}/dK_i$: the local interstellar differential flux of the cosmic-ray particle *i* K_i^{\min} : the minimum kinetic energy of the cosmic-ray particle *i*

- [Jho, **JCP**, Park & Tseng, 2101.11262]
- **Cosmic-** ν -induced BDM (ν BDM): cosmic neutrinos kick DM (large E_{ν})

✓ DM-*v* interaction → Non-relativistic halo DM can be boosted by <u>*v*'s from stars in the</u> galaxy.

$$oldsymbol{\Phi}_{v} \gg oldsymbol{\Phi}_{e,p}$$

***** BDM production by ν from a star

***** BDM flux by ν 's from a Sun-like star

$$\frac{d\Phi_{\rm DM}^{(1)}(\vec{y})}{dK_{\rm DM}} \simeq \frac{\mathcal{F}}{8\pi^2} \left(\tilde{f}_1 \frac{d\dot{N}_{\nu}^{\rm Sun}}{dK_{\nu}} \right) \int d^3 \vec{z} \frac{\rho_{\rm DM}(|\vec{z}|)}{m_{\rm DM}} \frac{1}{|\vec{x} - \vec{z}|^2}$$
 Neutrino emission rate for a Sun-like star
$$\times \left(\frac{dK_{\nu}}{d\bar{\theta}} \Big|_{\bar{\theta} = \bar{\theta}_0} \right) \left(\frac{d\sigma_{\nu \rm DM}}{dK_{\rm DM}} \Big|_{\bar{\theta} = \bar{\theta}_0} \right)$$
 Variances of stellar properties from Sun
$$\times \frac{1}{\sin \bar{\theta}_0} \frac{1}{|\vec{z} - \vec{y}|^2} \times \exp\left(-\frac{|\vec{z} - \vec{y}|}{d\nu} \right)$$
 Scattering angle via kinematic relations Attenuation due to propagation

[Jho, **JCP**, Park & Tseng, 2101.11262]

 \dot{x}

 \vec{z}

Earth

 $(d_{\oplus}, 0, 0)$

DM halo

***** BDM production by ν from a star

$$\frac{d\Phi_{\rm DM}^{(1)}(\vec{y})}{dK_{\rm DM}} \simeq \frac{\mathcal{F}}{8\pi^2} \left(\tilde{f}_1 \frac{d\dot{N}_{\nu}^{\rm Sun}}{dK_{\nu}} \right) \int d^3 \vec{z} \frac{\rho_{\rm DM}(|\vec{z}|)}{m_{\rm DM}} \frac{1}{|\vec{x} - \vec{z}|^2} \times \left(\frac{dK_{\nu}}{d\bar{\theta}} \Big|_{\bar{\theta} = \bar{\theta}_0} \right) \left(\frac{d\sigma_{\nu \rm DM}}{dK_{\rm DM}} \Big|_{\bar{\theta} = \bar{\theta}_0} \right) \times \frac{1}{\sin \bar{\theta}_0} \frac{1}{|\vec{z} - \vec{y}|^2} \times \exp\left(-\frac{|\vec{z} - \vec{y}|}{d_{\nu}}\right) = \frac{1}{2}$$

- ✓ BDM flux by *v*'s from Sun by taking |*x* − *y*| = D_☉
 Sun provides the largest *v* flux to Earth,
 but only small volume of nearby DM halo comprised the BDM flux.
- ✓ Entire stellar contributions in the galaxy:

$$\frac{d\Phi_{\rm DM}}{dK_{\rm DM}} = \int d^3 \vec{y} n_{\rm star}(\vec{y}) \frac{d\Phi_{\rm DM}^{(1)}(\vec{y})}{dK_{\rm DM}}$$

BDM fluxes by solar/star neutrinos & cosmic electrons

[Jho, **JCP**, Park & Tseng, 2101.11262] SDM fluxes for different mediator &

DM masses

✓ ν **BDM** ~ 10³ ×BDM by solar ν

- ✓ ν BDM (solid) vs. CeBDM (dashed)
- ✓ ν **BDM** ~ 10²⁻⁴ ×CeBDM for $K_{DM} \leq$

50 keV

Solar/star neutrinos can very efficiently boost light DM (≤ 10 MeV)!

[Jho, **JCP**, Park & Tseng 2101.11262 & In preparation]

♦ Extra-galactic(EG) contribution to the *v*BDM flux

Dominant contribution: v & DM populated regions → e.g., Galactic Center

[Jho, **JCP**, Park & Tseng 2101.11262 & In preparation]

Cosmic-ray-induced BDM: Limits - Coupling [Jho, JCP, Park & Tseng

2101.11262 & In preparation]

Experimental status

 $\mathcal{L} \supset -g_{\nu}\bar{\nu}\gamma^{\mu}P_{L}\nu X_{\mu} - g_{e}\bar{e}\gamma^{\mu}eX_{\mu} - g_{DM}\bar{\chi}\gamma^{\mu}\chi X_{\mu}$

- ✓ XENON1T: mostly better limits (lower E_{th})
- ✓ JUNO: competitive upper limits (less attenuation) & better limits for heavier m_X with lighter $m_{\rm DM}$ (high flux even for $K_{\rm DM} \sim O(100 \text{ keV})$)
Cosmic-ray-induced BDM: Limits - Coupling [Jho, JCP, Park & Tseng

2101.11262 & In preparation]

Experimental status

- ✓ ν BDM+CRe-BDM contributions to XENON1T/JUNO e-recoils
- ✓ Expected sensitivities for sub-GeV DM from various current & future detectors: the *v*BDM provides stringent <u>constraints on unexplored parameter space for light</u> <u>DM (≤ MeV)</u>

e/iBDM Searches in Various Exps.

Dark Matter	Target	Volume [t]		Depth	$E_{\rm th}$		Resolution		PID	Run	Dofe
Experiments	Material	Active	Fiducial	[m]	[keV]	Position [cm]	Angular [°]	Energy [%]	FID	Time	neis.
DarkSide	LAr	46.4	36.9	3,800	(7) (1)			< 10		2012	[119]
-50	DP-TPC	kg	kg	m.w.e.	O(1)	$\sim 0.1 - 1$	_	$\gtrsim 10$	-	2013-	[112]
DarkSide	LAr	22	20	3,800	O(1)	$\sim 0.1 - 1$	-	$\lesssim 10$	_	goal:	[70]
-20k	DP-TPC	20		m.w.e.						2021 -	[19]
XENON1T	LXe DP-TPC	2.0	1.3	3,600 m.w.e.	$\mathcal{O}(1)$	$\sim 0.1 - 1$	-	_	-	2016 2018	[113, 114
XENONnT	LXe DP-TPC	5.9	~ 4	3,600 m.w.e.	$\mathcal{O}(1)$	$\sim 0.1 - 1$	_	-	_	goal: 2020–	[113]
DEAP	SP LAr				-						
-3600	S1 only	3.26	2.2	2,000	O(10)	< 10	-	$\sim 10 - 20$	-	2016-	[99–101]
DEAP	SP LAr	150	50	2,000	$\mathcal{O}(10)$	15	-	_	-	_	[99]
-50T	S1 only										
LUX-	LXe			1 800	0(1)					goal:	
ZEPLIN	DP-TPC	7	5.6	1,500	$\mathcal{O}(1)$	$\sim 0.1 - 1$	-	2.5 MeV: 2	-	2020-	[115, 116
Neutrino	Target	Volume [kt]		Depth	$E_{\rm th}$	Resolution		tion		Run	
Experiments	Material	Active	Fiducial	[m]	[MeV]	Vertex [cm]	Angular [°]	Energy [%]	PID	Time	Rets.
Borexino	organic LS	0.278	0.1	3,800 m.w.e.	~ 0.2	\sim 9-17	-	$\frac{5}{\sqrt{E({ m MeV})}}$	-	> 5.6 year	[117]
KamLAND	LS	1	0.2686	1,000	0.2 - 1	$\frac{12-13}{\sqrt{E(\text{MeV})}}$	-	$\frac{6.4-6.9}{\sqrt{E (\text{MeV})}}$	_	~ 10 year?	[118, 119
JUNO	LS	_	20	700	< 1,	$\frac{12}{\sqrt{E\left(\text{MeV}\right)}}$	μ:	$\frac{3}{\sqrt{E(\text{MeV})}}$	μ^{\pm} vs π^{\pm} ,	goal:	[120-122
					goal: 0.1		L>5 m: $<1,$		e^{\pm} vs π^0 :	2021 -	
							L>1 m: <10		difficult		
DUNE								$e: 20 \ (E < 0.4 \text{GeV}),$			
		Total:			e: 30,			$10 \ (E < 1.0 \text{GeV}),$	good	10 kt:	
	LArTPC	17.5	$\gtrsim 10$	1500	<i>p</i> :	$\lesssim 1-2$	$e, \mu: 1,$	$2 + \frac{8}{\sqrt{E/GeV}}$ (E > 1.0 GeV)	e,μ,π^\pm,p	2026-,	[77, 80-8
		$\times 4$	$\times 4$		21-50		$\pi^{\pm}, p, n: 5$	$p: 10 \ (E < 1.0 \ \text{GeV}),$	separation	20 kt:	
								$5 + \frac{5}{\sqrt{E/CeV}}$ (E > 1.0 GeV)		2027 -	
	Water	Total:			e : 5.	5 MeV: 95.	10 MeV: 25.	10 MeV: 16.	e, µ;	≥ 14	
SK	Cherenkov	50	22.5	1,000	p: 485	10 MeV: 55.	0.1 GeV; 3.	1 GeV: 2.5	good	vear	[123-125
				,	r · · · ·	20 MeV: 40	1.33 GeV: 1.2		0		-
		Total:		Japan:		5 MeV: 75,			e,µ:		
НК	Water	258	187	650,	e:<5,	10 MeV: 45,	similar	better	good,	goal:	100 013
	Cherenkov	$\times 2$	$\times 2$	Korea:	p:485	15 MeV: 40,	to SK	than SK	π^{0}, π^{\pm} :	2027-	[85-87]
				1,000		0.5 GeV: 28			mild		
Neutrino	Target	Eff	ective	Depth	$E_{\rm th}$		Resolu	tion		Run	
Telescopes	Material	Volume [Mt]		[m]	[GeV]	Vertex [m]	Angular [°]	Energy [%]	PID	Time	Refs.
IceCube	Ice	$100 \text{GeV}: \sim 30,$ $200 \text{GeV}: \sim 200$		1,450	~ 100	vertical: 5,	μ -track: ~ 1 ,	100 GeV: 28,	only	2011 -	[89, 126
	Cherenkov			Ice		horizontal: 15	shower: ~ 30	1 TeV: 16	μ	(2008)	
DeepCore	Ice	$\label{eq:GeV:constraint} \begin{split} 10{\rm GeV}:\sim 5,\\ 100{\rm GeV}:\sim 30 \end{split}$		2,100	~ 10	better	μ -track: ~ 1 ,		only 20: μ (20)	2011-	[88, 89]
	Cherenkov			Ice			shower: $\gtrsim 10$	_		(2010)	
IceCube	Ice	-		2,150	(2)(1)	much	$5 \mathrm{GeV}$: ~ 20 ,		only	goal:	[105]
Upgrade	Cherenkov			Ice	O(1)	better	$10{\rm GeV}:\sim 15$	-	μ	2023	[127]
PINGU	Ice	$1\mathrm{Ge}$	$V: \gtrsim 1$,	2,100	a. 1	much	1 GeV: 25,	1 GeV: 55,	only	>	[198 190
	Cherenkov	10 Go	$eV: \sim 5$	Ice	~ 1	better	$10 \mathrm{GeV}$: 10	$10 \mathrm{GeV}$: 25	μ 20	2023	[126, 125
Gen2	Ice	~ 1	10 Gt	1,360	~ 50	worse	μ -track: < 1		only	_	[130]
Genz	Cherenkov		to Gt	Ice	TeV	WOLSE	shower: ~ 15	—	u	_	[130]

P. Machado, D. Kim, JCP & S. Shin [2003.07369]

- Many existing/upcoming
 experiments are potentially
 capable of testing models
 conceiving BDM
- Additional physics
 opportunity on top of the main mission of each
 experiment

e/iBDM Searches in Various Exps.

P. Machado, D. Kim, JCP & S. Shin [2003.07369]

Detectors are complementary to one another rather than superior to the other!

Summary

- Particle physics: to find fundamental interactions and elements
- DM: clear sign of new physics (particle) beyond the Standard Model
- Nature of DM: one of the most important problems in the 21th century!

