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Introduction

● This introductory lecture series aims at giving a very practical 
introduction to novel machine learning techniques. 

● The examples will be in pytorch and python. Please work in 
groups of two or three. People familiar with the subject should 
team up with people who are new to the topic. Skeleton code 
will help you get started.

● There will be four exercises, the last one being the 
“challenge” with data from a dark matter experiment. 
The winning team gets a small prize. 
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Syllabus
● Introduction
● Lesson 1: Logistic Regression 
● Exercise 1
● Lesson 2: Multi-Layer Perceptron
● Exercise 2
● Lesson 3: Convolutional Neural Networks
● Exercise 3
● Lesson 4: Generative Models
● Lesson 5: Beyond

 
recurrent/recursive neural networks, explanation methods, uncertainty of network

● Challenge: learn discriminator for dark matter direct detection experiment
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Introduction

in which we mostly concern ourselves with 
naming conventions and problem statements



5this course will be an introduction to the rightmost box – deep learning
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In this lecture series:
mostly
this

a bit of
this

none of
this
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Supervised versus unsupervised
Naming convention:

x := data (a.k.a. “features”, “observables”, or “input”)
y := labels (a.k.a. “target” ) = regression values, classifications

Supervised:
given the data x, and a “labeled” training sample (x,y), train the label y from x → learn 
“probability” of y, given x: p(y|x)

If all possible y labels form a finite set: “classification”
If all possible y labels are form an (uncountably) infinite set: 
“regression”
both: “discriminative models”

Unsupervised:
Usually more difficult, more vague, than supervised. 
Find structure behind data: p(x). 

Generate “fake” data belonging to 
category y: p(x|y): “generative model”

Plot from paper (written by physicists), “why does deep 
and cheap learning work so well”, arXiv:1608.08225

https://arxiv.org/abs/1608.08225
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Machine learning versus statistics

● No clear boundary between machine learning / 
neural networks and statistics

● Rough distinction:

statistics deals with well-motivated low-dimensional models, is 
concerned with inference of the parameters of the models. Often 
probabilistic, “frequentist” interpretation of estimates

machine learning, especially deep learning, is more concerned with 
learning “representations” and generalizing from data, not so much 
about probabilistic interpretability. Neural networks are high-
dimensional heuristic models, less well-motivated.
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Deep learning versus other methods

● Not all of machine learning is based on neural 
networks!

● Other (“shallow”) methods are e.g.: boosted 
decision trees, support vector machines, Bayes 
statistics, and many more

● This course will however be an introduction to 
neural networks and deep learning.

● (we can of course discuss when to use neural networks, when 
not to use neural networks, when to combine methods)
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Reinforcement learning

There is an agent that can perform a series of actions in an environment. 
After each action a ϵ A, the agent is in a state s ϵ S. 
The outcome of the action is subject to reward or penalty.

The goal is to learn a policy p: S → A, that maps states to actions, maximizing 
reward.
(“Given the state s, which action should I perform?”)
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Lesson 1

Logistic regression 
and linear decision 
boundaries
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Logistic regression

The (pedagogically) easiest way to understand 
neural networks is via “logistic regression” 

Task: find straight
line that optimally 
separates blue 
points from red 
points

x1

x2

x1 and x2 are “features”
of your data
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Logistic regression

x1

x2

orthogonal 
vector
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Logistic regression
But               can take on any value between -∞  and +∞. 
Lets map (-∞,∞) to [0,1]. Makes the handling easier. And it makes it 
look like a probability. One possible mapping:

As physicists we take note that this looks a lot like the Fermi function 

σ(x) = 1 means “clearly blue”, σ(x) = 0 means “clearly red”
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Let’s construct a “loss” function

Now we build a function that tells us how much 
we are off:

The point is blue.
How correct is my 
prediction?

The point is red. 
How “right” am I?

Summing up over all
points: how wrong am I?
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Other possibilities
● The loss function on the last page takes the (mean) absolute value of the 

element-wise difference between prediction p(x) and target y: L1 Loss.
● Let’s turn the labels yi ϵ  { red, blue } into numbers: yi ϵ { red=0, blue=1 }.
● The “prediction” for label yi

 
● Many other sensible choices for a loss function:

L2 Loss: (mean) squared error between prediction and target.

(Binary) Cross Entropy: the expected negative log likelihood of misclassification

(*) note that I dropped a factor of 1/N in all losses, as they do not really matter
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“Let’s turn the labels yi ϵ  { red, blue } into numbers: yi ϵ { red=0, blue=1 }.”



20

Loss function

● The loss function goes by many names:

energy function
objective function
reward function

● They all mean the same thing (up to the 
difference in sign: a loss is a negative reward)
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Learning := gradient descent

https://sebastianraschka.com/images/faq/logisticregr-neuralnet/

Training: find the weights that minimize the loss 
function → gradient descent!

https://sebastianraschka.com/images/faq/logisticregr-neuralnet/
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Learning := gradient descent

Training: find the weights that minimize the loss 
function → gradient descent!

“Synapse” “Neuron”

“Perceptron”
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Gradient descent: methods
We have a lot of freedom in the particular choice of the learning method.

● Batch gradient descent 
computes the gradient of the loss function for the entire dataset

where η is the learning rate

● Stochastic gradient descent
updates the weights for each data point separately

● Mini-batch gradient descent
updates the weights for small “batches” of the data
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Gradient descent: methods
We have a lot of freedom in the particular choice of the learning method.

● “Bare gradient descent”

where η is the learning rate.

● Momentum
Take into account the most recent past updates, similar to a physical ball with 
conserved momentum

where γ is a dampening turn (0 < γ < 1)
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Gradient descent: methods
We have a lot of freedom in the particular choice of the learning method.

● RMSProp
”Root Mean Square” propagation. Learning rate weighted (“adaptive 
learning”) by exponentially weighted average of the squares of past gradients.

s: normalization of learning rate
β: “memory”

ε: small number to protect against “division by zero”
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Gradient descent: methods
We have a lot of freedom in the particular choice of the learning 
method.

● Adam

Combination of “momentum” and RMSprop. Works very well in 
many practical applications. 

●  Adagrad / adadelta

Other, similar heuristics at adapting the learning rates
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Gradient descent: methods
We have a lot of freedom in the particular choice of the learning method.

● Nesterov-accelerated gradient
Like momentum, but with a “prescient” ball that looks at where the ball will roll, and corrects 
for an uncorrected “future” gradient

● Nadam

Nesterov-accelerated Adam

● Second order optimizations (Newton, natural gradients)

We can also add second order derivatives of the loss function to our updates. Interesting, 
also theoretically (information geometry), but often 
computationally too expensive.



28Plots taken from: http://www.denizyuret.com/2015/03/alec-radfords-animations-for.html

Gradient descent: methods

./Plots%20taken%20from:%20http://www.denizyuret.com/2015/03/alec-radfords-animations-for.html
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● Go to https://github.com/WolfgangWaltenberger/vietnam2022
See explanations on that webpage 

● Start with 01_logistic.ipynb, fill in the ellipses (“...”)

● Goal is to find the best linear decision boundary between yellow and magenta 
points.

● Play around with learning rate, loss function, optimizer.

● Which optimizer converges the fastest?

Exercise 1 – logit

https://github.com/WolfgangWaltenberger/vietnam2022
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Multi-layer perceptron 
and non-linear 

decision boundaries

Lesson 2
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How can we go from a linear to a 
non-linear decision rule?

?
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How can we go from a linear to a 
non-linear decision rule?

?

We introduce “hidden” layers of neurons!
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How can we go from a linear to a 
non-linear decision rule?

?

We introduce “hidden” layers of neurons!

Can 
simultaneously 
regress / classify 
multiple targets
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Deep learning
How do we train a deep network?

By gradient descent + chain rule := backpropagation! 

Chain rule:

where 

A weight update (with simple gradient descent) is then simply 

(η is the learning rate)
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Example: backprop for MLP
Example for multi layer perceptron (MLP) for simple regression example.
 
Loss function: sum of squared errors (L2)

where (changed naming convention!)

  t  is the “target” output of training data
  y is the predicted output of neural network.

Network minimizes the squared error.

Chain rule:

where 

A weight update is then simply 



37

Example: backprop for MLP

For a logistic activation function:

Finally, for mean squared error loss function:

If oj is the last layer (with a single neuron, oj = y, t = target label)
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Example: backprop for MLP
Finally, for mean squared error loss function:

If oj is the output layer that contains a single neuron (oj = y)
For layers other than the output layer, we can introduce a recursion:

where the index l sums over all neurons that receive input from neuron j.
Let’s put it all together:

With

For the output layer (top) and all other layers (bottom).
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Differentiable programming

Luckily, with software frameworks like tensorflow, pytorch 
we do not have to compute the derivatives ourselves! All 
we have to do is define the network architecture, the 
frameworks compute the gradients.

→ automatic differentiation, differentiable programming

        self.layer1 = nn.Sequential(                                                          
            nn.Conv2d(1, 16, kernel_size=5, stride=1, padding=2),                             
            nn.BatchNorm2d(16),                                                               
            nn.ReLU(),                                                                        
            nn.MaxPool2d(kernel_size=2, stride=2))      
        self.rnn = nn.LSTM(hidden_size, hidden_size, 2, dropout=0.05)                                   
        self.fc = nn.Linear(7*7*32, num_classes)                                              
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Universal approximation theorem

The “universal approximation theorem” 
(Cybenko, 1989, Hornik, 1991) proves, that – 
under a few mild assumptions -- already with a 
single hidden layer, we can essentially learn 
every continuous function.

So why introduce more than one hidden layer?
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Universal approximation theorem

The “universal approximation theorem” (Cybenko, 1989, 
Hornik, 1991) proves, that already with a single hidden 
layer, we can essentially learn every continuous function 
(with a few mild assumptions).

So why introduce more than one hidden layer?

”Practicalities”: the single hidden layer may have to be 
infeasibly large. The learning might take too long, the 
learning sample might have to be too large, and 
generalization will not take place.
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Deep learning = learning 
abstractions

When done right, a deep network can learn “abstract features” 
of the input data, and thus overcome the practical restrictions of 
an MLP with a single hidden layer:

increasingly abstract features
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Deep learning = hierarchical 
representation learning

Because when done right, a deep network can 
learn “abstract features” of the input data:

A layer, evaluated for data = a 
“representation” of the data
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Activation functions

We have a lot of freedom in the choice of
our activation functions

● sigmoid (logistic)

● tanh

pro: non-linear, differentiable, confined range [0,1]
con: zero at large values of |x|  (vanishing gradient problem)

scaled version of sigmoid: tanh(x) = 2 σ(2x) - 1
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Activation functions
● We have a lot of freedom in the choice of

our activation functions

● Linear

● ReLU

Pro: simple, non-zero derivative
Con: constant gradient, cannot introduce non-linearity

Pro: simple, computationally fast, non-linear, non-zero gradient for any large x

Con: not bound, neurons may “die”, get stuck at zero.

recified linear unit
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Activation functions
● We have a lot of freedom in the choice of

our activation functions

● Leaky ReLU

● SeLU

Advantages of ReLU, plus it doesnt “die” for x < 0.

scaled 
exponential 
linear units

Used in “self-normalizing neural networks”, where the output of the neurons in 
each layer is distributed with zero mean and unit variance if the input is also 
distributed with zero mean and unity variance
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Dropout layers
During training: drop a certain fraction of the neurons, to 
prevent the network from “overfitting”. 

During prediction: dropout is deactivated.

Usually worsens the results on the training sample, but 
improves the results on the validation sample.
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Regularization
“Occam’s razor for neural networks”:

Of two models with the same 
predictive power,
the “simpler” one is to be preferred.

→ Prefer networks with many weights 
of zero

“Penalty term” for weights in the loss 
function, e.g. L2 regularization:

Implemented in many of pytorch’s optimizers, lambda is often 
called “weight decay”.
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Hyperparameter optimization
Finding the optimal network architecture and 
hyperparameters is yet another  optimization task → 

hyperparameter optimization, network optimization

Many simple algorithms:

→ grid search: systematically try out many configurations

→ random search: try out configurations randomly

→ gradient based optimization: compute gradients in the 
space of hyperparameters

→ evolutionary algorithms 
….
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● See 02_mlp.ipynb for skeleton code you may use for a quick 
start.

● Goal is to find the best non-linear decision boundary between 
blue and red points.

● Play around with learning rate, loss function,
optimizer, number of layers, number of neurons,
activation functions, dropout layers.

● Which network architecture worked best for you?

Exercise 2 – MLP
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Lesson 3

Convolutional
neural
networks
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Convolutional layers

Think computer vision: we want to detect a cat, 
independently of where it is in the photo: 
translation invariance! 

Answer: convolutional layers: many several 
small convolution matrices (“kernels”)
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Convolutional layers

Answer: convolutional layers: many several 
small convolution matrices (“kernels”) that 
“scan” over the input image, “sharing” the 
learned weights over the scan and thus detect 
features independent of their position
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Convolutional layers

Answer: convolutional layers. Many several 
small convolution matrices (“kernels”) that 
“scan” over the input image, “sharing” the 
learned weights and thus detect features 
independent of their position

Inspired by the 
“receptive field” in 
biologyConvolutions

Max Pooling (subsampling)
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Side remark on convolutions

● Convolutional networks owe their success to 
exploiting the translational equivariance.
(equi-/invariance → symmetries → group theories is 
something we have some familiarity with from gauge 
theories)

● Can symmetries be exploited more systematically in 
neural networks?

https://zenodo.org/record/6459381 https://arxiv.org/abs/2101.03164

https://arxiv.org/abs/2110.02905

http://proceedings.mlr.press/v76/ensign17a/ensign17a.pdf

https://zenodo.org/record/6459381
https://arxiv.org/abs/2101.03164
https://arxiv.org/abs/2110.02905
http://proceedings.mlr.press/v76/ensign17a/ensign17a.pdf
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Batch normalization
It is usually a good trick to “standardize” the inputs: afine 
transformation so they have zero mean and unit 
variance on a given data sample.

This is also true for hidden neurons → batch 
normalization.

dead 
neuron

dead 
neuron

alive, 
“dynamic” 
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Softmaxing
For a classification problem with K different classes (e.g. “building”, 
“animal”, “object”), you want the output neurons to encode a “probability” 
of the input belonging to class j. 
(“One-hot encoding” – one neuron per class)

The K output neurons should therefore acquire values between 0 and 1, 
and sum up to 1.

Softmax function achieves this:

As physicists we note that this is equivalent to the Boltzmann distribution: 
if yj denotes the nevative energy of a quantum state j divided by kBT, then p(j) 
is the probability of the quantum object being found in that state.



Example: google’s “Inception” network

9 Inception modules
Convolution
Pooling
Softmax
Other

Network in a network in a network...

https://storage.googleapis.com/pub-tools-public-publication-data/pdf/43022.pdf

https://storage.googleapis.com/pub-tools-public-publication-data/pdf/43022.pdf
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Application in particle physics: jet 
images

https://arxiv.org/pdf/1511.05190.pdf

Task: learn a jet classifier
that identifies highly 
boosted W jets

https://arxiv.org/pdf/1511.05190.pdf
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Application in particle physics: jet 
images

https://arxiv.org/pdf/1511.05190.pdf

average signal

average background

Receiver Operating 
Characteristic 
(ROC)  curves
for various choices 
of  
“hyperparameters” 

https://arxiv.org/pdf/1511.05190.pdf
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● See 03_cnn.ipynb for skeleton code you may use for a quick start.

● Run the skeleton code on the MNIST dataset of handwritten digits. 
It has one convolutional layer, which should already give you good 
results (accuracy around 98%).

● Add another convolutional layer. With a little tweaking you should 
get the accuracy around 99%.

● Play around with all hyperparameters. Can you get an accuracy 
above 99.25%?

Exercise 3 – 
CNN
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Lesson 4

●Generative models
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Architectures we defined so far implemented classifiers 
and regressors:  Discriminative models!

Loosely speaking, they compute [aspects of]:  p(y|x)

Can we somehow turn the information flow around, from the output 
to the input, to synthesize input, computing p(x|y)?

Yes!
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Option #1: adversarial setups 
Networks can be set up to compete against each 
other in an adversarial setup: generative adversarial 
networks (GANs)

One machine is set up as a generator, it learns
to generate fake data, e.g. images that resemble 
Picasso paintings.

Another machine learns to discriminate the real 
Picassos from fakes.



67https://www.slideshare.net/shyamkkhadka/unsupervised-learning-represenation-with-dcgan

https://www.slideshare.net/shyamkkhadka/unsupervised-learning-represenation-with-dcgan
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Example: the “CycleGAN”, a type of a conditional 
GAN, changing the condition horse → zebra

https://github.com/junyanz/CycleGAN

https://github.com/junyanz/CycleGAN
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Application in Particle Physics:
Fast simulation of ATLAS 
calorimetry (CALO GAN)

https://arxiv.org/pdf/1705.02355.pdfSee also: talk in ACAT 2017

Comparison of shower 
shape variables, Calo 
GAN versus full Geant 4 
simulation

https://arxiv.org/pdf/1705.02355.pdf
https://indico.cern.ch/event/567550/contributions/2656673/attachments/1511208/2372569/DetSim_MachineLearning.pdf
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Option #2: Autoencoders – a.k.a. 
“understanding is compression”
Consider the following network architecture:

With a loss function:

x x’

z
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Autoencoders – a.k.a. 
“understanding is compression”

Consider the following network architecture:

With a loss function:
The network learns to reproduce its own input!

z becomes a lower-dimensional representation (a “code”) of a 
higher-dimensional x
Applications: Lossy compression, denoising data. But cannot yet 
produce fake, synthetic data. Why? Because the stochastic noise
is not yet part of the model!

x x’

z



72Taken from: https://houxianxu.github.io/assets/project/dfcvae

Example: Conditional Variational Autoencoder applied to 
“CelebA” dataset

https://houxianxu.github.io/assets/project/dfcvae
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Lesson 5

● Recursive and 
recurrent neural 
networks

● explanation methods
● Bayes networks and 
errors
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Recurrent networks

How can we apply neural networks on variable-sized time 
series like text or speech, where the prediction of the 
current input must depend on the past “events”?

By making the network “recurrent”:
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Recurrent networks

Note that one can always “unfold” recurrent 
networks to turn them into (complicated) feed-
forward networks with fixed record lengths:

x

h

o

U

V
W

Unfold

xt-1

ht-1

ot-1

U

W

xt

ht

ot

U

W

xt+1

ht+1

ot+1

U

W

VV V V... ...
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Recurrent networks

These types of networks had the problem, that 
the gradient quickly vanished when “propagated 
back through time”. The Long Short Term  
Memory (LSTM) solved that.
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Application (of a similar class of 
algorithms) in particle physics: jet 

classification

https://arxiv.org/pdf/1702.00748.pdf

QCD-aware recursive neural networks for jet physics. (Recurrent = special version of recursive)

See also talk at DS@HEP 2017 workshop

https://arxiv.org/pdf/1702.00748.pdf
https://indico.fnal.gov/event/13497/material/slides/0?contribId=22
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Application (of a similar class of 
algorithms) in particle physics: jet 

classification

https://arxiv.org/pdf/1702.00748.pdf

“QCD-aware recursive neural networks for jet physics”

See also talk at DS@HEP 2017 workshop

ROC curve of W jet tagging 
example, comparison with jet 
images algorithm

Visualisation of kt jet algorithm.
“better”

“particles”: recursive network
“images”: convolutional network

https://arxiv.org/pdf/1702.00748.pdf
https://indico.fnal.gov/event/13497/material/slides/0?contribId=22
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Explanation methods

What is the machine learning? How can we “debug” 
deep networks?

● There are several methods on the market.

Simple class of algorithms for convolutional 
networks: which pixels of a picture most contributed 
to a prediction?  Which pixels were in contradiction 
to prediction? “Sensitivity analysis”, or (for pictures) 
heatmaps (based on “input gradient” df/dxi).
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Explanation methods

What is the machine learning? How can we 
“debug” deep networks? Heatmaps:

https://arxiv.org/pdf/1512.00172.pdf
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Explanation methods

What is the machine learning? How can we 
“debug” deep networks? Heatmaps may 
sometimes help discover learned “artifacts”.
The networks learns to exploit undesirable 
correlations.

https://arxiv.org/pdf/1512.00172.pdf

Machine learned to identify horses by the imprint.

https://arxiv.org/pdf/1512.00172.pdf
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Explanation methods

But sensitivity analyses fail at grasping “the 
bigger picture”. 

What makes the picture below a road with 
cars?

See e.g. http://heatmapping.org, 
http://heatmapping.org/slides/2018_CVPR_1.pdf

http://heatmapping.org/
http://heatmapping.org/slides/2018_CVPR_1.pdf
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Explanation methods

An entire industry of explanation methods has emerged in only 3 years!!
Very hard to keep up and identify the algorithms that are interesting for us.

See e.g. http://heatmapping.org, 
http://heatmapping.org/slides/2018_CVPR_1.pdf

http://heatmapping.org/
http://heatmapping.org/slides/2018_CVPR_1.pdf
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Bayesian Neural Networks 
and Monte Carlo dropout



85

Uncertainties: ML jargon / physics 
jargon

● Aleatoric uncertainty: (“alea” in latin is “dice”)
All uncertainties related to the input data, e.g. sensor noise. 
In particle physics we often have a good understanding of 
these.

● Epistemic uncertainty: (epistemic = “related to knowledge”)
Uncertainties on the network weights, i.e. uncertainties that 
are introduced with the network – and the fact that it is 
trained only with finite data.

● How can we estimate epistemic uncertainties? 



Tool #5: Bayesian neural 
networks and error estimation
Error estimation, the easy way: dropout!!

https://arxiv.org/abs/1506.02142

arXiv:1506.02142 showed that randomly applying dropout in the prediction (as 
opposed to dropout in training) is an approximator for the epistemic error of the 
prediction.

Ensembling: predict several times with dropout applied to get an estimate of the 
epistemic error of the network.

https://arxiv.org/abs/1506.02142
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challenge!
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Backup
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Recommended literature
● Coursera course by Andrew Ng

● Deep learning, book by Ian Goodfellow et al.
see also http://www.deeplearningbook.org/

● Tensorflow tutorials

● Pytorch tutorials

● Deep learning course at univie by Philipp Grohs

https://www.coursera.org/learn/machine-learning
https://www.coursera.org/learn/machine-learning
http://www.deeplearningbook.org/
https://www.tensorflow.org/tutorials/
https://pytorch.org/tutorials/
https://ufind.univie.ac.at/de/course.html?lv=250074&semester=2017S
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