
1

Machine Learning for Particle
Physics –

A Gentle, Hands-On Introduction

Wolfgang Waltenberger

The 28th Vietnam School of Physics,
July 25 – August 5, 2022

2

Introduction

● This introductory lecture series aims at giving a very practical
introduction to novel machine learning techniques.

● The examples will be in pytorch and python. Please work in
groups of two or three. People familiar with the subject should
team up with people who are new to the topic. Skeleton code
will help you get started.

● There will be four exercises, the last one being the
“challenge” with data from a dark matter experiment.
The winning team gets a small prize.

3

Syllabus
● Introduction
● Lesson 1: Logistic Regression
● Exercise 1
● Lesson 2: Multi-Layer Perceptron
● Exercise 2
● Lesson 3: Convolutional Neural Networks
● Exercise 3
● Lesson 4: Generative Models
● Lesson 5: Beyond

recurrent/recursive neural networks, explanation methods, uncertainty of network

● Challenge: learn discriminator for dark matter direct detection experiment

4

Introduction

in which we mostly concern ourselves with
naming conventions and problem statements

5this course will be an introduction to the rightmost box – deep learning

6

7

In this lecture series:
mostly
this

a bit of
this

none of
this

8

Supervised versus unsupervised
Naming convention:

x := data (a.k.a. “features”, “observables”, or “input”)
y := labels (a.k.a. “target”) = regression values, classifications

Supervised:
given the data x, and a “labeled” training sample (x,y), train the label y from x → learn
“probability” of y, given x: p(y|x)

If all possible y labels form a finite set: “classification”
If all possible y labels are form an (uncountably) infinite set:
“regression”
both: “discriminative models”

Unsupervised:
Usually more difficult, more vague, than supervised.
Find structure behind data: p(x).

Generate “fake” data belonging to
category y: p(x|y): “generative model”

Plot from paper (written by physicists), “why does deep
and cheap learning work so well”, arXiv:1608.08225

https://arxiv.org/abs/1608.08225

9

Machine learning versus statistics

● No clear boundary between machine learning /
neural networks and statistics

● Rough distinction:

statistics deals with well-motivated low-dimensional models, is
concerned with inference of the parameters of the models. Often
probabilistic, “frequentist” interpretation of estimates

machine learning, especially deep learning, is more concerned with
learning “representations” and generalizing from data, not so much
about probabilistic interpretability. Neural networks are high-
dimensional heuristic models, less well-motivated.

10

11

Deep learning versus other methods

● Not all of machine learning is based on neural
networks!

● Other (“shallow”) methods are e.g.: boosted
decision trees, support vector machines, Bayes
statistics, and many more

● This course will however be an introduction to
neural networks and deep learning.

● (we can of course discuss when to use neural networks, when
not to use neural networks, when to combine methods)

12

Reinforcement learning

There is an agent that can perform a series of actions in an environment.
After each action a ϵ A, the agent is in a state s ϵ S.
The outcome of the action is subject to reward or penalty.

The goal is to learn a policy p: S → A, that maps states to actions, maximizing
reward.
(“Given the state s, which action should I perform?”)

13

Lesson 1

Logistic regression
and linear decision
boundaries

14

Logistic regression

The (pedagogically) easiest way to understand
neural networks is via “logistic regression”

Task: find straight
line that optimally
separates blue
points from red
points

x1

x2

x1 and x2 are “features”
of your data

15

Logistic regression

x1

x2

orthogonal
vector

16

Logistic regression
But can take on any value between -∞ and +∞.
Lets map (-∞,∞) to [0,1]. Makes the handling easier. And it makes it
look like a probability. One possible mapping:

As physicists we take note that this looks a lot like the Fermi function

σ(x) = 1 means “clearly blue”, σ(x) = 0 means “clearly red”

17

Let’s construct a “loss” function

Now we build a function that tells us how much
we are off:

The point is blue.
How correct is my
prediction?

The point is red.
How “right” am I?

Summing up over all
points: how wrong am I?

18

Other possibilities
● The loss function on the last page takes the (mean) absolute value of the

element-wise difference between prediction p(x) and target y: L1 Loss.
● Let’s turn the labels yi ϵ { red, blue } into numbers: yi ϵ { red=0, blue=1 }.
● The “prediction” for label yi

● Many other sensible choices for a loss function:

L2 Loss: (mean) squared error between prediction and target.

(Binary) Cross Entropy: the expected negative log likelihood of misclassification

(*) note that I dropped a factor of 1/N in all losses, as they do not really matter

19

“Let’s turn the labels yi ϵ { red, blue } into numbers: yi ϵ { red=0, blue=1 }.”

20

Loss function

● The loss function goes by many names:

energy function
objective function
reward function

● They all mean the same thing (up to the
difference in sign: a loss is a negative reward)

21

Learning := gradient descent

https://sebastianraschka.com/images/faq/logisticregr-neuralnet/

Training: find the weights that minimize the loss
function → gradient descent!

https://sebastianraschka.com/images/faq/logisticregr-neuralnet/

22

Learning := gradient descent

Training: find the weights that minimize the loss
function → gradient descent!

“Synapse” “Neuron”

“Perceptron”

23

Gradient descent: methods
We have a lot of freedom in the particular choice of the learning method.

● Batch gradient descent
computes the gradient of the loss function for the entire dataset

where η is the learning rate

● Stochastic gradient descent
updates the weights for each data point separately

● Mini-batch gradient descent
updates the weights for small “batches” of the data

24

Gradient descent: methods
We have a lot of freedom in the particular choice of the learning method.

● “Bare gradient descent”

where η is the learning rate.

● Momentum
Take into account the most recent past updates, similar to a physical ball with
conserved momentum

where γ is a dampening turn (0 < γ < 1)

25

Gradient descent: methods
We have a lot of freedom in the particular choice of the learning method.

● RMSProp
”Root Mean Square” propagation. Learning rate weighted (“adaptive
learning”) by exponentially weighted average of the squares of past gradients.

s: normalization of learning rate
β: “memory”

ε: small number to protect against “division by zero”

26

Gradient descent: methods
We have a lot of freedom in the particular choice of the learning
method.

● Adam

Combination of “momentum” and RMSprop. Works very well in
many practical applications.

● Adagrad / adadelta

Other, similar heuristics at adapting the learning rates

27

Gradient descent: methods
We have a lot of freedom in the particular choice of the learning method.

● Nesterov-accelerated gradient
Like momentum, but with a “prescient” ball that looks at where the ball will roll, and corrects
for an uncorrected “future” gradient

● Nadam

Nesterov-accelerated Adam

● Second order optimizations (Newton, natural gradients)

We can also add second order derivatives of the loss function to our updates. Interesting,
also theoretically (information geometry), but often
computationally too expensive.

28Plots taken from: http://www.denizyuret.com/2015/03/alec-radfords-animations-for.html

Gradient descent: methods

./Plots%20taken%20from:%20http://www.denizyuret.com/2015/03/alec-radfords-animations-for.html

29

30

● Go to https://github.com/WolfgangWaltenberger/vietnam2022
See explanations on that webpage

● Start with 01_logistic.ipynb, fill in the ellipses (“...”)

● Goal is to find the best linear decision boundary between yellow and magenta
points.

● Play around with learning rate, loss function, optimizer.

● Which optimizer converges the fastest?

Exercise 1 – logit

https://github.com/WolfgangWaltenberger/vietnam2022

31

Multi-layer perceptron
and non-linear

decision boundaries

Lesson 2

32

How can we go from a linear to a
non-linear decision rule?

?

33

How can we go from a linear to a
non-linear decision rule?

?

We introduce “hidden” layers of neurons!

34

How can we go from a linear to a
non-linear decision rule?

?

We introduce “hidden” layers of neurons!

Can
simultaneously
regress / classify
multiple targets

35

Deep learning
How do we train a deep network?

By gradient descent + chain rule := backpropagation!

Chain rule:

where

A weight update (with simple gradient descent) is then simply

(η is the learning rate)

36

Example: backprop for MLP
Example for multi layer perceptron (MLP) for simple regression example.

Loss function: sum of squared errors (L2)

where (changed naming convention!)

 t is the “target” output of training data
 y is the predicted output of neural network.

Network minimizes the squared error.

Chain rule:

where

A weight update is then simply

37

Example: backprop for MLP

For a logistic activation function:

Finally, for mean squared error loss function:

If oj is the last layer (with a single neuron, oj = y, t = target label)

38

Example: backprop for MLP
Finally, for mean squared error loss function:

If oj is the output layer that contains a single neuron (oj = y)
For layers other than the output layer, we can introduce a recursion:

where the index l sums over all neurons that receive input from neuron j.
Let’s put it all together:

With

For the output layer (top) and all other layers (bottom).

39

Differentiable programming

Luckily, with software frameworks like tensorflow, pytorch
we do not have to compute the derivatives ourselves! All
we have to do is define the network architecture, the
frameworks compute the gradients.

→ automatic differentiation, differentiable programming

 self.layer1 = nn.Sequential(
 nn.Conv2d(1, 16, kernel_size=5, stride=1, padding=2),
 nn.BatchNorm2d(16),
 nn.ReLU(),
 nn.MaxPool2d(kernel_size=2, stride=2))
 self.rnn = nn.LSTM(hidden_size, hidden_size, 2, dropout=0.05)
 self.fc = nn.Linear(7*7*32, num_classes)

40

Universal approximation theorem

The “universal approximation theorem”
(Cybenko, 1989, Hornik, 1991) proves, that –
under a few mild assumptions -- already with a
single hidden layer, we can essentially learn
every continuous function.

So why introduce more than one hidden layer?

41

Universal approximation theorem

The “universal approximation theorem” (Cybenko, 1989,
Hornik, 1991) proves, that already with a single hidden
layer, we can essentially learn every continuous function
(with a few mild assumptions).

So why introduce more than one hidden layer?

”Practicalities”: the single hidden layer may have to be
infeasibly large. The learning might take too long, the
learning sample might have to be too large, and
generalization will not take place.

42

Deep learning = learning
abstractions

When done right, a deep network can learn “abstract features”
of the input data, and thus overcome the practical restrictions of
an MLP with a single hidden layer:

increasingly abstract features

43

Deep learning = hierarchical
representation learning

Because when done right, a deep network can
learn “abstract features” of the input data:

A layer, evaluated for data = a
“representation” of the data

44

Activation functions

We have a lot of freedom in the choice of
our activation functions

● sigmoid (logistic)

● tanh

pro: non-linear, differentiable, confined range [0,1]
con: zero at large values of |x| (vanishing gradient problem)

scaled version of sigmoid: tanh(x) = 2 σ(2x) - 1

45

Activation functions
● We have a lot of freedom in the choice of

our activation functions

● Linear

● ReLU

Pro: simple, non-zero derivative
Con: constant gradient, cannot introduce non-linearity

Pro: simple, computationally fast, non-linear, non-zero gradient for any large x

Con: not bound, neurons may “die”, get stuck at zero.

recified linear unit

46

Activation functions
● We have a lot of freedom in the choice of

our activation functions

● Leaky ReLU

● SeLU

Advantages of ReLU, plus it doesnt “die” for x < 0.

scaled
exponential
linear units

Used in “self-normalizing neural networks”, where the output of the neurons in
each layer is distributed with zero mean and unit variance if the input is also
distributed with zero mean and unity variance

47

Dropout layers
During training: drop a certain fraction of the neurons, to
prevent the network from “overfitting”.

During prediction: dropout is deactivated.

Usually worsens the results on the training sample, but
improves the results on the validation sample.

48

Regularization
“Occam’s razor for neural networks”:

Of two models with the same
predictive power,
the “simpler” one is to be preferred.

→ Prefer networks with many weights
of zero

“Penalty term” for weights in the loss
function, e.g. L2 regularization:

Implemented in many of pytorch’s optimizers, lambda is often
called “weight decay”.

49

Hyperparameter optimization
Finding the optimal network architecture and
hyperparameters is yet another optimization task →

hyperparameter optimization, network optimization

Many simple algorithms:

→ grid search: systematically try out many configurations

→ random search: try out configurations randomly

→ gradient based optimization: compute gradients in the
space of hyperparameters

→ evolutionary algorithms
….

50

51

52

● See 02_mlp.ipynb for skeleton code you may use for a quick
start.

● Goal is to find the best non-linear decision boundary between
blue and red points.

● Play around with learning rate, loss function,
optimizer, number of layers, number of neurons,
activation functions, dropout layers.

● Which network architecture worked best for you?

Exercise 2 – MLP

53

Lesson 3

Convolutional
neural
networks

54

Convolutional layers

Think computer vision: we want to detect a cat,
independently of where it is in the photo:
translation invariance!

Answer: convolutional layers: many several
small convolution matrices (“kernels”)

55

Convolutional layers

Answer: convolutional layers: many several
small convolution matrices (“kernels”) that
“scan” over the input image, “sharing” the
learned weights over the scan and thus detect
features independent of their position

56

Convolutional layers

Answer: convolutional layers. Many several
small convolution matrices (“kernels”) that
“scan” over the input image, “sharing” the
learned weights and thus detect features
independent of their position

Inspired by the
“receptive field” in
biologyConvolutions

Max Pooling (subsampling)

57

Side remark on convolutions

● Convolutional networks owe their success to
exploiting the translational equivariance.
(equi-/invariance → symmetries → group theories is
something we have some familiarity with from gauge
theories)

● Can symmetries be exploited more systematically in
neural networks?

https://zenodo.org/record/6459381 https://arxiv.org/abs/2101.03164

https://arxiv.org/abs/2110.02905

http://proceedings.mlr.press/v76/ensign17a/ensign17a.pdf

https://zenodo.org/record/6459381
https://arxiv.org/abs/2101.03164
https://arxiv.org/abs/2110.02905
http://proceedings.mlr.press/v76/ensign17a/ensign17a.pdf

58

Batch normalization
It is usually a good trick to “standardize” the inputs: afine
transformation so they have zero mean and unit
variance on a given data sample.

This is also true for hidden neurons → batch
normalization.

dead
neuron

dead
neuron

alive,
“dynamic”

59

Softmaxing
For a classification problem with K different classes (e.g. “building”,
“animal”, “object”), you want the output neurons to encode a “probability”
of the input belonging to class j.
(“One-hot encoding” – one neuron per class)

The K output neurons should therefore acquire values between 0 and 1,
and sum up to 1.

Softmax function achieves this:

As physicists we note that this is equivalent to the Boltzmann distribution:
if yj denotes the nevative energy of a quantum state j divided by kBT, then p(j)
is the probability of the quantum object being found in that state.

Example: google’s “Inception” network

9 Inception modules
Convolution
Pooling
Softmax
Other

Network in a network in a network...

https://storage.googleapis.com/pub-tools-public-publication-data/pdf/43022.pdf

https://storage.googleapis.com/pub-tools-public-publication-data/pdf/43022.pdf

61

Application in particle physics: jet
images

https://arxiv.org/pdf/1511.05190.pdf

Task: learn a jet classifier
that identifies highly
boosted W jets

https://arxiv.org/pdf/1511.05190.pdf

62

Application in particle physics: jet
images

https://arxiv.org/pdf/1511.05190.pdf

average signal

average background

Receiver Operating
Characteristic
(ROC) curves
for various choices
of
“hyperparameters”

https://arxiv.org/pdf/1511.05190.pdf

63

● See 03_cnn.ipynb for skeleton code you may use for a quick start.

● Run the skeleton code on the MNIST dataset of handwritten digits.
It has one convolutional layer, which should already give you good
results (accuracy around 98%).

● Add another convolutional layer. With a little tweaking you should
get the accuracy around 99%.

● Play around with all hyperparameters. Can you get an accuracy
above 99.25%?

Exercise 3 –
CNN

64

Lesson 4

●Generative models

65

Architectures we defined so far implemented classifiers
and regressors: Discriminative models!

Loosely speaking, they compute [aspects of]: p(y|x)

Can we somehow turn the information flow around, from the output
to the input, to synthesize input, computing p(x|y)?

Yes!

66

Option #1: adversarial setups
Networks can be set up to compete against each
other in an adversarial setup: generative adversarial
networks (GANs)

One machine is set up as a generator, it learns
to generate fake data, e.g. images that resemble
Picasso paintings.

Another machine learns to discriminate the real
Picassos from fakes.

67https://www.slideshare.net/shyamkkhadka/unsupervised-learning-represenation-with-dcgan

https://www.slideshare.net/shyamkkhadka/unsupervised-learning-represenation-with-dcgan

68

Example: the “CycleGAN”, a type of a conditional
GAN, changing the condition horse → zebra

https://github.com/junyanz/CycleGAN

https://github.com/junyanz/CycleGAN

69

Application in Particle Physics:
Fast simulation of ATLAS
calorimetry (CALO GAN)

https://arxiv.org/pdf/1705.02355.pdfSee also: talk in ACAT 2017

Comparison of shower
shape variables, Calo
GAN versus full Geant 4
simulation

https://arxiv.org/pdf/1705.02355.pdf
https://indico.cern.ch/event/567550/contributions/2656673/attachments/1511208/2372569/DetSim_MachineLearning.pdf

70

Option #2: Autoencoders – a.k.a.
“understanding is compression”
Consider the following network architecture:

With a loss function:

x x’

z

71

Autoencoders – a.k.a.
“understanding is compression”

Consider the following network architecture:

With a loss function:
The network learns to reproduce its own input!

z becomes a lower-dimensional representation (a “code”) of a
higher-dimensional x
Applications: Lossy compression, denoising data. But cannot yet
produce fake, synthetic data. Why? Because the stochastic noise
is not yet part of the model!

x x’

z

72Taken from: https://houxianxu.github.io/assets/project/dfcvae

Example: Conditional Variational Autoencoder applied to
“CelebA” dataset

https://houxianxu.github.io/assets/project/dfcvae

73

Lesson 5

● Recursive and
recurrent neural
networks

● explanation methods
● Bayes networks and
errors

74

Recurrent networks

How can we apply neural networks on variable-sized time
series like text or speech, where the prediction of the
current input must depend on the past “events”?

By making the network “recurrent”:

75

Recurrent networks

Note that one can always “unfold” recurrent
networks to turn them into (complicated) feed-
forward networks with fixed record lengths:

x

h

o

U

V
W

Unfold

xt-1

ht-1

ot-1

U

W

xt

ht

ot

U

W

xt+1

ht+1

ot+1

U

W

VV V V... ...

76

Recurrent networks

These types of networks had the problem, that
the gradient quickly vanished when “propagated
back through time”. The Long Short Term
Memory (LSTM) solved that.

77

Application (of a similar class of
algorithms) in particle physics: jet

classification

https://arxiv.org/pdf/1702.00748.pdf

QCD-aware recursive neural networks for jet physics. (Recurrent = special version of recursive)

See also talk at DS@HEP 2017 workshop

https://arxiv.org/pdf/1702.00748.pdf
https://indico.fnal.gov/event/13497/material/slides/0?contribId=22

78

Application (of a similar class of
algorithms) in particle physics: jet

classification

https://arxiv.org/pdf/1702.00748.pdf

“QCD-aware recursive neural networks for jet physics”

See also talk at DS@HEP 2017 workshop

ROC curve of W jet tagging
example, comparison with jet
images algorithm

Visualisation of kt jet algorithm.
“better”

“particles”: recursive network
“images”: convolutional network

https://arxiv.org/pdf/1702.00748.pdf
https://indico.fnal.gov/event/13497/material/slides/0?contribId=22

79

Explanation methods

What is the machine learning? How can we “debug”
deep networks?

● There are several methods on the market.

Simple class of algorithms for convolutional
networks: which pixels of a picture most contributed
to a prediction? Which pixels were in contradiction
to prediction? “Sensitivity analysis”, or (for pictures)
heatmaps (based on “input gradient” df/dxi).

80

Explanation methods

What is the machine learning? How can we
“debug” deep networks? Heatmaps:

https://arxiv.org/pdf/1512.00172.pdf

81

Explanation methods

What is the machine learning? How can we
“debug” deep networks? Heatmaps may
sometimes help discover learned “artifacts”.
The networks learns to exploit undesirable
correlations.

https://arxiv.org/pdf/1512.00172.pdf

Machine learned to identify horses by the imprint.

https://arxiv.org/pdf/1512.00172.pdf

82

Explanation methods

But sensitivity analyses fail at grasping “the
bigger picture”.

What makes the picture below a road with
cars?

See e.g. http://heatmapping.org,
http://heatmapping.org/slides/2018_CVPR_1.pdf

http://heatmapping.org/
http://heatmapping.org/slides/2018_CVPR_1.pdf

83

Explanation methods

An entire industry of explanation methods has emerged in only 3 years!!
Very hard to keep up and identify the algorithms that are interesting for us.

See e.g. http://heatmapping.org,
http://heatmapping.org/slides/2018_CVPR_1.pdf

http://heatmapping.org/
http://heatmapping.org/slides/2018_CVPR_1.pdf

84

Bayesian Neural Networks
and Monte Carlo dropout

85

Uncertainties: ML jargon / physics
jargon

● Aleatoric uncertainty: (“alea” in latin is “dice”)
All uncertainties related to the input data, e.g. sensor noise.
In particle physics we often have a good understanding of
these.

● Epistemic uncertainty: (epistemic = “related to knowledge”)
Uncertainties on the network weights, i.e. uncertainties that
are introduced with the network – and the fact that it is
trained only with finite data.

● How can we estimate epistemic uncertainties?

Tool #5: Bayesian neural
networks and error estimation
Error estimation, the easy way: dropout!!

https://arxiv.org/abs/1506.02142

arXiv:1506.02142 showed that randomly applying dropout in the prediction (as
opposed to dropout in training) is an approximator for the epistemic error of the
prediction.

Ensembling: predict several times with dropout applied to get an estimate of the
epistemic error of the network.

https://arxiv.org/abs/1506.02142

87

challenge!

88

Backup

89

Recommended literature
● Coursera course by Andrew Ng

● Deep learning, book by Ian Goodfellow et al.
see also http://www.deeplearningbook.org/

● Tensorflow tutorials

● Pytorch tutorials

● Deep learning course at univie by Philipp Grohs

https://www.coursera.org/learn/machine-learning
https://www.coursera.org/learn/machine-learning
http://www.deeplearningbook.org/
https://www.tensorflow.org/tutorials/
https://pytorch.org/tutorials/
https://ufind.univie.ac.at/de/course.html?lv=250074&semester=2017S

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89

