28th Vietnam School of Physics: Particles and Dark Matter

Machine Learning for Particle
Physics —

A Gentle, Hands-On Introduction

Wolfgang Waltenberger

The 28™ Vietnam School of Physics,
II|| July 25 — August 5, 2022
|||||| ‘ /

"~ HEPHY

INSTITUT FUR HOCHENERGIEPHYSIK

Introduction

* This introductory lecture series aims at giving a very practical
iIntroduction to novel machine learning techniques.

* The examples will be in pytorch and python. Please work in
groups of two or three. People familiar with the subject should
team up with people who are new to the topic. Skeleton code

will help you get started.

* There will be four exercises, the last one being the
“challenge” with data from a dark matter experiment.
The winning team gets a small prize.

Syllabus

Introduction

Lesson 1: Logistic Regression

Exercise 1

Lesson 2: Multi-Layer Perceptron
Exercise 2

Lesson 3: Convolutional Neural Networks
Exercise 3

Lesson 4: Generative Models

Lesson 5: Beyond

recurrent/recursive neural networks, explanation methods, uncertainty of network

Challenge: learn discriminator for dark matter direct detection experiment

Introduction

In which we mostly concern ourselves with
naming conventions and problem statements

ARTIFICIAL
INTELLIGENCE

MACHINE
LEARNING
sh. DEER

| LEARNING
K Sy
N

1950’s 1960’s 1970’s 1980's 1990°s 2000’s 2010’s

Since an early flush of optimism in the 1950s, smaller subsets of artificial intelligence - first machine learning, then
deep learning, a subset of machine learning - have created ever larger disruptions.

this course will be an introduction to the rightmost box — deep learning

* | abeled data
* Direct feedback
* Predict outcome/ffuture

Supervised

Learning

Unsupervised Reinforcement
* MNo labels » Decision process
* Mo feedback * Beward system

* “Find hidden structure” * Learn series of actions

In this lecture series:

mostly

* Labeled data - -
* Direct feedback th'S

* Predict outcome/ffuture

Supervised

none of
this

a bit of

this Learning

Unsupervised Reinforcement
« Mo labels « Decision process
* Mo feedback * Beward system

* “Find hidden structure” * Learn series of actions

Supervised versus unsupervised

Naming convention:

X := data (a.k.a. “features”, “observables”, or “input”)
y := labels (a.k.a. “target”) = regression values, classifications

Supervised:
given the data x, and a “labeled” training sample (x,y), train the label y from x - learn
“probability” of y, given x: p(y|x)

If all possible y labels form a finite set: “classification”

If all possible y labels are form an (uncountably) infinite set:
“regression”

both: “discriminative models”

p(x)

Unsupervised
learning

Unsupervised:
Usually more difficult, more vague, than supervised.
Find structure behind data: p(x).

Generate “fake” data belonging to
category y: p(x|y): “generative model”

p(xly) p(ylx)

Plot from paper (written by physicists), “why does deep Generation Classification

and cheap learning work so well”, arXiv:1608.08225

https://arxiv.org/abs/1608.08225

Machine learning versus statistics

* No clear boundary between machine learning /
neural networks and statistics

* Rough distinction:

statistics deals with well-motivated low-dimensional models, is
concerned with inference of the parameters of the models. Often
probabilistic, “frequentist” interpretation of estimates

machine learning, especially deep learning, is more concerned with
learning “representations” and generalizing from data, not so much
about probabilistic interpretability. Neural networks are high-
dimensional heuristic models, less well-motivated.

Deep learning versus other methods

* Not all of machine learning is based on neural
networks!

e Other (“shallow”) methods are e.g.: boosted
decision trees, support vector machines, Bayes
statistics, and many more

* This course will however be an introduction to
neural networks and deep learning.

* (we can of course discuss when to use neural networks, when
not to use neural networks, when to combine methods)

11

Reinforcement learning

.

Environment

Interpreter

c®
% ()

Agent

Action

There is an agent that can perform a series of actions in an environment.
After each action a € A, the agentis in a state s € S.
The outcome of the action is subject to reward or penalty.

The goal is to learn a policy p: S - A, that maps states to actions, maximizing
reward.

(“Given the state s, which action should I perform?”)

12

Logistic regression
and linear decision

boundaries

@
ﬂ‘g Lesson 1
A

Logistic regression

The (pedagogically) easiest way to understand
neural networks Is via “logistic regression”

Task: find straight .,

I . X2 .;
line that optimally | c
-..’;.o: : ,’J!f

separates blue ; o ST AT

- RS o s T
points | ¢ ose 2y 41?, ST

ORI -

x, and x, are “features” of ." s .
of your data

Logistic regression

ZIZ‘QZkiEl—I—d

net(z) > 0 — blue
net(x) < 0 — red

nla N
-
O TS
O — N—"
o Q9 +>
< § >
S > =
{
.z/ .-_ "
" =¥ ®
o 5-.
* N
[o't"la a
\ o ‘ .._ ® ‘
.,, L] H ._i a
I.“.‘ "q- "-. o
A . P
-

15

Logistic regression

But net(f) can take on any value between -« and +e.
Lets map (-«,«~) to [0,1]. Makes the handling easier. And it makes it

look like a probability. One possible mapping:

Logistic function

(x) = e* _ 1
A TY AT

Properties ‘|| — heaviside

— Logistic
8l

|. monotonic, o(x) € (0, 1)
2.0x)+o(—x) =1
3.6'(x) = c(x)(1 — 6(x))

4. 20(x) = 1 + tanh(x/2)

-4 33 -2 =1 0 1 2 3

o(Xx) = 1 means “clearly blue”, o(x) = 0 means “clearly red”

As physicists we take note that this looks a lot like the Fermi function 16

| et’s construct a “loss” function

Now we build a function that tells us how much
we are off:

net(z) = 1 - 7 + d

p(@blue) = o(net(@) oy

prediction?

p(Z;red) = 1 — o(net(Z)) Lgﬁveﬁg‘ﬁti,?;;dl'?

L(@)= Y 1-p(@;blue)+ > 1—p(F;red)
i:bluepoints i:redpoints
Summing up over all
points: how wrong am 1?

17

Other possibilities

* The loss function on the last page takes the (mean) absolute value of the
element-wise difference between prediction p(x) and target y: L1 Loss.

e Let's turn the labels yi € { red, blue } into numbers: yi € { red=0, blue=1 }.
* The “prediction” for label y;

p(Zs; i)
« Many other sensible choices for a loss function:

L2 Loss: (mean) squared error between prediction and target.

L(w) = Z (yi — p(Ti; 1))

1:points

(Binary) Cross Entropy: the expected negative log likelihood of misclassification

Z yi In (p(Z359:)) + (1 —v:) In(1 — p(Zs; y:))

i:points

(*) note that | dropped a factor of 1/N in all losses, as they do not really matter

18

“Let’s turn the labels yi € {red, blue } into numbers: y; € { red=0, blue=1}.”

IF T ASSIGN NUMBERS
TO EACH OF THESE THINGS,
THEN IT BECOMES DATA,
AND I CAN DO MATH ON [T!

THE SAME BASIC IDEA UNDERLIES
GODELS INCOMPLETENESS THEOREM
AND ALL BAD DATA SCIENCE.

19

Loss function

* The loss function goes by many names:

energy function
objective function
reward function

* They all mean the same thing (up to the
difference In sign: a loss is a negative reward)

20

Learning .= gradient descent

Training: find the weights that minimize the loss
function - gradient descent!

argmin, L(0)

®_@ —@— output

LIt step

Met input Activation
function function function

Schematic of a logistic regression classifier.

https://sebastianraschka.com/images/fag/logisticregr-neuralnet/

21

https://sebastianraschka.com/images/faq/logisticregr-neuralnet/

Learning .= gradient descent

Training: find the weights that minimize the loss
function - gradient descent!

argmin, L(0)

™

~__ "Perceptron”

Error \

Mt input Activation nit step

function function uncthon /

~ Schematic of a logistic regression classifier.

“Synapse” “Neuron”

22

Gradient descent: methods

We have a lot of freedom in the particular choice of the learning method.

e Batch gradient descent
computes the gradient of the loss function for the entire dataset

@ = @ — 0V g L(D)

where n is the learning rate

» Stochastic gradient descent

updates the weights for each data point separately

@ = @ — Vg L(w; 77)

* Mini-batch gradient descent
updates the weights for small “hatches” of the data

@ = 0 — 0V g L(w; 279 1))

23

Gradient descent: methods

We have a lot of freedom in the particular choice of the learning method.

e “Bare gradient descent”

”LD) — flIf — T}V@L(U_J))

where n is the learning rate.

e Momentum

Take into account the most recent past updates, similar to a physical ball with
conserved momentum

AU_J)t — —”)/AU_J)t_l — HVQEL(U_})

where y is a dampening turn (0 <y < 1)

24

Gradient descent: methods

We have a lot of freedom in the particular choice of the learning method.

* RMSProp
"Root Mean Square” propagation. Learning rate weighted (“adaptive
learning”) by exponentially weighted average of the squares of past gradients.

st = Bsi—1+ (1 — B) (VzUL(@U))2

s: normalization of learning rate
B: “memory”

1
A U = 0 0
Wy N 677V L(w)

€. small number to protect against “division by zero”

25

Gradient descent: methods

We have a lot of freedom in the particular choice of the learning
method.

e Adam

Combination of “momentum” and RMSprop. Works very well in
many practical applications.

 Adagrad / adadelta

Other, similar heuristics at adapting the learning rates

26

Gradient descent: methods

We have a lot of freedom in the particular choice of the learning method.

* Nesterov-accelerated gradient

Like momentum, but with a “prescient” ball that looks at where the ball will roll, and corrects
for an uncorrected “future” gradient

Au_ft — —"}/Au_jt_l — UVU—J’L(U_J) — ’}/A’lﬁt_l)

e Nadam
Nesterov-accelerated Adam

» Second order optimizations (Newton, natural gradients)

We can also add second order derivatives of the loss function to our updates. Interesting,
also theoretically (information geometry), but often

computationally too expensive.

27

Gradient descent: methods

S — SGD -
3 — Momentum [
— NAG
— Adagrad
Adadelta
. Rmsprop
sgd o
momentum ||
nag H
adagrad N
-1} adadelta 3
i o
R rmsprop .,!
.II'Il!II
-3 '.|:!I.f’
(1
~ak |
|
-5 !
=2 -1 5
100 r
80 |
60
40}
20
D i ! ! 1 1
0 20 40 60 80 100 120

Plots taken from: http://www.denizyuret.com/2015/03/alec-radfords-animations-for.html 78

./Plots%20taken%20from:%20http://www.denizyuret.com/2015/03/alec-radfords-animations-for.html

Exercise 1: Logistic regressmn in two dimensions

il
n
]
]
n
i

o ® o
® o 9,
o w® &

epoch 0001

[
i
1
. i
21 o®@ . 0g® i
p € o\ g *&
1
i
—4 4 . .I
- demsmn buundar‘y, Adam :
——- decision boundary, SGD :
—6 T = T § T
-6 —4 —2 0 2 6
X1

29

Exercise 1 - logit

* (o to https://github.com/WolfgangWaltenberger/vietham2022
See explanations on that webpage

 Start with 01 _logistic.ipynb, fill in the ellipses (“...”)

* Goal is to find the best linear decision boundary between yellow and magenta
points.

* Play around with learning rate, loss function, optimizer.

* Which optimizer converges the fastest?

30

https://github.com/WolfgangWaltenberger/vietnam2022

@
wg Lesson 2
A

Exercise 2: MLP in two dimensions

Multi-layer perceptron
and non-linear
decision boundaries

31

How can we go from a linear to a
non-linear decision rule?

32

How can we go from a linear to a
non-linear decision rule?

We introduce “hidden” layers of neurons!

Input laver

. Output laver
Hidden laver I :

How can we go from a linear to a
non-linear decision rule?

et Nl et Y CIRAT N 2 Can
ey B o T L ek T simultaneously

e Tl 2 “ : regress / classify
multiple targets

We introduce “hidden” layers of neurons!

p(T;y)
o1(net;

34

Input laver

. Output laver
Hidden laver I :

Deep learning

How do we train a deep network?

By gradient descent + chain rule := backpropagation!

OL OL 0o; Onet;
8wij N an 3netj 8w7;j

Chain rule;:

Output laver

[nput layer

where Oj = O'(Iletj> = O'(Z ”LUjkOk)
k

Hidden laver

A weight update (with simple gradient descent) is then simply

oL

S =
iJ

(n is the learning rate)

35

Example: backprop for MLP

Example for multi layer perceptron (MLP) for simple regression example.
Loss function: sum of squared errors (L2) [, X (y — t)2

where (changed naming convention!)

t is the “target” output of training data
y is the predicted output of neural network. Xz

Network minimizes the squared error. 78

Chainrule: 0L B oL (90]- (9netj
8w@-j N an 8netj 8wz~j

Output laver

Input laver

Hidden laver

where
0; =o(netj) =0 E WOk
k

A weight update is then simply
oL

AW, — —p——
(¥ T}awzj 36

Example: backprop for MLP

OL OL 0o; Onet;
aww - 80] anet] 6wm Input laver

0; = o(net;) = O'(Z W;0k)
k

Onet; O B B
Ow;; Owy, (; wjkOk) = 0Kk = 0

For a logistic activation function:
80]'
Onet

Output layer

Hidden layer

= o(net;)(1 —o(net;)) = 0;(1 — 0;)

Finally, for mean squared error loss function:
oL _
3o, U~
If 0 IS the last layer (with a single neuron, 0, =y, t = target label)
37

Example: backprop for MLP

Finally, for mean squared error loss function:

oL _ . _,
an_y

If o, is the output layer that contains a single neuron (o, = y)
For Iayers other than the output layer, we can introduce a recursion:

Z 8[4 80[W
30] 0o; Onet; gt

where the index | sums over all neurons that receive input from neuron j.
Let’'s put it all together:
oL

Awsj = n@w--
i

with - Py = (0 — t;)o;(1 — 0;)

Input laver

) Output laver
Hidden laver I .

— _77Pj0i

For the output layer (top) and all other layers (bottom). 38

Differentiable programming

Luckily, with software frameworks like tensorflow, pytorch
we do not have to compute the derivatives ourselves! All
we have to do is define the network architecture, the

frameworks compute the gradients.

- automatic differentiation, differentiable programming

self.layerl = nn.Sequential(
nn.Conv2d(1, 16, kernel_size=5, stride=1, padding=2),
nn.BatchNorm2d(16),

nn.ReLU(),
nn.MaxPool2d(kernel_size=2, stride=2))
self.rnn = nn.LSTM(hidden_size, hidden_size, 2, dropout=0.05)

self.fc = nn.Linear(7*7*32, num_classes)

39

Universal approximation theorem

The “universal approximation theorem”
(Cybenko, 1989, Hornik, 1991) proves, that —
under a few mild assumptions -- already with a
single hidden layer, we can essentially learn
every continuous function.

So why introduce more than one hidden layer?

40

Universal approximation theorem

The “universal approximation theorem” (Cybenko, 1989,

Hornik, 1991) proves, t
layer, we can essential
(with a few mild assum

nat already with a single hidden
y learn every continuous function

ptions).

So why introduce more than one hidden layer?

"Practicalities”: the single hidden layer may have to be
Infeasibly large. The learning might take too long, the
learning sample might have to be too large, and
generalization will not take place.

41

Deep learning = learning

abstractions

abstract features”

and thus overcome the practical restrictions of

an MLP with a single hidden layer:

a deep network can learn

When done right

of the input data

el | N |

S
A 0..,...“. %
RN

iIncreasingly abstract features

42

= hierarchical

representation learning

Deep learning

=a

a deep network can

of the input data:

A layer, evaluated for data
“representation” of the data

Because when done right
learn “abstract features

43

Activation functions

We have a lot of freedom In the choice of
our activation functions

1
* sigmoid (logistic) f(x) — 1 +e®

pro: non-linear, differentiable, confined range [0,1]
con: zero at large values of [x| (vanishing gradient problem)

e tanh _/_ f(x) = tanh(x)

scaled version of sigmoid: tanh(x) = 2 a(2x) - 1

44

Activation functions

e We have a lot of freedom in the choice of
our activation functions

* Linear / flo) =

Pro: simple, non-zero derivative
Con: constant gradient, cannot introduce non-linearity

recified linear unit / f(x) — maX(07 'CU)

* RelLU

Pro: simple, computationally fast, non-linear, non-zero gradient for any large x

Con: not bound, neurons may “die”, get stuck at zero.

45

Activation functions

e We have a lot of freedom in the choice of
our activation functions

/ (0.01;1: forx < 0O
* Leaky RelLU \ij()r x>0

Advantages of RelLU, plus it doesnt “die” for x < 0.

.-'-... a:' L
scaled Flz) = A e o forx < 0
xfor x > 0

exponential

e SelLU linear units

Used in “self-normalizing neural networks”, where the output of the neurons in
each layer is distributed with zero mean and unit variance if the input is also

distributed with zero mean and unity variance 46

Dropout layers

During training: drop a certain fraction of the neurons, to
prevent the network from “overfitting”.

During prediction: dropout is deactivated.

Usually worsens the results on the training sample, but
Improves the results on the validation sample.

a) Standard Neural Net (b) After applying dropout.

47

Regularization

“Occam’s razor for neural networks™:

Of two models with the same
predictive power,)%
the “simpler” one is to be preferred.

- Prefer networks with many weights
of zero

“Penalty term” for weights in the loss
function, e.g. L2 regularization:

2
L — L+ X\ Z w;;
(]
Implemented in many of pytorch’s optimizers, lambda is often
called “weight decay”.

48

Hyperparameter optimization

Finding the optimal network architecture and
hyperparameters is yet another optimization task -

hyperparameter optimization, network optimization

Many simple algorithms:

— grid search: systematically try out many configurations
— random search: try out configurations randomly

- gradient based optimization: compute gradients in the
space of hyperparameters

- evolutionary algorithms
49

Exercise 2: MLP in two dimensions

@ Dblue data points
@ red data points

1.000

0.875

0.750

- 0.625

- 0.500

0.375

0.250

0.125

0.000

discriminator

50

THIS 1S YOUR MACHINE LEARNING SYSTETM?

YUP! YOU POUR THE: DATA INTO THIS BIG
PILE OF LINEAR ALGEBRA, THEN COLLECT
THE ANSLWERS ON THE OTHER SIDE.

WHAT IF THE ANSLIERS ARE LJRONG?)

JUST STIR THE PILE UNTIL
THEY START LOOKING RIGHT

51

Exercise 2 - MLP

See 02_mlp.ipynb for skeleton code you may use for a quick
start.

Goal is to find the best non-linear decision boundary between
blue and red points.

Play around with learning rate, loss function,
optimizer, number of layers, number of neurons,
activation functions, dropout layers.

Which network architecture worked best for you?

52

@
ﬂ‘g Lesson 3
A

0 0
51 5
10 10
15 15
20 20
25 25
0 5 10 15 20 25 0 5 10 15 20 25
0 0
™ 5 5
Convolutional ’ :
15 15
| 20 20
neura " ;
0 5 10 15 20 25 0 5 10 15 20 25
53

networks

Convolutional layers

Think computer vision: we want to detect a cat,

independently of where it is in the photo:
translation invariance!

Answer: convolutional layers: many several
small convolution matrices (“kernels™)

Feature maps

f.maps

Convolutions Subsampling Convolutions Subsampling Fully connected

54

Convolutional layers

Answer: convolutional layers: many several
small convolution matrices (“kernels”) that
“scan” over the input image, “sharing” the

learned weights over the scan and thus detect
features independent of their position

Feature maps

Convolutions Subsampling Convolutions Subsampling Fully connected

55

Convolutional layers

Answer: convolutional layers. Many several
small convolution matrices (“kernels”) that
“scan” over the input image, “sharing” the
learned weights and thus detect features
iIndependent of their position

Single depth slice

T'1 0o I
r X
. 4 6 6 8 6 8
L0 [—_
! | SR 1 o 3 4
it 1
¥ : 1 2 2 4
iIL.-l. .I .- | ! : IF- d
BRI AR ~L T 2

Max Pooling (subsampling)

Inspired by the
“receptive field” in

- 56
Convolutions biology

Side remark on convolutions

e Convolutional networks owe their success to
exploiting the translational equivariance.

(equi-/invariance — symmetries - group theories is
something we have some familiarity with from gauge
theories)

 Can symmetries be exploited more systematically in
neural networks?

https://zenodo.org/record/6459381 https://arxiv.org/abs/2101.03164

https://arxiv.org/abs/2110.02905

http://proceedings.mir.press/v76/ensignl7a/ensignl7a.pdf

57

https://zenodo.org/record/6459381
https://arxiv.org/abs/2101.03164
https://arxiv.org/abs/2110.02905
http://proceedings.mlr.press/v76/ensign17a/ensign17a.pdf

Batch normalization

It is usually a good trick to “standardize” the inputs: afine
transformation so they have zero mean and unit
variance on a given data sample.

This Is also true for hidden neurons — batch
normalization.

Input: Values of z over a mini-batch: B = {1, };
Parameters to be learned: ~, 3
Output: {y; = BN, 5(x:)}

/77777
/ m
| 1 .
< JUB — — Z T // mini-batch mean
: — mai=

l m
UE? — — Z(-‘F«; - Mj)z / mini-batch variance
m i1
T — i // normalize
Vot e
yi + v&; + 8 = BN, g(a;) /I scale and shift
dead a|ive’ dead Algorithm 1: Batch Normalizing Transform, applied to

activation & over a mini-batch.

neuron “dynamic” neuron

58

Softmaxing

For a classification problem with K different classes (e.g. “building”,
“animal”, “object”), you want the output neurons to encode a “probability”
of the input belonging to class |.

(“One-hot encoding” — one neuron per class)

The K output neurons should therefore acquire values between 0 and 1,
and sum up to 1.

Softmax function achieves this:

= e .
p(Jly) = forj=1,..., K

K
Z eYk
k=1

As physicists we note that this is equivalent to the Boltzmann distribution:
if y, denotes the nevative energy of a quantum state j divided by kT, then p(j)

IS the probability of the quantum object being found in that state. 59

Example: google’s “Inception” network

Convolution
Pooling

9 Inception modules
Other

Network in a network in a network...

https://storage.googleapis.com/pub-tools-public-publication-data/pdf/43022.pdf

https://storage.googleapis.com/pub-tools-public-publication-data/pdf/43022.pdf

Application In particle physics: jet
Images

Convolved
Convolutions Feature Layers

Task: learn a jet classifier
that identifies highly
boosted W jets

Max-Pooling

W— WZevent
Repeat

Figure 5: The convolution neural network concept as applied to jet-images.

https://arxiv.org/pdf/1511.05190.pdf 61

https://arxiv.org/pdf/1511.05190.pdf

Application In particle physics: jet
Images

250 <]1_'_)’Ge\" < 260 GeV, 65 « mass/Ge¥ < 95
Pythia % W' WZ, fs=13TeV

250 <]1_'ﬁ}e\" < 260 GeV, 65 < mass/GeV < 95
Pythia 8, W'— WZ, 5= 13 TeV

250 < thGeV < 300 GeV, 65 < mass/iGeV < 95,02 < 1, < 08
Pythia 8, {s=13 TeV

s s s s A
z w3 z 1w & 2 MaxOut (weighted)
< 10 & < 10 & . i —=MaxOUL
E Iru E .w | MaxO ut-
I & average signal 2 o
E E E N A
i 10° i 10° EIRTIR "g"?f-} (i)
¢ | BN =-05(J.]) + 8],
g 104 g 10+ E N3 it +r?:%= random)
} 10° 10° [3
10% 10 5k
107 107
10% 10°
] 05 0 05 1 10° o5 0 05 1 10° 82 T 06 0.8
[Translated] Pseudorapidity (1) [Translated] Pseudorapidity (1) Signal Efficiency
}_50<]1T.N}e\"<160Ge\".65<mssﬂ}e\"<95 250<pr&\"<26003¢\".65< massiGeV < 95 Recelver Operatlng
Pythia 8, QCD dijets, 15 = 13 TeV Pythia & QCD dijets, {5 =13 TeV = =
s ve s s Characteristic
a5 1 L] = = 1 =
2] - = -
;b L@ : ; o § (ROC) curves
g I o 2 o
Zos) 205 _ . .
B I SO | B for various choices
8 F B
= L 3 = 3
Y * S B o average background of
& s E 5 7 ”
o, 1 o hyperparameters
. & W 107
| ol l ! .II 10% -1 10°
AN L T 109 a1 B, LS 107
ER— 0 05 1 T 05 0 05 1

[Translated] Pseudorapidity ()

[Translated] Pseudorapidity (1)

Figure 2: The average jet image for signal W jets (top) and background QCD jets (bottom) before
(left) and after (right) applying the rotation, re-pixelation, and inversion steps of the pre-processing.
The average is taken over images of jets with 240 GeV < pr < 260 GeV and 65 GeV < mass < 95 GeV.

https://arxiv.org/pdf/1511.05190.pdf

62

https://arxiv.org/pdf/1511.05190.pdf

o 0
5 5
10 10
u 15 15
Exercise 3- Ed
25 25
0 5 10 15 20 25 0 5 10 15 20 25
0 0
5 5
10 10
15 15
20 20
25 25
0 5 10 15 20 25 0 5 10 15 20 25

* See 03 _cnn.ipynb for skeleton code you may use for a quick start.

* Run the skeleton code on the MNIST dataset of handwritten digits.
It has one convolutional layer, which should already give you good
results (accuracy around 98%).

* Add another convolutional layer. With a little tweaking you should
get the accuracy around 99%.

* Play around with all hyperparameters. Can you get an accuracy
above 99.25%7?

63

Lesson 4

e Generative models

64

Architectures we defined so far implemented classifiers
and regressors: Discriminative models!

............

............

Loosely speaking, they compute [aspects of]: p(y|x)

Can we somehow turn the information flow around, from the output
to the input, to synthesize input, computing p(x|y)?

Yes!

65

Option #1: adversarial setups

Networks can be set up to compete against each
other in an adversarial setup: generative adversarial

networks (GANS)

One machine Is set up as a generator, it learns

to generate fake data, e.g. images that resemble
Picasso paintings.

Another machine learns to discriminate the real
Picassos from fakes.

66

Training data B

"4

Example Architecture:

[Generator G(.)] [Discriminator D(.)
-A_ i
; cxnny S5 comy 58 A
”‘q i oo Saf -
'S S Ful
6 4“\ L J b
a. [N m | k I ¥ i
s b ._.'_?“ PTLLLr
Progedd ared resfugs ,__1_.' 16w 6= 128
' R P

Discriminator Goal: discriminate
between real and generated images
ie., D(x)=1, where x is a real image

’E[t}'_[gjgf{l,:;where G{z) is a generated
image.

Generator Goal: Fool D(G(z))
i.e., generate an image Gfz) such that
D(G(z)) is wrong, i.e.; D{G(z)) = 1!

e » Conflicting goals.
Both goals are unsupervised.
Optimal when D(.)=0.5 (i.e., cannot
tell the difference between real and .
generated images) and G(z)=learns
N the training images distribution.)

https://www.slideshare.net/shyamkkhadka/unsupervised-learning-represenation-with-dcgan 67

https://www.slideshare.net/shyamkkhadka/unsupervised-learning-represenation-with-dcgan

Example: the “CycleGAN?”, a type of a conditional
GAN, changing the condition horse - zebra

https://github.com/junyanz/Cycle GAN

68

https://github.com/junyanz/CycleGAN

Application in Particle Physics:
Fast simulation of ATLAS
calorimetry (CALO GAN)

lD:; 10
-1 [e - - .
TN) 102 Comparison of shower
02y .

107 | shape variables, Calo
n-34

10~ GAN versus full Geant 4
n-4 . .
‘ 10 simulation

n—=

10 10 10 10 10 10" 10 10

Eq [GEV) Ey (GeV)

I — - 10t
107) i =
1|:|F‘; _

| ey, 10°
101 Lp.,

i TS i i
M=

i 10
I:I_lg 5
D_zé 10-?
07
0=

10°* 107 107 107! 10° 1077

See also: talk in ACAT 2017 https://arxiv.org/pdf/1705.02355.pdf,

https://arxiv.org/pdf/1705.02355.pdf
https://indico.cern.ch/event/567550/contributions/2656673/attachments/1511208/2372569/DetSim_MachineLearning.pdf

Option #2: Autoencoders - a.k.a.
“understanding Is compression”

Consider the following network architecture:

Input Output
>~ ~=7
\ -~ ~ — - /
/ \ ~ - / \

\ Code /

\ / \ / N -~/ \ / \ /

/ \ ~ ~ / \

\ / \ / \ /

/ \ \ / / \

\ / / \ \ /

) <]) K
/ \ /N /N / \

\ / \ / \
// \ / \ / Pre ~ \ / \ / \
/ \ / \ /. Z QD / \ / \
\ /- ~ \ /

/ — - \
/ - - ~ \\
X J N X)
Yo Y
Encoder Decoder

With a loss function: L = (X — X/)z

70

Autoencoders — a.k.a.

“understanding Is compression”

Consider the following network architecture:

Input

o)
c
T
L]
c
=

S~
\ e

HEREEEEN
LT
L]

HEEEEEEE

<([IITTTTTTTT]
N

- 3
< LT

<
<

Encoder Decoder

. . /N2
With a loss function: L o< (x — %)
The network learns to reproduce its own input!

z becomes a lower-dimensional representation (a “code”) of a
higher-dimensional x

Applications: Lossy compression, denoising data. But cannot yet
produce fake, synthetic data. Why? Because the stochastic noise
IS not yet part of the model!

71

Example: Conditional Variational Autoencoder applied to
“CelebA” dataset

Add
Smiling

Remove
Smiling

3 Add
Eyeglass

Remove
Eyeglass

Taken from: https://houxianxu.github.io/assets/project/dfcvae

72

https://houxianxu.github.io/assets/project/dfcvae

* Recursive and
recurrent neural
networks

* explanation methods

* Bayes networks and
errors

@
ﬂ‘g Lesson 5

oumput

Legend
—— umweighted connection

m— weighted connection
recurrem

. coanection with time-lag
branching point
mutliplication

sum over all inputs

gate activation function
(always sigmoid)

input activation function
(usually tanh)

output activation function
(usually tanh)

Figure 1. Detailed schematic of the Simple Recurrent Network (SRN) unit (left) and a Long Short-Term Memory block (right) as used
in the hidden layers of g ————* ———" —=*—"

Heatmap
(person)

Heatmap

(bike) Image

Image

Explaining classification “bike” Explaining classification “person”

73

Recurrent networks

How can we apply neural networks on variable-sized time
series like text or speech, where the prediction of the
current input must depend on the past “events”™?

By making the network “recurrent”:

Recurrent Neural Network Feed-Forward Neural Network

74

Recurrent networks

Note that one can always “unfold” recurrent
networks to turn them into (complicated) feed-
forward networks with fixed record lengths:

@ the Backward direction -
Unfold U
fw fw fw

by
TW LA L .IW U caus e <gl>
., . & h o U destruction
v =) - T T e
* - A b oo X o L
o o lu Wt T gl
O OO E Tt § i
T &b Y. ¥
l‘ A h L
N + I " h wl- T
I + j. L & h
- h‘ W - l Il
i A h W + A
U 1 . |'|I W +
U & h W
destructi 1 1L.I L & R
<el caused iu !
by 'lu
Forward dir - the '
bombin
zgds

75

Recurrent networks

These types of networks had the problem, that
the gradient quickly vanished when “propagated
back through time”. The Long Short Term
Memory (LSTM) solved that.

recusment

Figure 1. Detailed schematic of the Simple Recurrent Network (SRN) unit (left) and a Long Short-Term Memory block (right) as used
in the hidden layers of a recurrent neural network. 76

Application (of a similar class of
algorithms) In particle physics: jet
classification

QCD-aware recursive neural networks for jet physics. (Recurrent = special version of recursive)

Analogy:

i \ word — particle
parsing —* jet algorithm

A __ o

N /N

Fermilab has a herd of bisons

See also talk at DS@HEP 2017 workshop

https://arxiv.org/pdf/l702.00748.pdf77

https://arxiv.org/pdf/1702.00748.pdf
https://indico.fnal.gov/event/13497/material/slides/0?contribId=22

Application (of a similar class of
algorithms) In particle physics: jet
classification

“QCD-aware recursive neural networks for jet physics”

@ ; — partlicles
a | — towers
° . - | — images
: particles
= : : :
. L L : E “better
Visualisation of k_jet algorithm. E -
Elgl._... e
= towers /" :
“particles”: recursive network | imagesj
“Iimages”: convolutional network | P

10" 1 1 I]]
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Signal efficiency

ROC curve of W jet tagging
example, comparison with jet
images algorithm

See also talk at DS@HEP 2017 workshop _ 78
https://arxiv.org/pdf/1702.00748.pdf

https://arxiv.org/pdf/1702.00748.pdf
https://indico.fnal.gov/event/13497/material/slides/0?contribId=22

Explanation methods

What Is the machine learning? How can we “debug”
deep networks?

* There are several methods on the market.

Simple class of algorithms for convolutional
networks: which pixels of a picture most contributed
to a prediction? Which pixels were in contradiction
to prediction? “Sensitivity analysis”, or (for pictures)
heatmaps (based on “input gradient” df/dx.).

79

Explanation methods

What is the machine learning? How can we
“debug” deep networks? Heatmaps:

Heatmap
(person)

Heatmap

Image (bike)

Image

Explaining classification “bike” Explaining classification “person”

https://arxiv.org/pdf/1512.00172.pdf,

Explanation methods

What Is the machine learning? How can we
“debug” deep networks? Heatmaps may
sometimes help discover learned “artifacts”.

The networks learns to exploit undesirable
correl

Image ' _FV == -~ DNN

Machine learned to identify horses by the imprint.

https://arxiv.org/pdf/1512.00172.pdf a1

https://arxiv.org/pdf/1512.00172.pdf

Explanation methods

But sensitivity analyses fail at grasping “the
bigger picture”.

What makes the picture below a road with
cars?

= ()

" .+ ", | Problem: sensitivity
RS . i
> ¥ eo A= | analysis does not
= =" | highlight cars

See e.g. http://heatmapping.org, 82
http://heatmapping.ora/slides/2018 CVPR 1.pdf

http://heatmapping.org/
http://heatmapping.org/slides/2018_CVPR_1.pdf

Explanation methods

Historical remarks on Explaining Predictors

Gradients Sensitivity Gradient vs. Decomposition
(Baehrens et al. 2010) (Montavon et al., 2018)
Sensitivity
(Morch et al., 1995) Sensitivity
(Simonyan et al. 2014)
Gradient times input DeepLIFT Grad-CAM Integrated Gradient
(Shrikumar et al., 2016) (Shrikumar et al., 2016) (Selvaraju et al., 2016) (Sundararajan et al., 2017)
Decomposition
LRP for LSTM
LRP Al tal., 2017
(Bach ot al,, 2015) Probabilistic Diff (Amas eta)
" (Zintgraf et al., 2016)
g Ot e
Of’}’ep 3/ alent 1o Excitation Backprop
0, i
h EW (Zhang et al., 2016)
Deep Taylor Decomposition
(Montavon et al., 2017 (arXiv 2015))
Optimization LIME Meaningful Perturbations PatternLRP
(Ribeiro et al., 2016) (Fong & Vedaldi 2017) (Kindermans et al., 2017)
Deconvolution
Deconvolution Guided Backprop

(Zeiler & Fergus 2014) (Springenberg et al. 2015)

Understanding the Model

Deep Visualization) Ji
(Yosinskiet al., 2015)] Synthesis of preferred inputs (Kim et al. 2018)
Inverting CNNs (Nguyen et al. 2016)
Feature visualization (Dosovitskiy & Brox, 2015)
Erh t al. 2009 i i
(Erhan eta) Inverting CNNs RNN cell state analysis Nr;:;:‘;?;zeocﬂ?n
(Mahendran & Vedaldi, 2015) (Karpathy et al., 2015) ’

An entire industry of explanation methods has emerged in only 3 years!!

Very hard to keep up and identify the algorithms that are interesting for us.
See e.g. http://heatmapping.org,
http://heatmapping.ora/slides/2018 CVPR

1.pdf

83

http://heatmapping.org/
http://heatmapping.org/slides/2018_CVPR_1.pdf

Bayesian Neural Networks
and Monte Carlo dropout

84

Uncertainties: ML jargon / physics
jargon

* Aleatoric uncertainty: (“alea” in latin is “dice”)

All uncertainties related to the input data, e.g. sensor noise.
In particle physics we often have a good understanding of

these.

* Epistemic uncertainty: (epistemic = “related to knowledge”)

Uncertainties on the network weights, i.e. uncertainties that
are introduced with the network — and the fact that it is

trained only with finite data.

* How can we estimate epistemic uncertainties?

85

Tool #5: Bayesian neural
networks and error estimation

Error estimation, the easy way: dropout!!

I'f’-_--xxi'l |f’-_--\\'| ‘l'f’-_x\
N - - A y
."-.,:X -~ ! \\ .
% — g — ~ ., —
LAY - | - -, %, - ”
.I". ‘\ II(-‘- II(.‘- \ll. .-. . Ill(-’ \\Il x"\ b - M II(-‘-
e\ N | /.-:I‘l- r oy - \\ /_,.‘,
Y \\- '\.__. % _ az__, \\g/ / / \ ___‘H ‘\.,'.-'H \
1Y “x’\ R
. AN
“, ": ‘*-\\'-. —, - T / -, /-"H \\\ ™, —
\ o - o M o
“&\ '-._"' oy \\'|: - y Il.f” Y | \:-,1'(-} N o
= R ., Fr | J ey \
N/ U _ <
\‘xx /.-f\"{{'-," — s . -_ __.'" ra
A\ VP P
Y / g /o TN
f" O O)
!
. __/; \\.___./

arXiv:1506.02142 showed that randomly applying dropout in the prediction (as

opposed to dropout in training) is an approximator for the epistemic error of the
prediction.

Ensembling: predict several times with dropout applied to get an estimate of the
epistemic error of the network.

https://arxiv.org/abs/1506.02142

https://arxiv.org/abs/1506.02142

challenge!

87

Backup

Recommended literature

Coursera course by Andrew Ng

Deep learning, book by lan Goodfellow et al.
see also http://www.deeplearningbook.org/

Tensorflow tutorials
Pytorch tutorials

Deep learning course at univie by Philipp Grohs

89

https://www.coursera.org/learn/machine-learning
https://www.coursera.org/learn/machine-learning
http://www.deeplearningbook.org/
https://www.tensorflow.org/tutorials/
https://pytorch.org/tutorials/
https://ufind.univie.ac.at/de/course.html?lv=250074&semester=2017S

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89

