
Chapter 1

Mathematical tools

1.1 The Feynman parametrization

The Feynman parametrization is given by the following formula

n∏

i=1

1

Aci
i

=
Γ (c)

n∏

i=1

Γ (ci)

∫ 1

0

n∏

i=1

αci−1
i dαi

δ

(

1−
n∑

i=1

αi

)

(
n∑

k=1

αkAk

)c (1.1)

where

c =
n∑

i=1

ci . (1.2)

The proof of this equation is done following a few steps. First of all, we demonstrate it by
induction when all the ci are equal to 1. The case with n = 2 is trivial: by a direct inspection

I2 ≡
∫ 1

0

dα1 dα2
δ (1− α1 − α2)

(α1A1 + α2A2)
2 =

∫ 1

0

dα1
1

(α1A1 + (1− α1)A2)
2

= − 1

A1 − A2

[
1

α1A1 + (1− α1)A2

]1

0

=
1

A1A2

(1.3)

Supposing now that formula (1.1) is valid for (n− 1)

In−1 ≡ 1

A1 . . . An−1

= (n− 2)!

∫ 1

0

n−1∏

i=1

dαi

δ
(
1−∑n−1

i=1 αi

)

(∑n−1
k=1 αkAk

)n−1

=

∫ 1

0

n−2∏

i=1

dαi
(n− 2)!

(
An−1 +

∑n−2
k=1 αk (Ak − An−1)

)n−1 (1.4)

6



where in the last line

0 ≤
n−2∑

k=1

αk ≤ 1 (1.5)

we show, with some algebra, that it is true also for n

In ≡ 1

A1 . . . An

= (n− 1)!

∫ 1

0

n∏

i=1

dαi
δ(1−∑n

i=1 αi)

(
∑n

k=1 αkAk)
n

=

∫ 1

0

n−1∏

i=1

dαi
(n− 1)!

(
An +

∑n−1
k=1 αk (Ak − An)

)n (1.6)

with

0 ≤
n−1∑

k=1

αk ≤ 1 . (1.7)

In fact, integrating (1.6) in αn−1 between 0 and
(
1−∑n−2

i=1 αi

)
, we find

In = − (n− 2)!

(An−1 − An)

∫ 1

0

n−2∏

i=1

dαi
1

(
An−1 +

∑n−2
k=1 αk (Ak − An−1)

)n−1

+
(n− 2)!

(An−1 − An)

∫ 1

0

n−2∏

i=1

dαi
1

(
An +

∑n−2
k=1 αk (Ak − An)

)n−1 (1.8)

and using (1.4)

In =
1

(An−1 − An)A1 . . . An−2

[
1

An

− 1

An−1

]

=
1

A1 . . . An

(1.9)

so equation (1.6) is indeed an identity.

To complete the demonstration of eq. (1.1), we derive cn times both members of the first
line of (1.6) with respect to An. On the left-hand side we have

∂ cn

∂A cn
n

(
1

A1 . . . An

)

=
(−1)cn (cn)!

A1 . . . An−1A cn+1
n

, (1.10)

while on the right-hand side, the derivation gives

∂ cn

∂A cn
n

In =

∫ 1

0

n∏

i=1

dαi δ

(

1−
n∑

i=1

αi

)

(−1)cn (n+ cn − 1)!αcn
n

(
∑n

k=1 αkAk)
n+cn

(1.11)

Comparing the last two equations one can see that

1

A1 . . . An−1A cn
n

=
(n+ cn − 2)!

(cn − 1)!

∫ 1

0

n∏

i=1

dαi δ

(

1−
n∑

i=1

αi

)

αcn−1
n

(
∑n

k=1 αkAk)
n+cn−1 . (1.12)

7



Repeating now the derivation with respect to a generic Ak, we get

n∏

i=1

1

Aci
i

=
(c− 1)!

n∏

i=1

(ci − 1)!

∫ 1

0

n∏

i=1

αci−1
i dαi

δ

(

1−
n∑

i=1

αi

)

(
n∑

k=1

αkAk

)c

=
Γ (c)

n∏

i=1

Γ (ci)

∫ 1

0

n∏

i=1

αci−1
i dαi

δ

(

1−
n∑

i=1

αi

)

(
n∑

k=1

αkAk

)c . (1.13)

This proves eq. (1.1).

1.2 The scalar one-loop integrals

In this section we want to introduce all the principal mathematical tools useful to calculate
d-dimensional scalar one-loop Feynman integrals. These integrals are built up with the
propagators of n massive particles, with masses mi, connecting n+1 vertexes of interaction
with other external particles, each carrying momentum pi.

1

p1

p2 p3

p4

pn

l

l + p1

l + p12

The integral can be written in this general form (notice that
∑n

i=1 pi = 0 for momentum
conservation)

I =

∫
ddℓ

(2π)d
1

[
(ℓ+ p1)

2 −m2
1 + iη

] [
(ℓ+ p12)

2 −m2
2 + iη

]
. . . [(ℓ+ p12...n)2 −m2

n + iη]
,

(1.14)

1All momenta incoming.
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where we have introduced a small imaginary part iη according to the Feynman prescription
for the T–ordered propagator and we have used the shortcut p12 = p1+ p2, and similar ones.

Using the Feynman parametrization (1.1) we can write

I = Γ (n)

∫ 1

0

n∏

i=1

dαi

∫
ddℓ

(2π)d
δ(1−∑n

i=1 αi)

(
∑n

k=1 αkAk)
n (1.15)

The sum in the denominator can then be rewritten as

n∑

k=1

αkAk =
n∑

k=1

αk

[
(ℓ+ p1...k)

2 −m2
k + iη

]
=

= ℓ2 + 2ℓ ·
(

n∑

k=1

αkp1...k

)

+
n∑

k=1

αk

(
p21...k −m2

k + iη
)
=

≡ ℓ2 + 2ℓ · P +K2 + iη . (1.16)

The integral (1.15) becomes

I = Γ (n)

∫ 1

0

n∏

i=1

dαi δ

(

1−
n∑

i=1

αi

)
∫

ddℓ

(2π)d
1

(ℓ2 + 2ℓ · P +K2 + iη)n
(ℓ→ ℓ+ P )

= Γ (n)

∫ 1

0

[dα]n

∫
ddℓ

(2π)d
1

(ℓ2 −m2 + iη)n
(1.17)

where we used the shorthand notation

[dα]n ≡
n∏

i=1

dαi δ

(

1−
n∑

i=1

αi

)

, m2 ≡ P 2 −K2 (1.18)

Notice that in the last line η is not the same one defined previously but it plays the same role
again picking the poles away from the path of the integration as the Feynman prescription
requires.

The integral over the loop momentum l can be performed once and for all. We first
perform the integral over l0. In Fig. 1.1 we have promoted the real variable l0 into a complex
variable and we have plotted the two poles

ℓ2 −m2 + iη ≡ ℓ20 − |ℓ|2 −m2 + iη = 0 =⇒ l0 = ±
√

|ℓ|2 +m2 ∓ iη . (1.19)

The integration over l0 is along the real axis. Exploiting the fact that the Feynman integrals
are analytic functions, we interpret the integration along the real axis as part of the integra-
tion over the closed path in the figure. Using the residue theorem, we know that the integral
along that closed path is zero, since the poles of the integral are outside the integration path.
So we can write

0 =

∫ +∞

−∞

dℓ0 . . .+

∫ −∞

+∞

idℓE0 . . . =⇒
∫ +∞

−∞

dℓ0 . . . = i

∫ +∞

−∞

dℓE0 . . . (1.20)
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z=i l

l 0

0
E

*

*

Figure 1.1: Wick rotation.

since the contribution from the circular parts of the path goes to zero as we radius goes to
infinity. We have indicated with ℓE0 the new integration variable, reminiscent of the fact that
now we are using an Euclidean notation and no longer a Minkoskian one. The integral I
then becomes

I = iΓ (n)

∫ 1

0

[dα]n

∫ +∞

−∞

dℓE0 d(d−1)ℓ

(2π)d
1

(

− (ℓE0 )
2 − |ℓ|2 −m2 + iη

)n (1.21)

and using spherical coordinates, defining ℓ2E ≡ (ℓE0 )
2 + |ℓ|2 (please notice that the integral

over the loop momentum is now perfectly defined and we could set η = 0. We keep it, since
it will be useful in the integration over the Feynman parameters αi, yet to be done)

I =
(−1)n iΓ (n)

(2π)d

∫ 1

0

[dα]n

∫

ddΩ dℓE
(ℓE)

d−1

(ℓ2E +m2 − iη)
n

=⇒ t =
ℓ2E
m2

=
(−1)n iΓ (n) Ωd

2 (2π)d

∫ 1

0

[dα]n
(
m2 − iη

) d
2
−n
∫ ∞

0

dt t
d
2
−1 (t+ 1)−n

=⇒ x =
1

1 + t

=
(−1)n iΓ (n) Ωd

2 (2π)d

∫ 1

0

[dα]n
(
m2 − iη

) d
2
−n
∫ 1

0

dx xn−
d
2
−1 (1− x)

d
2
−1

=
(−1)n iΓ (n) Ωd

2 (2π)d
β

(
d

2
, n− d

2

)∫ 1

0

[dα]n
(
m2 − iη

) d
2
−n

=
(−1)n iΓ

(
n− d

2

)
Γ
(
d
2

)
Ωd

2 (2π)d

∫ 1

0

[dα]n
(
m2 − iη

) d
2
−n

(1.22)
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where Ωd is the total angle in d dimensions

Ωd =
2π

d
2

Γ
(
d
2

) . (1.23)

Finally, the scalar integral (1.15) takes this form

I = (−1)n
i

(4π)
d
2

Γ

(

n− d

2

)∫ 1

0

[dα]n
(
m2 − iη

) d
2
−n

= (−1)n
i

(4π)
d
2

Γ

(

n− d

2

)∫ 1

0

[dα]n

(

−
n∑

i>j

αiαj p
2
j+1...i +

n∑

i=1

αim
2
i − iη

) d
2
−n

(1.24)

where in the last line we used

m2 = P 2 −K2 =

(
n∑

i=1

αip1...i

)2

−
n∑

i=1

αi

(
p21...i −m2

i + iη
)

=
n∑

i=1

α2
i p

2
1...i + 2

n∑

i>j

αiαjp1...ip1...j −
n∑

i=1

αip
2
1...i +

n∑

i=1

αim
2
i − iη

= −
n∑

i=1

αi

∑

j 6=i

αjp
2
1...i + 2

n∑

i>j

αiαjp1...ip1...j +
n∑

i=1

αim
2
i − iη

= −
n∑

i>j

αiαjp
2
1...i −

n∑

i>j

αiαjp1...ip1...j

−
n∑

j>i

αiαjp
2
1...i −

n∑

j>i

αjαip1...jp1...i +
n∑

i=1

αim
2
i − iη

= −
n∑

i>j

αiαjp1...ipj+1...i +
n∑

j>i

αiαjp1...ipi+1...j +
n∑

i=1

αim
2
i − iη

= −
n∑

i>j

αiαjp
2
j+1...i +

n∑

i=1

αim
2
i − iη . (1.25)

In summary

I =

∫
ddℓ

(2π)d
1

[
(ℓ+ p1)

2 −m2
1 + iη

] [
(ℓ+ p12)

2 −m2
2 + iη

]
. . . [(ℓ+ p12...n)2 −m2

n + iη]

= (−1)n
i

(4π)(
d
2)

Γ

(

n− d

2

)∫ 1

0

[dα]n

Dn− d
2

, (1.26)

where

D = −
∑

i>j

αi αj sij +
n∑

i=1

αim
2
i − iη , (1.27)

and sij is the square of the momentum flowing through the i-j cut of the diagram representing
I.
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1.2.1 The one-point function (tadpole)

l

Figure 1.2: One-point function (tadpole).

The one-point function is given by

A0

(
m2
)

=

∫
ddℓ

(2π)d
1

ℓ2 −m2 + iη
=

−iΓ
(
2−d
2

)

(4π)
d
2

∫ 1

0

dα δ (1− α)
(
αm2 − iη

) d−2

2

=
−iΓ

(
2−d
2

)

(4π)
d
2

(
m2 − iη

) d−2

2 (1.28)

where m is the mass of the particle propagating in the loop. Please notice that

m = 0 =⇒ A0 = 0 (1.29)

since if the mass is zero, there are not dimensional variables that carry the dimension of A0

after the integration over the loop momentum. So the integral must be zero.

If m 6= 0, with the usual definition d = 4− 2ǫ, we have

A0

(
m2
)
=

−iΓ (ǫ− 1)

(4π)2−ǫ

(
m2 − iη

)1−ǫ
=

i

(4π)2
(4π)ǫ Γ (1 + ǫ)

ǫ (1− ǫ)

(
m2 − iη

)1−ǫ
, (1.30)

that shows that A0 diverges as 1/ǫ when ǫ→ 0.

1.2.2 The two-point function (bubble) with m1 = m2 = 0

We now consider the integral corresponding to the two-point function with massless propa-
gators, i.e. m1 = m2 = 0. The external momentum p must then have p2 6= 0 otherwise, as
for A0 with m2 = 0, if also the external particles are massless, the integral vanishes. The
integral is given by

B0

(
p2
)
=

∫
ddℓ

(2π)d
1

[ℓ2 + iη]
[
(ℓ+ p)2 + iη

] =
iΓ
(
4−d
2

)

(4π)
d
2

∫ 1

0

[dα]2
1

(−α1α2 p2 − iη)
4−d
2

=
iΓ
(
4−d
2

)

(4π)
d
2

∫ 1

0

dα1

(

α1 (1− α1)
(
−p2 − iη

) )
d−4

2

=
iΓ
(
4−d
2

)

(4π)
d
2

(
−p2 − iη

) d−4

2
Γ2
(
d−2
2

)

Γ (d− 2)

(1.31)
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p

p+l

α2

l

α1

Figure 1.3: Two-point function (bubble).

With d = 4− 2ǫ we have

B0

(
p2
)

=
i

(4π)2−ǫ

Γ (ǫ) Γ2 (1− ǫ)

Γ (2− 2ǫ)

(
−p2 − iη

)−ǫ
=

i

(4π)2
CΓ

ǫ (1− 2ǫ)

(
−p2 − iη

)−ǫ
(1.32)

where we have defined

CΓ = (4π)ǫ
Γ (1 + ǫ) Γ2 (1− ǫ)

Γ (1− 2ǫ)
(1.33)

Since we are interested in an expansion in ǫ of B0, we have to deal with

(
−p2 − iη

)−ǫ
= 1− ǫ log

(
−p2 − iη

)
+O

(
ǫ2
)

(1.34)

If p2 < 0, then the logarithm is perfectly defined and no imaginary part is needed to give
meaning to it. If instead p2 > 0, then −p2 − iη is a complex negative number with a small
imaginary part, so that it is below the typical cut for the definition of the logarithm. In this
case, we have

(
−p2 − iη

)−ǫ
= 1− ǫ log

(
−p2 − iη

)
+O

(
ǫ2
)
= 1− ǫ

[
log
(
p2
)
− iπ

]
+O

(
ǫ2
)

(1.35)

In the kinematic region p2 > 0 we then have

B0

(
p2
)
=

i

(4π)2
CΓ

(1− 2ǫ)

[
1

ǫ
− log(p2) + iπ +O (ǫ)

]

(1.36)

This integral is divergent as 1/ǫ in the limit ǫ→ 0.

1.2.3 The two-point function (bubble) with m1 = m, m2 = 0

Left as exercise.

1.2.4 The two-point function (bubble) with m1 = m2 = m

Left as exercise.
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Check that you get

B0

(
p2,m2,m2

)
≡
∫

ddl

(2π)d
1

l2 −m2

1

(l + p)2 −m2
(1.37)

in the kinematic region p2 ≥ 4m2

B0

(
p2,m2,m2

)
=

i

(4π)2
CΓ

(
m2
)−ǫ
{
1

ǫ
+ 2 + (x+ − x−) log

x−
x+

+ i π (x+ − x−) +O (ǫ)

}

(1.38)
where

x± =
1

2

(

1±
√

1− 4m2

p2

)

± iη . (1.39)

1.2.5 The three-point function (triangle) with m1 = m2 = m3 = 0

We consider the simplified case where three-point function has all the propagators massless.

Triangle with one external massive leg

q

l+q
α2

l
α1

l+q+p2

α3

p1

p2

Figure 1.4: The three-point function (triangle). The double line denote the massive leg.

In the notation of Fig. 1.4, we have q2 6= 0, p21 = p22 = 0. We have only one independent
invariant, i.e. q2. Any other relativistic invariant can be written in terms of q2. The Feynman
diagram corresponding to Fig. 1.4 is given by

C0

(
q2
)

=

∫
ddℓ

(2π)d
1

[
(ℓ)2 + iη

] [
(ℓ+ q)2 + iη

] [
(ℓ+ q + p2)

2 + iη
] =

=
−iΓ

(
6−d
2

)

(4π)
d
2

∫ 1

0

[dα]3

(−α1α2 q2 − iη)
6−d
2

, (1.40)

where we used p2i = 0 for i = 1, 2. We can integrate over α3 immediately, using the δ
function. This gives α3 = 1 − α1 − α2. Since the range of integration of α3 is from 0 to 1,
this means that 0 ≤ 1 − α1 − α2 ≤ 1, that implies that α2 ≤ 1 − α1. Performing now the
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integration on the Feynman parameters, we have

C0

(
q2
)

=
−iΓ

(
6−d
2

)

(4π)
d
2

∫ 1

0

dα1

∫ 1−α1

0

dα2
1

(−α1α2 q2 − iη)
6−d
2

=
−iΓ (1 + ǫ)

(4π)2−ǫ

(
−q2 − iη

)−(1+ǫ)
∫ 1

0

dα1

∫ 1−α1

0

dα2 (α1α2)
−(1+ǫ)

=
iΓ (1 + ǫ)

(4π)2−ǫ ǫ

(
−q2 − iη

)−(1+ǫ)
∫ 1

0

dα1 (α1)
−(1+ǫ)

[

α−ǫ
2

]1−α1

0
=

=
iΓ (1 + ǫ)

(4π)2−ǫ ǫ

(
−q2 − iη

)−(1+ǫ)
∫ 1

0

dα1 (α1)
−(1+ǫ) (1− α1)

−ǫ =

=
iΓ (1 + ǫ)

(4π)2−ǫ ǫ

(
−q2 − iη

)−(1+ǫ) Γ (−ǫ) Γ (1− ǫ)

Γ (1− 2ǫ)
(1.41)

While this integral can be performed as done before, it is important to keep in mind also the
following trick to restore the integration boundaries between 0 and 1. We make the change
of variable α2 = (1− α1)x
∫ 1

0

dα1 α
−(1+ǫ)
1

∫ 1−α1

0

dα2 α
−(1+ǫ)
2 =

∫ 1

0

dα1 α
−(1+ǫ)
1

∫ 1

0

dx (1− α1)(1− α1)
−(1+ǫ)x−(1+ǫ)

=

∫ 1

0

dα1 α
−(1+ǫ)
1 (1− α1)

−ǫ

∫ 1

0

dx x−(1+ǫ)

= B(−ǫ, 1− ǫ)B(−ǫ, 1) = Γ(−ǫ)Γ(1− ǫ)

Γ(1− 2ǫ)

Γ(−ǫ)Γ(1)
Γ(1− ǫ)

=
1

ǫ2
Γ2(1− ǫ)

Γ(1− 2ǫ)
(1.42)

where we have used the definition of the B function in eq. (A.9). We finally get

C0

(
q2
)
=

i

(4π)2
CΓ

q2
(
−q2 − iη

)−ǫ 1

ǫ2
(1.43)

where CΓ is given in equation (1.33). We refer to Sec. 1.2.2 for the expansion of the previous
expression in the kinematic regions where q2 < 0 or q2 > 0.

Triangle with two external massive legs

Consider now the triangle with two massive external legs. In the notation of Fig. 1.5, we
have p2 = 0, p21 6= 0 and p22 6= 0. We compute this integral with the further hypothesis that
q22 > 0. The sign of q21 is arbitrary. The integral corresponding to this Feynman graph is

C0

(
q21, q

2
2

)
=

∫
ddℓ

(2π)d
1

[
(ℓ)2 + iη

] [
(ℓ+ p)2 + iη

] [
(ℓ+ p+ q2)

2 + iη
] =

=
−iΓ

(
6−d
2

)

(4π)
d
2

∫ 1

0

[dα]3

(−α1α3q21 − α2α3q22 − iη)
6−d
2

. (1.44)
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p

l+p
α2

l
α1

l+p+q2

α3

q1

q2

Figure 1.5: The three-point function (triangle). The double line denote the massive leg.

Factorizing out −q22 with the right iη prescription and using d = 4− 2ǫ, and defining

r =
q21
q22

+ iη (1.45)

we have

C0

(
q21, q

2
2

)
=

−iΓ (1 + ǫ)

(4π)2−ǫ

1

(−1− iη)1+ǫ (q22)
1+ǫ

∫ 1

0

[dα]3
α1+ǫ
3 (α1 r + α2)

1+ǫ =

=
−iΓ (1 + ǫ)

(4π)2−ǫ

eiπǫ

(q22)
1+ǫ

∫ 1

0

dα3

∫ 1−α3

0

dα1
1

α1+ǫ
3 [α1 (r − 1) + 1− α3]

1+ǫ

Integrating first over α1 we have

C0

(
q21, q

2
2

)
=

ieiπǫΓ (1 + ǫ)

(4π)2−ǫ (q22)
1+ǫ

1

ǫ (r − 1)

∫ 1

0

dα3

α1+ǫ
3

∣
∣[α1 (r − 1) + 1− α3]

−ǫ
∣
∣
1−α3

0

=
ieiπǫΓ (1 + ǫ)

(4π)2−ǫ ǫ (q22)
1+ǫ

(r − 1)

(1− rǫ)

rǫ

∫ 1

0

dα3 α
−(1+ǫ)
3 (1− α3)

−ǫ

=
−ieiπǫΓ (1 + ǫ)

(4π)2
CΓ

ǫ2
1

(q22)
1+ǫ

(1− rǫ)

(r − 1) rǫ
(1.46)

By making a (partial) Laurent expansion in ǫ we have

C0

(
q21, q

2
2

)
=
ieiπǫΓ (1 + ǫ)

(4π)2
CΓ

ǫ

log

(
q21
q22

+ iη

)

(
q21 − q22

) (
q21 + iη

)ǫ (1.47)

1.2.6 The four-point function (box) with mi = 0

Box with

p1 + p2 = p3 + p4, p2i = 0, s = (p1 + p2)
2 > 0, t = (p1 − p3)

2 < 0 (1.48)

Left as exercise.
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p1 α1    t↓ p3

α4

p4α3p2

α2

s→

Figure 1.6: Four-point function.

1.3 The tensor one-loop integrals and the Passarino–

Veltman reduction formula

We are ready to look at more complicated numerator structures. As previously stated, in
QCD (and more in general in the Standard Model), this happens when we have one (or
more) fermion legs in the loop or in the presence of triple and quartic gluon vertexes. In the
following, we will deal only with massless propagators, to simplify the calculations and the
notation. No conceptual problems arise in case of massive propagators.

For example, a massless fermionic n-point loop function is given by

In({pi}) =

∫
ddℓ

(2π)d
ℓ/(ℓ/+ p/1)(ℓ/+ p/1 + p/2) . . . (ℓ/+ p/1 + . . .+ p/n−1)

× 1

[ℓ2 + iη] [(ℓ+ p1)2 + iη] [(ℓ+ p1 + p2)2 + iη] . . . [(ℓ+ p1 + . . .+ pn−1)2 + iη]

The gamma matrix structure can be extracted from this integral and we can write In({pi})
as

In({pi}) = γµn
γµ1

γµ2
. . . γµn−1

∫
ddℓ

(2π)d
ℓµn(ℓ+ p1)

µ1(ℓ+ p12)
µ2 . . . (ℓ+ p1...n−1)

µn−1

× 1

[ℓ2 + iη] [(ℓ+ p1)2 + iη] [(ℓ+ p12)2 + iη] . . . [(ℓ+ p1...n−1)2 + iη]

The Feynman integral with tensor components of the loop momentum in the numerator is
called tensor integral.

Iµ1µ2...µk
n ({pi}) ≡

∫
ddℓ

(2π)d
ℓµ1ℓµ2 . . . ℓµk

× 1

[ℓ2 + iη] [(ℓ+ p1)2 + iη] [(ℓ+ p12)2 + iη] . . . [(ℓ+ p1...n−1)2 + iη]
(1.49)

The purpose of this section is to show how to compute this integral. We notice first that all
the Lorentz structure of a tensor integral has to be carried by the external momenta {pi}
or by the gµν tensor. The first step is the to write the more general linear combination of

17



tensors of order k constructed with the components of the n external momenta and of the
gµν tensor. The symmetry under permutation of Lorentz indices reduces the allowed tensor
structure. In fact, Iµ1µ2...µk

n ({pi}) must be totally symmetric with respect to the k indices
(µ1, µ2, ..., µk).

The procedure to compute the tensor integrals has been outlined for the first time by
Passarino and Veltman (PV).

We illustrate this procedure with a few examples.

1.3.1 The tensor two-point function Bµ (p2 6= 0)

We start computing Bµ(p). Here the tensor decomposition is trivial because only p can bring
the index µ of the integral. In order for the integral to be different from zero, we must have
p2 6= 0. We have to compute

Bµ(p) ≡
∫

ddℓ

(2π)d
ℓµ

ℓ2(ℓ+ p)2
= B11 p

µ . (1.50)

In order to compute the coefficient B11, we contract both side of the previous equation with
pµ and use

ℓ· p = 1

2
[(ℓ+ p)2 − ℓ2 − p2] . (1.51)

We have

p2B11 =
1

2

∫
ddℓ

(2π)d

[
1

ℓ2
− 1

(ℓ+ p)2
− p2

ℓ2(ℓ+ p)2

]

= −p
2

2
B0(p

2)

from which

B11 = −1

2
B0(p

2) (1.52)

This very easy example illustrates the whole strategy of the PV reduction: the first thing
to do is to write down the most general linear combination of tensors using the xternal
momenta and the metric tensor. Then one has to contract with some tensor structure both
sides of this decomposition and, by making use of identities like (1.51), simplify at least one
propagator in the denominator. In this way one transforms a tensor integral into a scalar
integral or a tensor integral of type In to a tensor integral of type In−1, as we will see in the
following. By using different tensor structures to make the contraction, one obtains a set of
linear equations2 to be resolved with respect to the unknown factors Bij, Cij,. . .

2The contraction with different elements of a tensor basis ensures to have a set of independent linear
equations.
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2.3.6 QCD Feynman rules

i kp
= δik

i

p/−m+ iǫ
a,α b,βk

= δab
i

k2 + iǫ

(

−gαβ + (1− λ)
kαkβ

k2

)

a bk
= δab

i

k2 + iǫ

a,α

ij

= −igγαtaij

a,α

b,βc,γ

pa

pb

pc
= −gfabc

[

gαβ (pa − pb)
γ + gβγ (pb − pc)

α + gγα (pc − pa)
β
]

a,α b,β

c,γ d,δ

= −ig2
[
f eacf ebd

(
gαβgγδ − gαδgγβ

)
+ f eadf ebc

(
gαβgγδ − gαγgβδ

)

+f eabf ecd
(
gαγgβδ − gαδgβγ

)]

a,α

cb

p = gfabcpα
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Chapter 3

Color algebra

3.1 SU(3) algebra

The SU(3) group is the group of 3× 3 unitary matrices U with unit determinant

U †U = UU † = 1, detU = eTr{logU} = 1. (3.1)

One can always write
U = eiωata , a = 1, . . . , N2 − 1 (3.2)

with ωa reals and matrices ta hermitian and traceless

ta = (ta)† , Tr{ta} = 0 (3.3)

Quark fields ψ are in the fundamental representation (3), anti-quarks in the anti-fundamental
(3̄) and gluons in the adjoint (8). Matter fields transform under SU(3) according to

ψ′(x) = U(x)ψ(x) (3.4)

ψ̄′(x) = ψ̄(x)U(x)†, (3.5)

color singlets can thus be formed out of a quark-antiquark pair via

∑

i

ψ∗
iψi →

∑

i,j,k

U∗
ijψ

∗
jUikψk =

∑

j,k

(
∑

i

U †
jiUik

)

ψ∗
jψk =

∑

k

ψ∗
kψk (3.6)

but it’s also possible to form color singlet from three quarks (or anti quarks) using

∑

i,j,k

ǫijkψiψjψk →
∑

i,j,k,l,m,n

ǫijkUilUjmUknψlψmψn =
∑

l,m,n

detUǫlmnψlψmψn (3.7)

In this way one can accommodate all observed hadrons and mesons in color invariant states.
Furthermore, since in a system with nq quarks and nq̄ antiquarks it’s possible to form color
singlet only if

41



nq − nq̄ mod 3 = 0, (3.8)

it is easy to see that all these invariant states must have integer electric charge, provided the
usual charges assignments : 2

3
e for up type quarks and −1

3
e for down type ones. With these

choices the QCD Lagrangian can be written as

L = LG + LG.F. + LF.P. + LF (3.9)

where the pure gauge Lagrangian is

LG = −1

4
F a
µνF

a µν , F a
µν = ∂µA

a
ν − ∂νA

a
µ + gfabcAb

µA
c
ν , (3.10)

the gauge-fixing part is

LG.F. = − 1

2λ

(
∂µAa

µ

)2
(3.11)

and the Faddeev-Popov one is

LF.P. = ∂µχ̄aDab
µ χ

b with Dab
µ = δab∂µ + igfabcAc

µ. (3.12)

Finally the fermion Lagrangian reads

LF =
∑

flavour

ψ̄i
f

(

iD/ ij
µ −mfδ

ij
)

ψj
f with Dij

µ = δij∂µ + igtaijA
a
µ (3.13)

where the SU(3) algebra tells us that

[
ta, tb

]
= i fabctc (3.14)

and we chose the convention

Tr{tatb} = TFδ
ab, TF =

1

2
. (3.15)

One can show that in this way the structure constants f are always reals and antisymmetric.
For example taking the complex conjugate of (3.14) one has

−i
(
fabc

)∗
(tc)† =

[(
tb
)†
, (ta)†

]

= −
[
ta, tb

]
(3.16)

because of hermiticity of t’s. Thus
(
fabc

)∗
= fabc. In the same way taking the trace of

ifabctctd =
[
ta, tb

]
td (3.17)

one gets

ifabcTFδ
cd = Tr{

[
ta, tb

]
td} (3.18)

fabc = −2iTr{
[
ta, tb

]
tc}. (3.19)

that shows that f is antisymmetric.
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We generalize now to the SU(n) group: the generic hermitian n × n matrix M can be
written as

M = nata + n0
In×n (3.20)

with n0 fixed by the trace to be n0 = Tr{M}/n. In the same way

Mtb = natatb + n0tb (3.21)

with na now fixed to na = 2Tr{Mta}. Thus

M = 2Tr{Mta}ta + 1

n
Tr{M}In×n (3.22)

Taking M =
[
ta, tb

]
one can re-derive the formula for fabc

[
ta, tb

]
= 2Tr{

[
ta, tb

]
tc}tc (3.23)

ifabctc = 2Tr{
[
ta, tb

]
tc}tc (3.24)

fabc = −2iTr{
[
ta, tb

]
tc}. (3.25)

Using Jacobi identities it’s also possible to define the adjoint representation by means of
matrices T , made by structure constants

(
T b
)

ac
= ifabc (3.26)

such that they satisfy
[
T a, T b

]
= ifabc T c. Defining now

T 2
ik = T a

ijT
a
jk (3.27)

one can show that
[
T b, T 2

]
= T bT aT a − T aT aT b = −

[
T a, T b

]
T a − T a

[
T a, T b

]
(3.28)

= −ifabcT cT a − T aifabcT c = −ifabc{T c, T a} = 0 (3.29)

T 2 is a Casimir of the representation and by Schur’s lemma it must be proportional to the
identity.

3.2 Color coefficients

Provided that the most important difference between QCD and QED is the non abelianity
of the former, it worths to separate the non abelian part evaluating color coefficients of
sequences of t matrices and then proceed as in usual QED computations. For example the
color coefficient for the fermion self energy correction is defined to be

i j k

taijt
a
jk ≡ CFIik (3.31)
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Chapter 4

QED renormalization

1. To be done even if the quantum corrections were finite!

2. the same procedure cancels all the divergences at all orders

In the first chapters we analyzed many aspects of gauge theories. Time is ready to put all
those informations together and to look at the most important consequences that a quantum
field theory has on our knowledge of physics.

In this section we start the analysis of perturbative corrections to amplitudes in the
simplest context of QED. The bare Lagrangian is

L = ψ̄Bi/∂ψB − 1

4
F µν
B FB

µν − gBψ̄B /ABψB −mBψ̄BψB

The abelianity of the theory implies, as we have seen, that there is only one kind of vertex.
This point, though simplifying many calculations, does not exclude the possibility to fix the
principles governing renormalization and its main consequences.

As we have just seen in section 1, as soon as loop integrals are concerned, one has to use
a regularization technique in order to prevent the amplitude to diverge. In gauge theories,
dimensional regularization, though very mathematical, is a natural choice since it preserves
both gauge and Lorentz invariance. Other techniques are more physically based. Here we
adopt one of these, consisting in the introduction of an UV cutoff Λ in the loop integral.
This cutoff, in the Wilsonian way of thinking at quantum field theories, can be seen as the
last energy scale at which our theory is valid: we can look at the theory as an effective field
theory that makes sense up to Λ scale.

Dimensional regularization will be used in the next chapter, when we will study 1-loop
corrections to QCD amplitudes.

The basic blocks we need to renormalize the theory (at one loop), i.e. to extract finite
predictions from mathematical divergent quantities, are the computation of the fundamental
divergent Feynman diagrams: the fermion and the photon self energy and the vertex correc-
tions. Moreover, in all the computations we will assume for simplicity massless fermions.
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4.1 Fermion propagator

We consider the first order corrections to the propagator of a fermion. The Feynman integral
we have to calculate is The corresponding value1, in the Feynman gauge and neglecting the

p p+l p

l

α α

fermion mass, is given by

M =

∫ Λ d4ℓ

(2π)4
−i
ℓ2

(−ieBγα)
i

p/+ ℓ/
(−ieBγα)

= −e2B
∫ Λ d4ℓ

(2π)4
1

ℓ2
γα

1

p/+ ℓ/
γα

= 2e2B

∫ Λ d4ℓ

(2π)4
1

ℓ2
1

p/+ ℓ/
(4.1)

where Λ is the cutoff. In the last line we used the identity

γα γβ γα = −2γβ (4.2)

The proof is a direct consequence2 of the Clifford algebra {γα, γβ} = 2gαβ.

We observe that M has the dimension of an energy. Having fixed the mass m of the
fermion to be 0, the only dimensionful parameter in the integral (apart the cutoff, that plays
a different role) is the momentum pµ and since M is Lorentz-invariant, we can write

M = Ap/ (4.3)

The parameter A comes from the result of the loop integral and, since from (4.3) it has to be
dimensionless, we expect it to diverge at most logarithmically with Λ. We also note that (4.1)
does not diverge in the infrared region (ℓ → 0) because there is a /p in the denominator. In
order to find A, we derive (4.1) and (4.3) with respect to pµ. Using the relation

∂pµ

(
1

p/+ ℓ/

)

= − 1

p/+ ℓ/
γµ

1

p/+ ℓ/
(4.4)

1Having to calculate an amplitude, there would be the usual spinors ū (p) and u (p) at the extrema of
our expression. Actually we are not calculating an amplitude but a self-energy diagram so we do not need
to saturate polarization indexes with spinors.

2Note that (4.2) as it stands is true in four-dimension Minkowski spacetime.

49



which is a consequence of s−1s = 1, with s = (p/+ ℓ/), we approde to the identity

Aγµ = −2e2B

∫ Λ d4ℓ

(2π)4
1

ℓ2
1

p/+ ℓ/
γµ

1

p/+ ℓ/

= −2e2B

∫ Λ d4ℓ

(2π)4
(p+ ℓ)α (p+ ℓ)β

ℓ2
[
(p+ ℓ)2

]2 γαγµγβ (4.5)

Up to now the computation is exact. At this point we neglect all the pmomentum dependence
in the integral (ℓ ≫ p) since we are now interested in the high momentum behavior of the
theory: in other words we want to extract the leading singularity of the integral in the UV
limit. After this assumptions the previous formula becomes

Aγµ ≃ −2e2B

∫ Λ d4ℓ

(2π)4
ℓαℓβ

(ℓ2)3
γαγµγβ

= −e
2
B

2
γαγµγ

α

∫ Λ d4ℓ

(2π)4
1

(ℓ2)2
(4.6)

where the Lorentz dependence of the integrand can be extracted by replacing, under the
integral, ℓαℓβ with ℓ2gαβ/4. Using again (4.2) on the right hand side of (4.6) we have

A ≃ e2B

∫ Λ d4ℓ

(2π)4
1

(ℓ2)2
(4.7)

Perform this integral is now an easy task: passing in Euclidean time and remembering that
the surface of a 4–dimensional sphere of radius one is 2π2 (see equation (1.23)), we get:

∫ Λ d4ℓ

(2π)4
1

(ℓ2)2
= i

π2

(2π)4
log

(
Λ2

µ2

)

(4.8)

So A becomes

A =
iαB

4π
log

(
Λ2

µ2

)

(4.9)

We observe that A diverges logarithmically with Λ as expected. Moreover, we have intro-
duced an arbitrary new energy scale µ. At this level the use of µ is required only to maintain
the argument of the logarithm dimensionless. Strictly speaking, the integral (4.8), as it
stands, would diverge also in the IR region but, as we pointed out earlier, this expression
comes from an integral that was free of IR divergences. For this reason the scale µ2 has not
a meaning deeper than that of being a generic scale obtained from the external momentum
p.

We now consider the sum of the graphs relative to the fermion propagator and its first
order correction. They are given by

p
+

p
+ O

(
α2
B

)
(4.10)
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and the related expression M is

M =
i

p/
+
i

p/
Ap/

i

p/

=
i

p/
(1 + iA)

≡ i

p/
Z2 (4.11)

where the renormalization constant Z2 (or the 1–loop correction to the propagator δ2 ≡
Z2 − 1) is defined by

Z2 = 1− αB

4π
log

Λ2

µ2
+O

(
α2
B

)

δ2 = −αB

4π
log

Λ2

µ2
+O

(
α2
B

)
(4.12)

Please notice that eq. (4.11) implies that the photon remains massless.

4.2 Vertex corrections

We now consider the first order correction to the QED vertex.

 µ

p

p′

l

(4.13)

Doing computation as before in the Feynman gauge, the graph of fig. (4.13) corresponds to
the following3:

Mµ =

∫ Λ d4ℓ

(2π)4
(−ieBγα)

i

/p′ + /ℓ
(−ieBγµ)

i

/p+ /ℓ
(−ieBγβ)

−igαβ
ℓ2

(4.14)

= −e3B
∫ Λ d4ℓ

(2π)4
γα

1

/p′ + /ℓ
γµ

1

/p+ /ℓ
γα

1

ℓ2

As in the fermion propagator loop, since we are interested in the UV behavior of the ampli-
tude, we can neglect p and p′ in the fermion propagators: collecting all the gamma matrices
outside the integral, we are left with

Mµ ≃ −e3Bγαγγγµγδγα
[∫ Λ d4ℓ

(2π)4
ℓγℓδ
(ℓ2)3

]

= −e3Bγαγγγµγδγα
[∫ Λ d4ℓ

(2π)4
gγδ
4

1

(ℓ2)2

]

(4.15)

3In (4.13) the momenta p and p′ flow out of the graph.
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where the Lorentz dependence of the integral within squared brackets can be extracted
multiplying it with gγδ. By repeated use of (4.2) we write

Mµ = −e3Bγµ
∫ Λ d4ℓ

(2π)4
1

(ℓ2)2

The integral is like that in the previous computation, so at the end we have

Mµ = −i e
3
B

16π2
γµ log

(
Λ2

µ2

)

The divergence is logarithmic, as power counting shows in eq. (4.14) and the meaning of µ2

is the same discussed in the previous paragraph.

In order to calculate the vertex renormalization constant Z1 at 1–loop, we have to sum
this graph with the tree level vertex, obtaining

−ieBγµZ−1
1 ≡ (−ieBγµ) +

(

−i e
3
B

16π2
γµ log

(
Λ2

µ2

))

from which at the end we read (Z1 ≡ 1 + δ1)

Z−1
1 = 1 +

αB

4π
log

(
Λ2

µ2

)

+O(α2
B)

δ1 = −αB

4π
log

(
Λ2

µ2

)

+O(α2
B) (4.16)

4.3 Photon propagator

The one loop contribution to the photon propagator in the Feynman gauge is

β

k

l

α

k+l

= − (−ieB)2 Tr
∫ Λ d4ℓ

(2π)4
γα
i

ℓ/
γβ

i

ℓ/ + /k
(4.17)

which seems to diverge quadratically. We will show that this divergence is instead logarith-
mic. The contribution to the propagator coming out (4.17) is only transverse, due to Ward
identity, which means that if we contract this integral with kα or kβ we do obtain zero. This
means that the structure of the integral can be summarized as follows

− (−ieB)2 Tr
∫ Λ d4ℓ

(2π)4
γα
i

ℓ/
γβ

i

ℓ/ + /k
= B

(
kαkβ − k2gαβ

)
(4.18)

Since we want to calculate (4.17) this is equivalent to calculate B in (4.18). We also note
that since B is dimensionless it can only depend on the ratio Λ2/k2. We contract with gαβ

and use the identity (4.2) finding

2e2BTr

∫ Λ d4ℓ

(2π)4
1

ℓ/

1

ℓ/ + /k
= −3Bk2 (4.19)
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The term which gives the dimensionful external scale is k and it appears in both the two sides
of (4.19). If we would now to simplify the calculation of the integral we should eliminate k in
the second side leaving it only in the integral. This can be achieved acting on the equation
with the derivative ∂kα and ∂kβ , using (4.4) we find

−3B∂kα∂kβk
2 = 2e2BTr

∫ Λ d4ℓ

(2π)4
1

ℓ/
∂kα∂kβ

1

ℓ/ + /k

−6Bgαβ = 2e2BTr

∫ Λ d4ℓ

(2π)4
1

ℓ/

(
1

ℓ/ + /k
γβ

1

ℓ/ + /k
γα

1

ℓ/ + /k
+

1

ℓ/ + /k
γα

1

ℓ/ + /k
γβ

1

ℓ/ + /k

)

At this point we contract the equation with gαβ obtaining

−24B = 4e2BTr

∫ Λ d4ℓ

(2π)4
1

ℓ/

(
1

ℓ/ + /k
γα

1

ℓ/ + /k
γα

1

ℓ/ + /k

)

B =
e2B
3
Tr

∫ Λ d4ℓ

(2π)4
1

ℓ/

(
1

ℓ/ + /k

)3

(4.20)

We can again make the approximation ℓ ≫ k. Recalling that /ℓ−1/ℓ−1 = 1/(ℓ2) and after the
trace, one gets

B =
4

3
e2B

∫ Λ d4ℓ

(2π)4
1

(ℓ2)2
(4.21)

where the integral is again the same as in the previous calculations. This one loop integral
contributes to the photon propagator when we sum it to the first piece. We have the structure

ν

k

µ + ν

k

αµ β + . . . (4.22)

which corresponds to

−ig
µν

k2
+

(

−ig
µα

k2

)

B(kαkβ − k2gαβ)

(

−ig
βν

k2

)

+ . . . (4.23)

Having instead made the calculation in Lorentz gauge we would have used the tree level
propagator with terms containing kµkν(1 − λ) and this would have given in (4.23) terms
proportional to kµkν . Nevertheless, the result would be the same since these terms do not
give any contribution because of gauge invariance. In fact the sum (4.21) will be connected
to an external conserved current or to a polarization vector. In both case we will hit the
kµ kν term with a current or a polarization vector and in both cases this will give a null
contribution. We thus obtain from (4.23)

−ig
µν

k2
(1 + iB) ≡ −ig

µν

k2
Z3 (4.24)
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Using (4.8) and applying it to (4.21) we get (Z3 ≡ 1 + δ3)

Z3 = 1− 4

3

π2

(2π)4
e2B log

(
Λ2

µ2

)

= 1− 2

3

αB

2π
log

(
Λ2

µ2

)

δ3 = −2

3

αB

2π
log

(
Λ2

µ2

)

(4.25)

For the photon propagator it is important to take a look also at the result that we obtain if
we try to sum all the radiative corrections. This corresponds to sum all the graphs made by
connecting more and more 1–particle irreducible Feynman graphs. We obtain a geometric
series like

−ig
µν

k2

+∞∑

n=0

(iB)n = −ig
µν

k2
1

1− iB
(4.26)

where B is the 1–PI graph and at one loop it is exactly our old B.

Despite its obviousness, equation (4.26) shows a fundamental property of QED: the
photon remains exactly massless even after higher order quantum corrections are considered.
In fact the pole is again at k2 = 0, i.e. it is not displaced by radiative corrections. This is
is an example of a fundamental property of Quantum Field Theories: an exact symmetry of
the Lagrangian (here the gauge symmetry) has deep consequences also on the way radiative
corrections manifest themselves. As we have just seen the local U(1) of QED forbids the
photon to acquire a mass after quantum corrections, forcing the propagator structure to be
transverse and lowering the degree of divergence from 2 to 0. Another well known example is
the (global) chiral symmetry of the Dirac massless Lagrangian that forces the fermion field
to stay massless even after loop corrections: from this argument follows that if the mass is
present in LDirac the self energy has to bee proportional to the mass itself, forcing again the
divergences of the one loop self energy to be logarithmical and not linear, as power counting
would tell.

4.4 The Lehmann–Symanzik–Zimmermann (LSZ) for-

mula

4.5 The running of the coupling constant

We begin analyzing the physical meaning of previous calculations, by recalling the definition
of renormalization constants Zi (see (4.12), (4.16) and (4.25))

Z1 ≡ 1 + δ1 (4.27)

Z2 ≡ 1 + δ2 (4.28)

Z3 ≡ 1 + δ3 (4.29)
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If we consider e−µ−→ e−µ− scattering and compute higher order virtual corrections to the
amplitude, at order e4B, we have to sum the following graphs

µ-

e
-

+

µ-

e
-

+

µ-

e
-

(4.30)

Box corrections (that are not UV divergent) and the vertex correction at the muon vertex
are not shown. This last correction will play a role when considering the renormalization
of the muon charge. We then considered only the radiative corrections on the lower half of
the diagrams (on the electron part of the amplitude) that means that in the following we
will think only to the prediction of the theory for the physical measurable electron charge
eP . From this it follows also that the second graph will contribute with a one half factor (or
square root factor). We thus have that the sum of the graphs goes like

∼ eB

(

1 +
1

2
δ3 − δ1 + δ2 + δ2

)

∼ eB Z
1/2
3 Z2

2 Z
−1
1 (4.31)

In addition, a factor
(

Z
1/2
2

)2

has been added, to comply with the LSZ formula4. In this

case, we’re dealing with external fermions (electrons), so we must multiply twice by Z
−1/2
2 .

We note that this gives exactly the same result that one would obtain adding only connected
diagrams shorn of self energy corrections on external legs and multiplying this result with a
Z

1/2
i factor for every external leg of type “i”, as in the standard LSZ formula. In both cases

the correct answer for the amplitude is

M ∼ eB Z
1/2
3 Z2 Z

−1
1 = eB Z

1/2
3 (4.32)

where we have used the fact that at the first order our calculation gives Z1 = Z2
5. Equation

(4.32) also suggests us that in some sense the renormalization of QED is related only to
the correction of the photon self energy (Z3): we will come back on this at the end of this
section.

From all these considerations, we are now left with something proportional to eB
√
Z3

and this will be our definition for the physical electron charge eP , since the cross section we
would obtain from the amplitude contains a (eB

√
Z3)

2 factor and the cross section is the
link between theory and measurable quantities. Thus we define6

eP =
√

Z3 eB (4.33)

4The usual conventions are i = 2 for fermions and i = 3 for gauge bosons.
5As we shall see later on, this equality holds at all orders, by virtue of Ward identities.
6Instead of eP , usually one calls this quantity the renormalized charge eR but in this part we will continue

to use eP in order to remind that this is the value that in the theory has the meaning of measurable, physical
electron charge.
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From the previous equation it is now easy to see how the physical charge varies with the
energy scale µ: at the scale µ2 its value is

eP (µ
2) = eB

{

1− 2

3

αB

2π
log

(
Λ2

µ2

)}1/2

≃ eB

{

1− 1

3

αB

2π
log

(
Λ2

µ2

)}

(4.34)

while at the scale µ2
0

eP (µ
2
0) = eB

{

1− 1

3

αB

2π
log

(
Λ2

µ2
0

)}

. (4.35)

The difference is thus no more dependent on the cutoff scale Λ

eP (µ
2)− eP (µ

2
0) = eB

1

3

αB

2π

{

log

(
Λ2

µ2
0

)

− log

(
Λ2

µ2

)}

=
e3B
24π2

log

(
µ2

µ2
0

)

. (4.36)

Now we are free to replace the bare charge eB with the physical (renormalized) one eP in
the right hand side of the previous equation, up to terms of higher order, finding

eP (µ
2)− eP (µ

2
0) =

e3P
24π2

log

(
µ2

µ2
0

)

+O
(
e4P
)
. (4.37)

The running of the coupling constant is thus

eP (µ
2) = eP (µ

2
0) +

e3P
24π2

log

(
µ2

µ2
0

)

+O
(
e4P
)
. (4.38)

The previous formula is very important since, given the value of the physical charge at one
fixed scale µ0, one can extrapolate the new eP value at any other scale µ, keeping in mind
that one have to remain in the perturbative regime.

Before going on, a remark on the way we introduced the scale µ is due: µ2 was a scale of
the order of the external momenta of the legs of which we calculated the radiative corrections.
In particular, looking at the graphs we added (eq. (4.30)), for the photon self energy and the
vertex corrections we can think at µ2 as the off–shellness of the virtual exchanged photon,
i.e. the typical scale of the process.

Keeping in mind all these observations, eq. (4.38) tells us a fundamental unexpected
thing: if we make two measurements for a process involving the electron charge at different
energies and we want to predict the correct result, we have to use different values for the
electron charge itself. In this sense we can also say that the constant eP is no longer a
constant but it runs in a way predicted by the theory. It is also clear that for the theory to
be predictive it is needed to fix the value of the constant at one scale7 and then use (4.38)
to extract the corresponding value at another scale and use it in the computation.

To obtain the running of the renormalized coupling αR one can proceed in a slightly
different way: it is useful to see how it works because we will use the following argument to

7Typically in QED one fix the fine-structure constant α to be equal to the low energy measured value
≈ 1/137 at the scale µ2 = m2

e.
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Appendix A

Useful mathematical functions

A.1 The Γ and B functions

The Gamma function is defined by

Γ(z) ≡







∫ ∞

0

dx e−xxz−1 Re z > 0

∞∑

k=0

(−1)k

k!

1

k + z
+

∫ ∞

1

dx e−xxz−1 Re z < 0, z 6= −n, n ∈ N0

(A.1)

With a simple change of variables x→ x2

Γ(z) =

∫ ∞

0

dx e−xxz−1 = 2

∫ ∞

0

dx e−x2

x2z−1 (A.2)

It can be easily shown that

Γ(1) = 1 (A.3)

Γ

(
1

2

)

=
√
π (A.4)

Γ(z + 1) = z Γ(z) (A.5)

Using eq. (A.2) and changing to polar coordinates (x = r cos θ, y = r sin θ) we can write

Γ(a) Γ(b) = 4

∫ ∞

0

dx dy e−x2−y2y2a−1x2b−1

= 4

∫ ∞

0

dr r

∫ π/2

0

dθ e−r2r2a+2b−2 (sin θ)2a−1 (cos θ)2b−1

= 2

∫ π/2

0

dθ (sin θ)2a−1 (cos θ)2b−1 2

∫ ∞

0

dr e−r2 r2(a+b)−1

= 2

∫ π/2

0

dθ (sin θ)2a−1 (cos θ)2b−1 Γ(a+ b) (A.6)
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Since d sin2θ = 2 sin θ cos θ dθ we can write

Γ(a) Γ(b)

Γ(a+ b)
= 2

∫ π/2

0

dθ (sin θ)2a−1 (cos θ)2b−1 =

∫ 1

0

d sin2θ
(
sin2θ

)a−1 (
cos2θ

)b−1
(A.7)

Calling x = sin2θ we have

Γ(a) Γ(b)

Γ(a+ b)
=

∫ 1

0

dx xa−1(1− x)b−1 (A.8)

We can define the “beta” function as

B(a, b) ≡
∫ 1

0

dx xa−1(1− x)b−1 = 2

∫ π
2

0

dθ (sin θ)2a−1 (cos θ)2b−1 =
Γ(a) Γ(b)

Γ(a+ b)
. (A.9)

A useful expansion is given by

Γ(1 + ǫ) = 1− γE ǫ+
6 γ2E + π2

12
ǫ2 +O

(
ǫ3
)
, (A.10)

where γE = 0.5772157 . . . is the Euler-Mascheroni constant.

A.2 The angular volume Ωd in d dimensions

In order to compute the total angular volume in d dimensions we proceed as follows. We
consider the integral I

I ≡
(∫ ∞

−∞

dx e−x2

)d

=
(√

π
)d

(A.11)

and we rewite the lhs of the equation as

I =

∫ ∞

−∞

dx1 dx2 . . . dxd e
−(x2

1+x2
2+...+x2

d) =

∫

dΩd

∫ ∞

0

dr rd−1e−r2 (A.12)

The r integration can be performed using eq. (A.2)

I = Ωd

Γ
(
d
2

)

2
(A.13)

so that

Ωd =
2π

d
2

Γ
(
d
2

) (A.14)
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