Chapter 1

Mathematical tools

1.1 The Feynman parametrization

The Feynman parametrization is given by the following formula

where
c= Z Ci . (1.2)
i=1
The proof of this equation is done following a few steps. First of all, we demonstrate it by
induction when all the ¢; are equal to 1. The case with n = 2 is trivial: by a direct inspection
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Supposing now that formula (1.1) is valid for (n — 1)
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where in the last line ,
0<> ap<1 (1.5)
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we show, with some algebra, that it is true also for n
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In fact, integrating (1.6) in «,_; between 0 and (1 — Z?:_f 042-), we find
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and using (1.4)
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so equation (1.6) is indeed an identity.

To complete the demonstration of eq. (1.1), we derive ¢, times both members of the first
line of (1.6) with respect to A,. On the left-hand side we have
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Comparing the last two equations one can see that
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Repeating now the derivation with respect to a generic A, we get
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This proves eq. (1.1).

1.2 The scalar one-loop integrals

In this section we want to introduce all the principal mathematical tools useful to calculate
d-dimensional scalar one-loop Feynman integrals. These integrals are built up with the
propagators of n massive particles, with masses m;, connecting n + 1 vertexes of interaction
with other external particles, each carrying momentum p;.!
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The integral can be written in this general form (notice that > | p; = 0 for momentum
conservation)
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where we have introduced a small imaginary part in according to the Feynman prescription
for the T—ordered propagator and we have used the shortcut p1o = p; + p2, and similar ones.

Using the Feynman parametrization (1.1) we can write
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The sum in the denominator can then be rewritten as

Z apAp = Z o [(0+ prok)’ —mi+ i) =
k=1

k=1
= P+2. (Z Oékp1...k> + Z Qg (P%k —mj, + Z'77) =
k=1 k=1
= (P4+20-P+K*+1in. (1.16)

The integral (1.15) becomes
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where we used the shorthand notation
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Notice that in the last line 7 is not the same one defined previously but it plays the same role
again picking the poles away from the path of the integration as the Feynman prescription
requires.

The integral over the loop momentum [ can be performed once and for all. We first
perform the integral over . In Fig. 1.1 we have promoted the real variable [, into a complex
variable and we have plotted the two poles
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The integration over [; is along the real axis. Exploiting the fact that the Feynman integrals
are analytic functions, we interpret the integration along the real axis as part of the integra-
tion over the closed path in the figure. Using the residue theorem, we know that the integral
along that closed path is zero, since the poles of the integral are outside the integration path.
So we can write
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Figure 1.1: Wick rotation.

since the contribution from the circular parts of the path goes to zero as we radius goes to
infinity. We have indicated with ¢}’ the new integration variable, reminiscent of the fact that
now we are using an Euclidean notation and no longer a Minkoskian one. The integral I

then becomes
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and using spherical coordinates, defining (%4 = (¢5)? + |¢|* (please notice that the integral
over the loop momentum is now perfectly defined and we could set n = 0. We keep it, since
it will be useful in the integration over the Feynman parameters «;, yet to be done)
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where ), is the total angle in d dimensions
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Finally, the scalar integral (1.15) takes this form
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where in the last line we used
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In summary
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and s;; is the square of the momentum flowing through the ¢-j cut of the diagram representing

I
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1.2.1 The one-point function (tadpole)

Figure 1.2: One-point function (tadpole).

The one-point function is given by
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where m is the mass of the particle propagating in the loop. Please notice that

since if the mass is zero, there are not dimensional variables that carry the dimension of A
after the integration over the loop momentum. So the integral must be zero.

If m # 0, with the usual definition d = 4 — 2¢, we have
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that shows that A, diverges as 1/e when ¢ — 0.

1.2.2 The two-point function (bubble) with m; = my =0

We now consider the integral corresponding to the two-point function with massless propa-
gators, i.e. m; = my = 0. The external momentum p must then have p? # 0 otherwise, as
for Ay with m? = 0, if also the external particles are massless, the integral vanishes. The
integral is given by
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Figure 1.3: Two-point function (bubble).

With d = 4 — 2¢ we have
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where we have defined
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Since we are interested in an expansion in € of By, we have to deal with
(—p2 — z'77) “=1—¢log (—p2 — in) +0O (62) (1.34)

If p? < 0, then the logarithm is perfectly defined and no imaginary part is needed to give
meaning to it. If instead p? > 0, then —p? — in is a complex negative number with a small
imaginary part, so that it is below the typical cut for the definition of the logarithm. In this
case, we have
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In the kinematic region p? > 0 we then have
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This integral is divergent as 1/e in the limit € — 0.

1.2.3 The two-point function (bubble) with m; = m, my =0

Left as exercise.

1.2.4 The two-point function (bubble) with m; = ms =m

Left as exercise.
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Check that you get
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in the kinematic region p? > 4m?
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1.2.5 The three-point function (triangle) with m; = my =m3 =10

We consider the simplified case where three-point function has all the propagators massless.

Triangle with one external massive leg

P1
I
q \/+q+p2
Ogs
I+q q2 p2

Figure 1.4: The three-point function (triangle). The double line denote the massive leg.

In the notation of Fig. 1.4, we have ¢*> # 0, p? = p3 = 0. We have only one independent
invariant, i.e. ¢>. Any other relativistic invariant can be written in terms of ¢>. The Feynman
diagram corresponding to Fig. 1.4 is given by

o die 1 —
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where we used p? = 0 for @ = 1,2. We can integrate over as immediately, using the §
function. This gives a3 = 1 — a; — an. Since the range of integration of as is from 0 to 1,
this means that 0 < 1 — a; — ap < 1, that implies that s < 1 — ;. Performing now the
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integration on the Feynman parameters, we have
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While this integral can be performed as done before, it is important to keep in mind also the
following trick to restore the integration boundaries between 0 and 1. We make the change
of variable as = (1 — ay)x
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where we have used the definition of the B function in eq. (A.9). We finally get
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where Cf is given in equation (1.33). We refer to Sec. 1.2.2 for the expansion of the previous
expression in the kinematic regions where ¢> < 0 or ¢? > 0.

Triangle with two external massive legs

Consider now the triangle with two massive external legs. In the notation of Fig. 1.5, we
have p? = 0, p? # 0 and p3 # 0. We compute this integral with the further hypothesis that
g2 > 0. The sign of ¢? is arbitrary. The integral corresponding to this Feynman graph is
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Figure 1.5: The three-point function (triangle). The double line denote the massive leg.

Factorizing out —¢3 with the right in prescription and using d = 4 — 2¢, and defining

= ﬁ +1in (1.45)
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By making a (partial) Laurent expansion in € we have
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a7 .
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1.2.6 The four-point function (box) with m; =0

Box with

Pp1+ P2 = p3 + Pa, PZZ =0, 5= (p1 +p2)2 > 0, t=(p1— P3)2 <0 (1.48)

Left as exercise.
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Figure 1.6: Four-point function.

1.3 The tensor one-loop integrals and the Passarino—
Veltman reduction formula

We are ready to look at more complicated numerator structures. As previously stated, in
QCD (and more in general in the Standard Model), this happens when we have one (or
more) fermion legs in the loop or in the presence of triple and quartic gluon vertexes. In the
following, we will deal only with massless propagators, to simplify the calculations and the
notation. No conceptual problems arise in case of massive propagators.

For example, a massless fermionic n-point loop function is given by

de
LAY = [ G A+ A B b+t )

1
(2 +an] [(€+p1)* + in] [(€+ 1+ p2)* +in] ... [(C+p1+ ...+ po1)® + i)

The gamma matrix structure can be extracted from this integral and we can write ,({p;})
as

dee
L({pi}) = Vin Yoa Yz -+ Vin—1 / (2m)d 0+ p)P (0 + pra) oo (0 + prop—1)lm

1
(02 +in] [(€ 4+ p1)? +in] [(€ + pr2)® +in] .. [(€+ pr.n_1)? +in)]

The Feynman integral with tensor components of the loop momentum in the numerator is
called tensor integral.

Iﬁll@mﬂk({pi}) = / (;jﬂ-fd pHLpH2 o pHE
1
[2 +in] [(€ 4+ p1)? + in] [(£ + pr2)* +in] . [(€ 4 p1.n-1)? + i)

(1.49)

The purpose of this section is to show how to compute this integral. We notice first that all
the Lorentz structure of a tensor integral has to be carried by the external momenta {p;}
or by the g"” tensor. The first step is the to write the more general linear combination of
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tensors of order k£ constructed with the components of the n external momenta and of the
g™ tensor. The symmetry under permutation of Lorentz indices reduces the allowed tensor
structure. In fact, I#1#2-#({p;}) must be totally symmetric with respect to the k indices

(H’l? NZ; ceey /~'Lk‘)

The procedure to compute the tensor integrals has been outlined for the first time by
Passarino and Veltman (PV).

We illustrate this procedure with a few examples.

1.3.1 The tensor two-point function B* (p? # 0)

We start computing B*(p). Here the tensor decomposition is trivial because only p can bring
the index p of the integral. In order for the integral to be different from zero, we must have
p? # 0. We have to compute

wo [ dU 2 .
B"(p) = / 2n)i B+ ) = By p. (1.50)

In order to compute the coefficient By;, we contract both side of the previous equation with
pu and use

1
l-p=3l(t+p)* = =p?. (1.51)
We have
9 1 di¢ 1 1 P
pBu = 3 d ez~ 2 7 2 2
2/) (2m) |/ (¢ + p) 20+ p)
p2 2
= —?Bo(p )
from which )
Bll = ——Bg(p2) (152)

2

This very easy example illustrates the whole strategy of the PV reduction: the first thing
to do is to write down the most general linear combination of tensors using the xternal
momenta and the metric tensor. Then one has to contract with some tensor structure both
sides of this decomposition and, by making use of identities like (1.51), simplify at least one
propagator in the denominator. In this way one transforms a tensor integral into a scalar
integral or a tensor integral of type I,, to a tensor integral of type I,,_1, as we will see in the
following. By using different tensor structures to make the contraction, one obtains a set of
linear equations® to be resolved with respect to the unknown factors B;j, Cij,. ..

2The contraction with different elements of a tensor basis ensures to have a set of independent linear
equations.
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2.3.6 QCD Feynman rules
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Chapter 3

Color algebra

3.1 SU(3) algebra

The SU(3) group is the group of 3 x 3 unitary matrices U with unit determinant
UU=UU" =1, det U = ¢™r{los U} — 1, (3.1)

One can always write A
U = et a=1,...,N*—1 (3.2)

with w, reals and matrices t* hermitian and traceless
e = (1), Te{t*} =0 (3.3)

Quark fields ¢ are in the fundamental representation (3), anti-quarks in the anti-fundamental
(3) and gluons in the adjoint (8). Matter fields transform under SU(3) according to

(@) = U)(a) 3.4
V' (x) = P(2)U ()], (3.5)
color singlets can thus be formed out of a quark-antiquark pair via
D b= > Ui Uty = > (Z U}iUik> Ui =Y i (3.6)
i i.4,k .k i k
but it’s also possible to form color singlet from three quarks (or anti quarks) using

Z Eijk¢i¢j¢k — Z Eiijz‘lUijknd)ld}md}n = Z det Uelmnwl¢m¢n (37)

i7j7k i7j7k:7l7m7n 17m7n

In this way one can accommodate all observed hadrons and mesons in color invariant states.
Furthermore, since in a system with n, quarks and n; antiquarks it’s possible to form color
singlet only if
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ng —mng mod 3 =0, (3.8)

it is easy to see that all these invariant states must have integer electric charge, provided the
usual charges assignments : %e for up type quarks and —%e for down type ones. With these
choices the QCD Lagrangian can be written as

L=Lc+Lor+Lpp+LFp (3.9)

where the pure gauge Lagrangian is

1

Lo=—Fu, P ", B, = 0,45 = 0,45 + gf " AL A, (3-10)
the gauge-fixing part is
Lop = —% (97 A2)? (3.11)
and the Faddeev-Popov one is
Lpp =0"Y"Di’x"  with D% = §%0, +ig f*AS,. (3.12)
Finally the fermion Lagrangian reads
Lr=3 & (il —m") v} with DY =590, +igt} AL (3.13)
Fflavour
where the SU(3) algebra tells us that
[t ] =i f*e (3.14)
and we chose the convention
Te{tt) = T,6%, T, — % (3.15)

One can show that in this way the structure constants f are always reals and antisymmetric.
For example taking the complex conjugate of (3.14) one has

—1 (fabc)* (tc)T _ [(tb)T , (ta)q _ [ta,tb] (316)

because of hermiticity of t’s. Thus ( f“bc)* = fa_In the same way taking the trace of

ifeeectt = 14,10 ¢ (3.17)

one gets
ifT0 = Te{[t*, "] t*} (3.18)
febe = —2aTe{[t*, "] t°}. (3.19)

that shows that f is antisymmetric.
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We generalize now to the SU(n) group: the generic hermitian n x n matrix M can be
written as
M =n“* +n° Lxn (3.20)

with n° fixed by the trace to be n® = Tr{M}/n. In the same way
Mt> = nt"t? 4 n%" (3.21)
with n® now fixed to n* = 2Tr{Mt*}. Thus
1
M = 2Te{ Mt"}* + ~Tr{M}1L, ., (3.22)
n

Taking M = [tc‘, tb} one can re-derive the formula for fa%

[t %] = 2Tx{[t*, ¢*] ¢}t (3.23)
iferete = 2Te{ [t "] t}e° (3.24)
fore = —20Te{ [t*,¢*] t°}. (3.25)

Using Jacobi identities it’s also possible to define the adjoint representation by means of
matrices T', made by structure constants

(1°), =if™ (3.26)
such that they satisfy [T, T?] = if®* T°. Defining now
T; = ToTS, (3.27)
one can show that
[T, 7% =T°T*T* — T*T*T" = — [T*, T°| T* — T* [T*, T"] (3.28)
— _ifabcTcTa . Ta?:fabcTC — _,éfabc{Tvc7 Ta} =0 (329)

T? is a Casimir of the representation and by Schur’s lemma it must be proportional to the
identity.

3.2 Color coefficients

Provided that the most important difference between QCD and QED is the non abelianity
of the former, it worths to separate the non abelian part evaluating color coefficients of
sequences of t matrices and then proceed as in usual QED computations. For example the
color coefficient for the fermion self energy correction is defined to be

500
S
- {518, = Cully (3.31)
I J k
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Chapter 4

QED renormalization

1. To be done even if the quantum corrections were finite!

2. the same procedure cancels all the divergences at all orders

In the first chapters we analyzed many aspects of gauge theories. Time is ready to put all
those informations together and to look at the most important consequences that a quantum
field theory has on our knowledge of physics.

In this section we start the analysis of perturbative corrections to amplitudes in the
simplest context of QED. The bare Lagrangian is

L = pigip — %LFEVF,E, — gAY — MpdEYp

The abelianity of the theory implies, as we have seen, that there is only one kind of vertex.
This point, though simplifying many calculations, does not exclude the possibility to fix the
principles governing renormalization and its main consequences.

As we have just seen in section 1, as soon as loop integrals are concerned, one has to use
a regularization technique in order to prevent the amplitude to diverge. In gauge theories,
dimensional regularization, though very mathematical, is a natural choice since it preserves
both gauge and Lorentz invariance. Other techniques are more physically based. Here we
adopt one of these, consisting in the introduction of an UV cutoff A in the loop integral.
This cutoff, in the Wilsonian way of thinking at quantum field theories, can be seen as the
last energy scale at which our theory is valid: we can look at the theory as an effective field
theory that makes sense up to A scale.

Dimensional regularization will be used in the next chapter, when we will study 1-loop
corrections to QCD amplitudes.

The basic blocks we need to renormalize the theory (at one loop), i.e. to extract finite
predictions from mathematical divergent quantities, are the computation of the fundamental
divergent Feynman diagrams: the fermion and the photon self energy and the vertex correc-
tions. Moreover, in all the computations we will assume for simplicity massless fermions.
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4.1 Fermion propagator

We consider the first order corrections to the propagator of a fermion. The Feynman integral
we have to calculate is The corresponding value!, in the Feynman gauge and neglecting the

/

fermion mass, is given by
A g4 :
a*t —i ?
M = — (—iepY”) —— (—ieBYa
_ e / Tt 1 . 1
= B (271')4 62 ’7 %‘i‘[ ’Ya

o [N 11
- 263/ o) @ J+] (4.1)

where A is the cutoff. In the last line we used the identity

Y8 %a = —278 (4.2)
The proof is a direct consequence? of the Clifford algebra {7a, v} = 29as-

We observe that M has the dimension of an energy. Having fixed the mass m of the
fermion to be 0, the only dimensionful parameter in the integral (apart the cutoff, that plays
a different role) is the momentum p,, and since M is Lorentz-invariant, we can write

M = Ay (4.3)

The parameter A comes from the result of the loop integral and, since from (4.3) it has to be
dimensionless, we expect it to diverge at most logarithmically with A. We also note that (4.1)
does not diverge in the infrared region (¢ — 0) because there is a # in the denominator. In
order to find A, we derive (4.1) and (4.3) with respect to p,. Using the relation

P ( 1 ) 1 1 (4.4)
b\ 27 ) =~ -
"\p+/ P+ P+/

'Having to calculate an amplitude, there would be the usual spinors @ (p) and u (p) at the extrema of
our expression. Actually we are not calculating an amplitude but a self-energy diagram so we do not need

to saturate polarization indexes with spinors.
2Note that (4.2) as it stands is true in four-dimension Minkowski spacetime.
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which is a consequence of s7's = 1, with s = (§ + /), we approde to the identity

A | 1
Ay, = -2 2/ -
T e BT

) /A ' (p+0"(p+0"
B 1 2
@2m)" 2 [(p+0)7]
Up to now the computation is exact. At this point we neglect all the p momentum dependence
in the integral (¢ > p) since we are now interested in the high momentum behavior of the

theory: in other words we want to extract the leading singularity of the integral in the UV
limit. After this assumptions the previous formula becomes

Yo Vu V8 (4.5)

Adde  peps
Ay, ~ —2eh /W W%ﬁ;ﬂﬁ

2 A 4
eg d*l 1
a - 4.
5 ’70/}///7 / (27T)4 (52)2 ( 6)

where the Lorentz dependence of the integrand can be extracted by replacing, under the
integral, (% with (2g®# /4. Using again (4.2) on the right hand side of (4.6) we have

, (Md 1
AgeB/WW (4.7)

Perform this integral is now an easy task: passing in Fuclidean time and remembering that
the surface of a 4-dimensional sphere of radius one is 27* (see equation (1.23)), we get:

/ gﬁ; Gl G (2‘) (43)

i()éB A2
A=——1 — 4.
Am Og<u2> (49)

We observe that A diverges logarithmically with A as expected. Moreover, we have intro-
duced an arbitrary new energy scale u. At this level the use of u is required only to maintain
the argument of the logarithm dimensionless. Strictly speaking, the integral (4.8), as it
stands, would diverge also in the IR region but, as we pointed out earlier, this expression
comes from an integral that was free of IR divergences. For this reason the scale ;2 has not
a meaning deeper than that of being a generic scale obtained from the external momentum

p.

So A becomes

We now consider the sum of the graphs relative to the fermion propagator and its first
order correction. They are given by

Y
‘ZE
Y

+ + O (aj) (4.10)
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and the related expression M is

i i

— Ap-

Py

= —(141iA)
4

%ZQ (4.11)

where the renormalization constant Zy (or the 1-loop correction to the propagator o =

Zy — 1) is defined by

M= L

&.’@\

ap A2 2
ZQ = 1—E10gE+O(QB>
ap A2 2
52 = —Elogﬁ%—(?(aﬁg) (412)

Please notice that eq. (4.11) implies that the photon remains massless.

4.2 Vertex corrections

We now consider the first order correction to the QED vertex.

(4.13)

Doing computation as before in the Feynman gauge, the graph of fig. (4.13) corresponds to
the following?:

T Aﬂ —e o L e m 7 e _igaﬁ
M= / (27r)4( BY >ﬂ/+£( BY >ﬂ+ﬂ( 57%) 72 (4.14)

g (Mde 1 1 1
—€p 47 y 2% a
@m)t" P+ p+I L
As in the fermion propagator loop, since we are interested in the UV behavior of the ampli-

tude, we can neglect p and p’ in the fermion propagators: collecting all the gamma matrices
outside the integral, we are left with

Adre ool

B o~ 53 A A yté
M" ~ —epy" YY" 70 U —(%)4—(62)3}
Aav g, 1

— 3 ANV ald

3In (4.13) the momenta p and p’ flow out of the graph.
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where the Lorentz dependence of the integral within squared brackets can be extracted
multiplying it with ¢7°. By repeated use of (4.2) we write

A 4
'’ 1
o 3
M eyy/ @i (@)

The integral is like that in the previous computation, so at the end we have
es A?
Mt = —i—B ~Floo [ ——
16n2 7 % <u2 >

The divergence is logarithmic, as power counting shows in eq. (4.14) and the meaning of 1
is the same discussed in the previous paragraph.

In order to calculate the vertex renormalization constant Z; at 1-loop, we have to sum
this graph with the tree level vertex, obtaining

e, A?
—iepy' Z; "t = (—iegy*) + (—z’ 167?27“ log (F))

from which at the end we read (Z; =1+ §)

2

-1 _ @B A 2
0 = 1+Elog (E) + O(ap)

ap A2

4.3 Photon propagator

The one loop contribution to the photon propagator in the Feynman gauge is
/

Mdit iy i
a 5 = —(—ieg)’Tr —470‘—75 (4.17)
/ | o7 e

which seems to diverge quadratically. We will show that this divergence is instead logarith-
mic. The contribution to the propagator coming out (4.17) is only transverse, due to Ward
identity, which means that if we contract this integral with k, or kg we do obtain zero. This
means that the structure of the integral can be summarized as follows

(—ieg)* T /A AU 0l p B (k*k® — k*g") (4.18)
—(—ie r - = — :

’ CORNANEY: ’
Since we want to calculate (4.17) this is equivalent to calculate B in (4.18). We also note
that since B is dimensionless it can only depend on the ratio A?/k%. We contract with g*°
and use the identity (4.2) finding

o [ L
2eBTr/ oY 3Bk (4.19)
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The term which gives the dimensionful external scale is k and it appears in both the two sides
of (4.19). If we would now to simplify the calculation of the integral we should eliminate k in
the second side leaving it only in the integral. This can be achieved acting on the equation
with the derivative 0, and O,, using (4.4) we find

) ) Mgt 1
—338;%8;%/@ = 2€BTI‘/ Wzﬁkaﬁkﬁm
Aair 1 1 1 1 1 1 1
—6Bg™® = 2¢2Tr / —( N + Ya )
B AN A EY LAY R Ly Ry

At this point we contract the equation with g,3 obtaining

i [ 205 )
. %Tr /A (3;4:34% (/“1_ %) (4.20)

We can again make the approximation ¢ > k. Recalling that f~'f~' = 1/(¢?) and after the
trace, one gets

4 , (A dv 1
B—geB/ PR (4.21)

where the integral is again the same as in the previous calculations. This one loop integral
contributes to the photon propagator when we sum it to the first piece. We have the structure

k
NNANNNNNNNNNNNNNN
h v T + ... (4.22)
which corresponds to
g g .gﬁu
_Zﬁ + (_Zﬁ) B(kak/g — k29a5) (—Z 12 > 4+ ... (423)

Having instead made the calculation in Lorentz gauge we would have used the tree level
propagator with terms containing k*k”(1 — A) and this would have given in (4.23) terms
proportional to k#k". Nevertheless, the result would be the same since these terms do not
give any contribution because of gauge invariance. In fact the sum (4.21) will be connected
to an external conserved current or to a polarization vector. In both case we will hit the
k, k, term with a current or a polarization vector and in both cases this will give a null
contribution. We thus obtain from (4.23)

—iZ_(1+iB) = —i"— Z, (4.24)




Using (4.8) and applying it to (4.21) we get (Z5 = 1+ 03)

4 72 A? 2 ag A?
Zy = 1—< Blog (| — ) =1-="log | —
’ 3 (2mt B % (/ﬂ) 3 2m Og(u2>
2@3 A2
A | - 4.2
% 3 2m Og( ) (4.25)

For the photon propagator it is important to take a look also at the result that we obtain if
we try to sum all the radiative corrections. This corresponds to sum all the graphs made by
connecting more and more 1-particle irreducible Feynman graphs. We obtain a geometric
series like

py T g1

g o
— Z(ZB) TR — (4.26)

n=0

where B is the 1-PI graph and at one loop it is exactly our old B.

Despite its obviousness, equation (4.26) shows a fundamental property of QED: the
photon remains exactly massless even after higher order quantum corrections are considered.
In fact the pole is again at k? = 0, i.e. it is not displaced by radiative corrections. This is
is an example of a fundamental property of Quantum Field Theories: an exact symmetry of
the Lagrangian (here the gauge symmetry) has deep consequences also on the way radiative
corrections manifest themselves. As we have just seen the local U(1) of QED forbids the
photon to acquire a mass after quantum corrections, forcing the propagator structure to be
transverse and lowering the degree of divergence from 2 to 0. Another well known example is
the (global) chiral symmetry of the Dirac massless Lagrangian that forces the fermion field
to stay massless even after loop corrections: from this argument follows that if the mass is
present in Lp;.q. the self energy has to bee proportional to the mass itself, forcing again the
divergences of the one loop self energy to be logarithmical and not linear, as power counting
would tell.

4.4 The Lehmann-Symanzik—Zimmermann (LSZ) for-
mula

4.5 The running of the coupling constant

We begin analyzing the physical meaning of previous calculations, by recalling the definition
of renormalization constants Z; (see (4.12), (4.16) and (4.25))

Z, = 140, (4.27)

o4



If we consider e~ — e~ ™ scattering and compute higher order virtual corrections to the
amplitude, at order e}, we have to sum the following graphs

p p p

+ + (4.30)

Box corrections (that are not UV divergent) and the vertex correction at the muon vertex
are not shown. This last correction will play a role when considering the renormalization
of the muon charge. We then considered only the radiative corrections on the lower half of
the diagrams (on the electron part of the amplitude) that means that in the following we
will think only to the prediction of the theory for the physical measurable electron charge
ep. From this it follows also that the second graph will contribute with a one half factor (or
square root factor). We thus have that the sum of the graphs goes like

1
~ €B (1—|—§53—51+52+5g)

~ ep 23 72 77 (4.31)

2
In addition, a factor <Z21/ 2) has been added, to comply with the LSZ formulat. In this

case, we're dealing with external fermions (electrons), so we must multiply twice by Z, 12,

We note that this gives exactly the same result that one would obtain adding only connected
dia/grams shorn of self energy corrections on external legs and multiplying this result with a
Zi1 ? factor for every external leg of type “i”, as in the standard LSZ formula. In both cases
the correct answer for the amplitude is

M~ e 23 2o 77" = ep 237 (4.32)

where we have used the fact that at the first order our calculation gives Z; = Z, °. Equation
(4.32) also suggests us that in some sense the renormalization of QED is related only to
the correction of the photon self energy (Z3): we will come back on this at the end of this
section.

From all these considerations, we are now left with something proportional to epy/Z3
and this will be our definition for the physical electron charge ep, since the cross section we
would obtain from the amplitude contains a (epy/Z3)? factor and the cross section is the
link between theory and measurable quantities. Thus we define®

eEp = Zg €B (433)

4The usual conventions are i = 2 for fermions and i = 3 for gauge bosons.

5As we shall see later on, this equality holds at all orders, by virtue of Ward identities.

6Instead of ep, usually one calls this quantity the renormalized charge er but in this part we will continue
to use ep in order to remind that this is the value that in the theory has the meaning of measurable, physical
electron charge.
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From the previous equation it is now easy to see how the physical charge varies with the
energy scale u: at the scale 2 its value is

2 o A2\ Y2 1a A?
N =epdl— 2L log (= ~epdl— =L log (= 4.34
ep(1”) 63{ 39, 08 (MQ)} 63{ 39 08 2 (4.34)

while at the scale 3
1 A?
ep(12) = ep {1 — 298 g ( ) } . (4.35)

3 27 ,u_%
The difference is thus no more dependent on the cutoff scale A
1 ag A? A? e3 2
2 2y _ _ B
ep(p’) —ep(ug) = ep 33, {log <u_3) — log <E = 94,2 log ) (4.36)

Now we are free to replace the bare charge ep with the physical (renormalized) one ep in
the right hand side of the previous equation, up to terms of higher order, finding

e3 2
ep(1’) = ep(ug) = 575 log <%) +0O (ep) - (4.37)
0

The running of the coupling constant is thus

3 2
2 2 cp H 4
e =e ——log | — O (ep) . 4.38
o) = enud) + 5510 () + 0 () (4.38)
The previous formula is very important since, given the value of the physical charge at one
fixed scale pp, one can extrapolate the new ep value at any other scale u, keeping in mind
that one have to remain in the perturbative regime.

Before going on, a remark on the way we introduced the scale yu is due: p? was a scale of
the order of the external momenta of the legs of which we calculated the radiative corrections.
In particular, looking at the graphs we added (eq. (4.30)), for the photon self energy and the
vertex corrections we can think at p? as the off-shellness of the virtual exchanged photon,
i.e. the typical scale of the process.

Keeping in mind all these observations, eq. (4.38) tells us a fundamental unexpected
thing: if we make two measurements for a process involving the electron charge at different
energies and we want to predict the correct result, we have to use different values for the
electron charge itself. In this sense we can also say that the constant ep is no longer a
constant but it runs in a way predicted by the theory. It is also clear that for the theory to
be predictive it is needed to fix the value of the constant at one scale” and then use (4.38)
to extract the corresponding value at another scale and use it in the computation.

To obtain the running of the renormalized coupling ag one can proceed in a slightly
different way: it is useful to see how it works because we will use the following argument to

"Typically in QED one fix the fine-structure constant « to be equal to the low energy measured value
~ 1/137 at the scale p? = m?

e
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Appendix A

Useful mathematical functions

A.1 The I' and B functions

The Gamma function is defined by

/ dre g1 Rez >0

0

I'(z) = © (C1)F 1 o 1 (A.1)
ZTk+z+/1 dre"x Rez <0, z# —n, n € Ny

With a simple change of variables x — x?

['(2) :/ dre “x* ! = 2/ dw e 2! (A.2)
0 0

It can be easily shown that

ra =1 (A.3)
r (%) _ (A4)
I'z+1) = z[(z) (A.5)

Using eq. (A.2) and changing to polar coordinates (z = rcosf,y = rsinf) we can write
F(a) F(b) — 4/00 dr dy e—wQ—y2y2a—1 2b—1
— / drr/ do e —r?2 plat+2b=2 (s n9)2a 1( 6’)2b_1
= / do (smé’)Qa ! (co s@)% ! 2/ dr e p2latb)—
0 0

/2
= 2/ d (sin0)** " (cos0)* ' T'(a + b) (A.6)
0
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Since dsin’f = 2sin 6 cos 0 df we can write

['(a)T'(b) _ /2 . 2a—1 261 L 90/ . 2 a—1 9\ b—1
F(a—+b) = 2/0 df (sin6) (cos ) = /0 d sin“f (Sln 9) (cos 9) (A.7)

Calling = = sin?§ we have

T(a) T(b)

—F(a ) = /0 de 2z (1 —2)"? (A.8)

We can define the “beta” function as

! 2 I'(a) (b
B(a,b) = /0 dr @Y (1 — o)t =2 /0 " d6 (sin )™ (cos ) = % . (A9)
A useful expansion is given by
2 2
F(1+E)=1—7E6+m62+0(63) : (A.10)

12
where vg = 0.5772157 ... is the Euler-Mascheroni constant.

A.2 The angular volume (); in d dimensions

In order to compute the total angular volume in d dimensions we proceed as follows. We
consider the integral

I= (/_OO dxex2)d: (V)" (A.11)

oo

and we rewite the lhs of the equation as

I :/ dxy d$2...dxde_(z%”%*"”ﬁ) = /de/ S (A.12)
0

—00

The r integration can be performed using eq. (A.2)

d
I=9Qy a 22) (A.13)
so that .
2m2
Q= (A.14)
r(3)
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