

$\Phi = \begin{pmatrix} 0 \\ \frac{1}{\sqrt{2}}(v+h) \end{pmatrix}$				
Higgs VEV v	Higgs boson h			
– vacuum structure	- properties of h			
- effective potential	 productions & decays 			
Ohigh angrau	– Higgs coupling measurements			
- renormalization group evolution	-> tests of mass generation& symmetry breaking			

Higgs boson

The Higgs was discovered in July 2012.

PDG2022

Mass
$$m = 125.25 \pm 0.17$$
 GeV $(S = 1.5)$
Full width $\Gamma = 3.2^{+2.8}_{-2.2}$ MeV (assumes equal
on-shell and off-shell effective couplings)

J = 0

H^0 Signal Strengths in Different Channels

Combined Final States = 1.13 ± 0.06 $WW^* = 1.19 \pm 0.12$ $ZZ^* = 1.06 \pm 0.09$ $\gamma \gamma = 1.11^{+0.10}_{-0.09}$ $c\overline{c}$ Final State = 37 ± 20 $b\overline{b} = 1.04 \pm 0.13$

Fig. from A. Djouadi, Phys.Rept. 457 (2008) 1

Cross sections

ggF: 19.3pb, VBF: 1.6pb, WH: 0.7pb, ZH: 0.4pb, ttH: 0.13pb

Higgs decays

A. Djouadi, Phys.Rept.457 (2008) 1

£

<u>h -> f+fbar</u>

$$\Gamma(h \to f\bar{f}) = \frac{N_C m_f^2 m_h}{8\pi v^2} \left(1 - \frac{4m_f^2}{m_h^2}\right)^{3/2} \qquad h \cdots \sqrt{\bar{f}}$$

For m_h≈130 GeV, the main decay mode is h->b+bbar.

: largest Yukawa coupling and color

$$\frac{h \rightarrow VV^{*}}{\Gamma(h \rightarrow VV^{*})} = \frac{9m_{h}m_{V}^{4}}{32\pi^{3}v^{4}}c_{V}I(x), \quad c_{W} = 1, \ c_{Z} = \frac{7}{12} - \frac{10}{9}s_{W}^{2} + \frac{40}{9}s_{W}^{4}$$

$$I(x) = \frac{(x^{2} - 1)(2 - 13x^{2} + 47x^{4})}{2x^{2}} - 3(1 - 6x^{2} + 4x^{4})\ln x$$

$$+ \frac{3(1 - 8x^{2} + 20x^{4})}{\sqrt{4x^{2} - 1}}\cos^{-1}\left(\frac{3x^{2} - 1}{2x^{3}}\right)$$

For $m_h \gtrsim 130$ GeV, WW* starts to dominate over h->b+bbar. $\therefore m_b << m_V$ h -> V*V* is equally important. <u>h -> ZZ, WW</u>

$$\begin{split} \Gamma(h \to ZZ) &= \frac{m_h^3}{32\pi v^2} \sqrt{1 - \frac{4m_Z^2}{m_h^2}} \Big[1 - \frac{4m_Z^2}{m_h^2} + \frac{12m_Z^4}{m_h^4} \Big], \\ \Gamma(h \to W^+W^-) &= \frac{m_h^3}{16\pi v^2} \sqrt{1 - \frac{4m_W^2}{m_h^2}} \Big[1 - \frac{4m_W^2}{m_h^2} + \frac{12m_W^4}{m_h^4} \Big] \end{split} \qquad h \cdots \bigvee \bigvee V \end{split}$$

$$2^*\Gamma(h \rightarrow ZZ) \simeq \Gamma(h \rightarrow WW)$$

Goldstone boson equivalence theorem

$$\Gamma(h \to G^0 G^0) = \frac{\lambda_{hG^0 G^0}^2}{32\pi m_h} = \frac{m_h^3}{32\pi v^2} \qquad \lambda_{hG^0 G^0} = \frac{m_h^2}{v} \qquad \qquad h \cdots \cdots \vdots \cdots G^0, G^+$$

$$\Gamma(h \to G^+ G^-) = \frac{\lambda_{hG^+ G^-}^2}{16\pi m_h} = \frac{m_h^3}{16\pi v^2} \qquad \lambda_{hG^+ G^-} = \frac{m_h^2}{v} \qquad \qquad \vdots \cdots G^0, G^-$$

$$\Gamma(h \to ZZ) \underset{m_Z \ll m_h}{\simeq} \Gamma(h \to G^0 G^0)$$

$$\Gamma(h \to W^+ W^-) \underset{m_W \ll m_h}{\simeq} \Gamma(h \to G^+ G^-)$$

For $m_V << m_h$, h -> VV (V=Z,W) is dominated by the longitudinal mode.

<u>h -> gg</u>

1-loop induced decay is not always smaller than the tree level decay.

$$\Gamma(h \to gg)_{\text{top-loop}} = \frac{\alpha_s^2 m_h^3}{32\pi^3 v^2} \left[\tau_t^2 \left| 1 + (1 - \tau_t) f(\tau_t) \right|^2 \right] \qquad h = \frac{1}{\sqrt{2\pi^3 v^2}} \left[\tau_t^2 \left| 1 + (1 - \tau_t) f(\tau_t) \right|^2 \right] \qquad h = \frac{1}{\sqrt{2\pi^3 v^2}} \qquad h = \frac{1}{\sqrt{2\pi^3 v^2}} \left[\tau_t^2 \left| 1 + (1 - \tau_t) f(\tau_t) \right|^2 \right] \qquad h = \frac{1}{\sqrt{2\pi^3 v^2}} \left[\tau_t^2 \left| 1 + (1 - \tau_t) f(\tau_t) \right|^2 \right] \qquad h = \frac{1}{\sqrt{2\pi^3 v^2}} \left[\tau_t^2 \left| 1 + (1 - \tau_t) f(\tau_t) \right|^2 \right] \qquad h = \frac{1}{\sqrt{2\pi^3 v^2}} \left[\tau_t^2 \left| 1 + (1 - \tau_t) f(\tau_t) \right|^2 \right] \qquad h = \frac{1}{\sqrt{2\pi^3 v^2}} \left[\tau_t^2 \left| 1 + (1 - \tau_t) f(\tau_t) \right|^2 \right] \qquad h = \frac{1}{\sqrt{2\pi^3 v^2}} \left[\tau_t^2 \left| 1 + (1 - \tau_t) f(\tau_t) \right|^2 \right] \qquad h = \frac{1}{\sqrt{2\pi^3 v^2}} \left[\tau_t^2 \left| 1 + (1 - \tau_t) f(\tau_t) \right|^2 \right] \qquad h = \frac{1}{\sqrt{2\pi^3 v^2}} \left[\tau_t^2 \left| 1 + (1 - \tau_t) f(\tau_t) \right|^2 \right] \qquad h = \frac{1}{\sqrt{2\pi^3 v^2}} \left[\tau_t^2 \left| 1 + (1 - \tau_t) f(\tau_t) \right|^2 \right] \qquad h = \frac{1}{\sqrt{2\pi^3 v^2}} \left[\tau_t^2 \left| 1 + (1 - \tau_t) f(\tau_t) \right|^2 \right] \qquad h = \frac{1}{\sqrt{2\pi^3 v^2}} \left[\tau_t^2 \left| 1 + (1 - \tau_t) f(\tau_t) \right|^2 \right] \qquad h = \frac{1}{\sqrt{2\pi^3 v^2}} \left[\tau_t^2 \left| 1 + (1 - \tau_t) f(\tau_t) \right|^2 \right] \qquad h = \frac{1}{\sqrt{2\pi^3 v^2}} \left[\tau_t^2 \left| 1 + (1 - \tau_t) f(\tau_t) \right|^2 \right] \qquad h = \frac{1}{\sqrt{2\pi^3 v^2}} \left[\tau_t^2 \left| 1 + (1 - \tau_t) f(\tau_t) \right|^2 \right] \qquad h = \frac{1}{\sqrt{2\pi^3 v^2}} \left[\tau_t^2 \left| 1 + (1 - \tau_t) f(\tau_t) \right|^2 \right] \qquad h = \frac{1}{\sqrt{2\pi^3 v^2}} \left[\tau_t^2 \left| 1 + (1 - \tau_t) f(\tau_t) \right|^2 \right] \qquad h = \frac{1}{\sqrt{2\pi^3 v^2}} \left[\tau_t^2 \left| 1 + (1 - \tau_t) f(\tau_t) \right|^2 \right] \qquad h = \frac{1}{\sqrt{2\pi^3 v^2}} \left[\tau_t^2 \left| 1 + (1 - \tau_t) f(\tau_t) \right|^2 \right] \qquad h = \frac{1}{\sqrt{2\pi^3 v^2}} \left[\tau_t^2 \left| 1 + (1 - \tau_t) f(\tau_t) \right|^2 \right] \qquad h = \frac{1}{\sqrt{2\pi^3 v^2}} \left[\tau_t^2 \left| 1 + (1 - \tau_t) f(\tau_t) \right|^2 \right] \qquad h = \frac{1}{\sqrt{2\pi^3 v^2}} \left[\tau_t^2 \left| 1 + (1 - \tau_t) f(\tau_t) \right|^2 \right] \qquad h = \frac{1}{\sqrt{2\pi^3 v^2}} \left[\tau_t^2 \left| 1 + (1 - \tau_t) f(\tau_t) \right|^2 \right] \qquad h = \frac{1}{\sqrt{2\pi^3 v^2}} \left[\tau_t^2 \left| 1 + (1 - \tau_t) f(\tau_t) \right|^2 \right] \qquad h = \frac{1}{\sqrt{2\pi^3 v^2}} \left[\tau_t^2 \left| 1 + (1 - \tau_t) f(\tau_t) \right|^2 \right] \qquad h = \frac{1}{\sqrt{2\pi^3 v^2}} \left[\tau_t^2 \left| 1 + (1 - \tau_t) f(\tau_t) \right|^2 \right] \qquad h = \frac{1}{\sqrt{2\pi^3 v^2}} \left[\tau_t^2 \left| 1 + (1 - \tau_t) f(\tau_t) \right|^2 \right] \qquad h = \frac{1}{\sqrt{2\pi^3 v^2}} \left[\tau_t^2 \left| 1 + (1 - \tau_t) f(\tau_t) \right|^2 \right] \qquad h = \frac{1}{\sqrt{2\pi^3 v^2}} \left[\tau_t^2 \left| 1 + (1 - \tau_t) f(\tau_t) \right|^2 \right] \qquad h = \frac{1}{\sqrt{2\pi^3 v^2}} \left[\tau_t^2 \left| 1 + (1$$

$$f(\tau_f) = -\frac{1}{2} \int_0^1 \frac{dy}{y} \ln\left[\frac{m_h^2 y(y-1) + m_f^2 - i\epsilon}{m_f^2 - i\epsilon}\right] \\ = \begin{cases} -\frac{1}{4} \left[\ln\left(\frac{1+\sqrt{1-\tau_f}}{1-\sqrt{1-\tau_f}}\right) - i\pi\right]^2 \text{ for } \tau_f < 1, \\ \left[\arctan(\sqrt{1/\tau_f})\right]^2 = \left[\arctan\left(1/\sqrt{\tau_f-1}\right)\right]^2 \text{ for } \tau_f > 1, \\ \frac{\pi^2}{4} \text{ for } \tau_f = 1. \end{cases}$$

<u>h -> yy</u>

W and top give main contributions.

- W loop is the dominant.
- W loop and top have the opposite signs.

Branching ratios

Signal strengths

$$\mu_{i,X} = \frac{\sigma_i \cdot \operatorname{Br}(h \to X)}{\sigma_i^{\mathrm{SM}} \cdot \operatorname{Br}^{\mathrm{SM}}(h \to X)} \qquad i = \operatorname{ggF}, \operatorname{VBF}, \operatorname{VH}, \operatorname{ttH}, X = \gamma\gamma, VV^*, \tau\tau, b\bar{b},$$

Various channels have been measured.

Current status

1909.02845

	S FeV, 24.5 - 5.09 GeV, %	79.8 fb ⁻¹ y _H < 2.5	⊷ Tota	I 💳 Sta	t. 💻 S	yst. 🔲	■ SM
					Total	Stat.	Syst.
ggF	γγ	ė		0.	96 ± 0.14	(±0.11	$^{+0.09}_{-0.08}$)
	ZZ*	e e		1.	04 ^{+0.16} -0.15	(±0.14	± 0.06)
	WW*			1.	08 ± 0.19	(±0.11	±0.15)
	ττ Η			0.	96 ^{+ 0.59} - 0.52	(^{+0.37} _0.36	+0.46 -0.38)
	comb.			1.	04 ± 0.09	(± 0.07	+0.07
VBF	γγ			1.	39 ^{+ 0.40} - 0.35	$\begin{pmatrix} +0.31 \\ -0.30 \end{pmatrix}$	$^{+0.26}_{-0.19}$)
	ZZ*			2.	68 ^{+ 0.98} - 0.83	(+0.94 -0.81	$^{+0.27}_{-0.20}$)
	<i>WW</i> * ⊢			0.	59 ^{+ 0.36} - 0.35	(+0.29 -0.27	± 0.21)
	ττ			1.	16 ^{+ 0.58} - 0.53	(+0.42 -0.40	$^{+0.40}_{-0.35}$)
	bb			3 .	01 ^{+1.67} -1.61	(+ 1.63 - 1.57	+0.39 -0.36)
	comb.			1.	21 ^{+0.24} -0.22	(+0.18 -0.17	+0.16 -0.13)
VH	γγ Η			1.	09 ^{+ 0.58} - 0.54	$\begin{pmatrix} +0.53\\ -0.49 \end{pmatrix}$	$^{+0.25}_{-0.22}$)
	ZZ* 🛏			0.	68 ^{+1.20} -0.78	(+1.18 -0.77	+0.18 -0.11)
	bb			1.	19 ^{+0.27} -0.25	(+0.18 -0.17	+0.20 -0.18)
	comb.	. 		1.	15 ^{+0.24} -0.22	(± 0.16	+0.17 -0.16)
t₹H+tH	γγ	÷		1.	10 ^{+0.41} -0.35	(+0.36 -0.33	$^{+0.19}_{-0.14}$)
	VV*			1.	50 ^{+ 0.59} - 0.57	$\begin{pmatrix} +0.43 \\ -0.42 \end{pmatrix}$	$^{+0.41}_{-0.38}$)
	ττ Η			1.	38 + 1.13 - 0.96	(+0.84 -0.76	$^{+0.75}_{-0.59}$)
	bb 🛏	.		0.	79 ^{+ 0.60} - 0.59	(± 0.29	±0.52)
	comb.			1.	21 ^{+0.26} -0.24	(±0.17	$^{+0.20}_{-0.18}$)
							l i
-2	0	2) -	4	6		8

 $\sigma \times BR$ normalized to SM

Consistent with the SM.

Higgs couplings

Since the gauge bosons get their masses from $|D\Phi|^2$, hVV coupling inevitably appears.

mass vs. coupling

- Measure Higgs couplings and see the relations btw couplings and masses.

- Dotted line = SM; consistent with the SM.

- mass-coupling relations could differ in BSM models.

ρ parameter

 ρ parameter is defined as $\rho = \frac{m_W^2}{m_Z^2 \cos^2 \theta_W}$ - neutral and charged current ratio $g_Z \times \frac{1}{m_Z^2} \times g_Z = \frac{4}{v^2} \qquad g_Z = \sqrt{g_2^2 + g_1^2}$ – depends on representation of Φ <u>SM</u> $\Phi{:}\text{doublet}$ $=\frac{m_W^2}{m_Z^2}\frac{g_Z^2}{a_2^2}=\frac{m_W^2}{m_Z^2}\frac{1}{\cos\theta_W^2}=1$ Experimental data $g_2 \times \frac{1}{m_{_{TT}}^2} \times \frac{1}{g_2} = \frac{4}{v^2}$ $\rho = 1.0004^{+0.0003}_{-0.0004}$ (95% C.L.)

 ρ parameter puts a constraint on representation of $\Phi.$

 m_W and m_Z depend on the representation of Higgs field.

$$\phi_{(T,Y)} = \begin{pmatrix} \vdots \\ \phi^0_{(T,Y)} \\ \vdots \end{pmatrix}$$
isospin hypercharge

$$m_W^2 = c_{T,Y} g_2^2 \sum_i \left[T_i (T_i + 1) - Y_i^2 \right] |\langle \phi_i^0 \rangle|^2,$$

$$m_Z^2 = 2(g_2^2 + g_1^2) \sum_i Y_i^2 |\langle \phi_i^0 \rangle|^2.$$

$$c_{T,Y \neq 0} \stackrel{i}{=} 1 \text{ and } c_{T,Y=0} = 1/2$$

- In SM $\phi_{(1/2,|1/2|)}$.
- Singlet field ($\phi_{(0,0)}$) does not contribute to m_W and m_Z.
- Fields with Y=0 do not contribute to m_Z .

$$\rho = \frac{m_W^2}{m_Z^2 \cos^2 \theta_W} = \frac{c_{T,Y} \sum_i \left[T_i (T_i + 1) - Y_i^2 \right] |\langle \phi_i^0 \rangle|^2}{\sum_i 2Y_i^2 |\langle \phi_i^0 \rangle|^2},$$

If only one scalar field exists,

only one scalar field exists,

$$\rho = 1 \longrightarrow \phi_{(T,Y)}$$
 with $T(T+1) - 3Y^2 = 0$
 $\phi_{(1/2,|1/2|)}$ doublet
 $\phi_{(3,|2|)}$
 $\phi_{(3,|2|)}$
 $\phi_{(25/2,|15/2|)}$
26-plet

p parameter is useful for constraining new physics.

Effective potential

Generating functional

external field

$$Z[J] = e^{iW[J]} = N \int [d\phi] \exp\left[i \int d^4x \left(\mathcal{L}(\phi) + J(x)\phi(x)\right)\right], \quad N = Z^{-1}[J=0]$$

VEV w/ J

$$\phi_c(x) = \frac{\delta W[J]}{\delta J(x)} = N \int [d\phi] \phi(x) \exp\left[i \int d^4x \Big(\mathcal{L}(\phi) + J(x)\phi(x)\Big)\right] = \langle 0|\phi(x)|0\rangle_J,$$

J=0 eventually. So, why can't we take J=0 at the beginning?

$$\varphi = N \int [d\phi]\phi(x)e^{iS[\phi]} \qquad \begin{array}{l} \phi(x) \to -\phi(x), \quad S[-\phi] = S[\phi], \quad [d(-\phi)] = [d\phi] \\ \varphi = N \int [d\phi](-\phi(x))e^{iS[\phi]} = -\varphi \qquad \therefore \quad \varphi = 0 \end{array}$$

Effective action functional Legendre trf. of W[J]

$$\Gamma[\phi_c] = W[J] - \int d^4x \ J(x)\phi_c(x), \quad \frac{\delta\Gamma[\phi_c]}{\delta\phi_c(x)} = -J(x)$$

* Generating functional for 1PI diagrams

Effective action can be expanded as

$$\Gamma[\phi_c] = \int d^4x \, \left[\frac{Z(\phi_c(x))}{2} \Big(\partial_\mu \phi_c(x) \Big)^2 - V(\phi_c(x)) + \cdots \right]$$

@tree level $\Gamma[\phi_c] = S[\phi_c] = \int d^4x \ \mathcal{L}(\phi_c)$ classical action

If $\phi_c(x)$ is a constant field φ ,

$$\Gamma[\varphi] = -V_{\text{eff}}(\varphi) \int d^4x = -V_{\text{eff}}(\varphi)(2\pi)^4 \delta^4(0)$$
effective potential

Usefulness of V_{eff}

We can search for vacuum at quantum level by $\frac{dV_{\rm eff}(\varphi)}{d\varphi} = 0.$

it can cope with models with radiative SSB (no SSB at tree level)

Legendre transformed function is mathematically convex.

- Potential with flat vacuum (convex) = genuine V_{eff}. flatness <- mixed configuration $\varphi_{mix} = x\varphi_{-} + (1-x)\varphi_{+}, \quad 0 \le x \le 1$
- Double-well potential (we use) (*we still call it V_{eff}.)
 no mixed configuration -> non-convex potential

Exercise

Show that vacuum expectation values of fields except for scalars vanish if the vacuum respect the Poiancare symmetry.

1-loop V_{eff}

After summing all 1PI diagrams and regularize them by the MS-bar scheme, one 1-loop V_{eff} as

$$V_{1}^{(\text{scalar})}(\varphi) = \frac{\bar{m}^{4}}{64\pi^{2}} \left(\log \frac{\bar{m}^{2}}{\bar{\mu}^{2}} - \frac{3}{2} \right) \qquad \bar{m}^{2} = \frac{\partial^{2}V_{0}}{\partial\varphi^{2}}$$
statistics
$$\bar{\mu}: \text{ renormalization scale in the } \overline{\text{MS}} \text{ scheme}$$

$$V_{1}^{(\text{fermion})}(\varphi) = -\frac{4}{4} \cdot \frac{\bar{m}^{4}}{64\pi^{2}} \left(\log \frac{\bar{m}^{2}}{\bar{\mu}^{2}} - \frac{3}{2} \right)$$
dof
$$V_{1}^{(\text{gauge})}(\varphi) = 3 \cdot \frac{\bar{m}^{4}}{64\pi^{2}} \left(\log \frac{\bar{m}^{2}}{\bar{\mu}^{2}} - \frac{5}{6} \right) \quad (\xi = 0)$$

We can obtain the Higgs mass at 1-loop level using 1-loop V_{eff} .

Higgs mass at 1-loop

$$\begin{split} V_{\rm eff}(\varphi) &= V_0(\varphi) + V_1(\varphi) \qquad m_h^2 = \frac{\partial^2 V_{\rm eff}}{\partial \varphi^2} \Big|_{\varphi=v} = 2\lambda v^2 - \frac{3m_t^4}{2\pi^2 v^2} \ln \frac{m_t^2}{\bar{\mu}^2} \\ \langle \Phi \rangle &= \begin{pmatrix} 0 \\ \frac{\varphi}{\sqrt{2}} \end{pmatrix} \qquad \qquad \text{However} \end{split}$$

Higgs mass obtained by the potential *≠* Physical Higgs mass

$$\frac{1}{p^2 - M_h^2} \text{ physical mass is defined by pole of the propagator}$$

$$M_h^2 = m_h^2 + \operatorname{Re}\bar{\Sigma}_h(M_h) - \operatorname{Re}\bar{\Sigma}_h(0) = m_h^2 + \frac{3m_t^2M_h^2}{4\pi^2v^2} \left(\frac{1}{3} + \frac{1}{2}\ln\frac{m_t^2}{\bar{\mu}^2}\right)$$
This correction is small for $\bar{\mu} = m_h^2$

physical Higgs mass

 m_t

In the SM, the Higgs mass obtained by the potential is close to the physical Higgs mass. (* this is not always true in BSM models)

Vacuum stability

- Is vacuum stable? $V(\varphi) = -\frac{\mu^2}{2}\varphi^2 + \frac{\lambda}{4}\varphi^4$ - It looks stable since $\lambda = m_h^2/2v^2 > 0$.
- However, λ can change with energy. $\lambda \rightarrow \lambda(Q^{\dagger})$. $\lambda(Q)>0$ even for high energy (large ϕ)?

$$V(\varphi) = -\frac{\mu^2}{2}\varphi^2 + \overbrace{\frac{\lambda}{4}\varphi^4}^{\lambda} \underset{\varphi \gg v}{\rightarrow} \frac{\lambda(Q)}{4}\varphi^4$$

– Quadratic term can be neglected for large ϕ .

Vacuum stability

– λ (Q) obeys renormalization group equation.

$$\frac{d\lambda(t)}{dt} = \frac{1}{16\pi^2} \left[24\lambda^2 - 6y_t^4 + 12\lambda y_t^2 + \cdots \right], \quad t = \ln(Q/v)$$

- vacuum stability largely depends on λ & y_t (& α _s).

lifetime of the vacuum > age of the Universe -> meta-stable. lifetime of the vacuum < age of the Universe -> unstable. What is the current status?

Vacuum stability

JHEP12 (2013) 089 (1307.3536)

Summary

- SM is $SU(3)_C x SU(2)_L x U(1)_Y$ gauge theory.
- All elementary particles get their masses via Higgs mechanism
- All experiments so far are consistent with SM!!

Beyond the SM

SM cannot explain cosmological observations.

- Matter-antimatter (baryon) asymmetry of the Universe
 Energy budget of the Universe
- Dark Matter
- Dark Energy
- Quantum gravity
- ▶ etc

 $\ensuremath{\mathsf{ESA}}$ and the Planck Collaboration

The Universe is NOT made of atoms but made of unknown objects.

So, SM must be extended to solve some (hopefully many) of them.