The 28th Vietnam School of Physics (VSOP-28)

Experimental methods for physics at the LHC

Sourabh Dube

July 24, 2022 to
August 5, 2022

Lecture 3: Object Reconstruction

Summary so far...

Muon: match inner track to outer track

Electron: match inner track to ECAL energy cluster

Photon: $\underline{\text { no }}$ inner track, just ECAL energy cluster

Jets

Recall that 'colored' particles produce hadrons.
These hadrons will travel together, and we would like to combine them into a single unit, called a jet.

We want the jet properties (4-vector) to correlate well with the properties of the initial colored particle that gave rise to the jet.

What are jets made of?

Jet clustering

Calorimeter towers

Jet clustering

Jet clustering

The Jet clustering algorithm runs on the objects we give it (such as calorimeter towers).
It merges objects together, until we end up with one logical objects (i.e. a single 4-vector)

Jet clustering

Objects can be list of calorimeter towers,
list of charged/neutral hadrons, list of truth/generator particles It merges objects together, until we end up with one logical objects (i.e. a single 4-vector)

Objects can be list of calorimeter towers,
list of charged/neutral hadrons, list of truth/generator particles It merges objects together, until we end up with one logical objects (i.e. a single 4-vector)

What do we need to worry about?

Projection to jets should be resilient to QCD effects IRC safety

Jet clustering algorithm

Consider two objects i and j with $\mathrm{k}_{\mathrm{T}}=$ transverse momentum, $\mathrm{y}=$ rapidity, $\phi=$ azimuthal angle
$\mathrm{B}=$ beam, $\mathrm{R}=$ 'radius' parameter

If $\mathrm{d}_{\mathrm{ij}}<\mathrm{d}_{\mathrm{ib}}$, then merge i and j (new i)
If $\mathrm{d}_{\mathrm{i} \mathrm{B}}<\mathrm{d}_{\mathrm{ij}}$, then i is a jet. Repeat till all i are exhausted.

Sequential combination algorithms Two parameters: R and p

$$
d_{i j}=\min \left(k_{t i}^{2 p}, k_{t j}^{2 p}\right) \frac{\Delta_{i j}^{2}}{R^{2}}
$$

$$
\Delta_{i j}^{2}=(\Delta y)^{2}+(\Delta \phi)^{2}
$$

$$
d_{i B}=k_{t i}^{2 p}
$$

Jet clustering algorithms

$d_{i j}=\min \left(k_{t i}^{2 p}, k_{t j}^{2 p}\right) \frac{\Delta_{i j}^{2}}{R^{2}}$
$\mathrm{p}=1: \mathrm{k}_{\mathrm{T}}$ algorithm
Start small
$\mathrm{p}=0$: Cambridge-Aachen algorithm
Start closest
$p=-1$: anti- k_{T} algorithm
Startbig

Jet clustering algorithm

$$
d_{i j}=\min \left(k_{t i}^{2 p}, k_{t j}^{2 p}\right) \frac{\Delta_{i j}^{2}}{R^{2}}
$$

Not just hadronized quarks/gluons

Phil Harris

Taus

τ^{-}DECAY MODES	Fraction (Γ_{i} / Γ) $\quad \begin{array}{r}\text { Scale facto } \\ \text { Confidence lev }\end{array}$
Modes with one charged particle	
$\begin{aligned} & \text { particle }{ }^{-} \geq 0 \text { neutrals } \geq 0 K^{0} \nu_{\tau} \\ & \quad \text { ("1-prong") } \end{aligned}$	(85.24 $\pm 0.06) \%$
particle ${ }^{-} \geq 0$ neutrals $\geq 0 K_{L}^{0} \nu_{\tau}$	$(84.58 \pm 0.06) \%$
$\mu^{-} \bar{\nu}_{\mu} \nu_{\tau}$	[g] (17.39 $\pm 0.04) \%$
$\mu^{-} \bar{\nu}_{\mu} \nu_{\tau} \gamma$	[e] $(3.67 \pm 0.08) \times 10^{-3}$
$e^{-} \bar{\nu}_{e} \nu_{\tau}$	[g] (17.82 $\pm 0.04) \%$
$e^{-} \bar{\nu}_{e} \nu_{\tau} \gamma$	[e] ($1.83 \pm 0.05) \%$
$h^{-} \geq 0 K_{L}^{0} \nu_{\tau}$	$(12.03 \pm 0.05) \%$
$h^{-} \nu_{\tau}$	$(11.51 \pm 0.05) \%$
$\pi^{-} \nu_{\tau}$	[g] (10.82 $\pm 0.05) \%$
$K^{-} \nu_{\tau}$	[g] ($6.96 \pm 0.10) \times 10^{-3}$
$h^{-} \geq 1$ neutrals ν_{τ}	$(37.01 \pm 0.09) \%$
$h^{-} \geq 1 \pi^{0} \nu_{\tau}\left(\mathrm{ex} . K^{0}\right)$	$(36.51 \pm 0.09) \%$
$h^{-} \pi^{0} \nu_{\tau}$	(25.93 $\pm 0.09) \%$
$\pi^{-} \pi^{0} \nu_{\tau}$	[g] (25.49 $\pm 0.09) \%$
$\pi^{-} \pi^{0}$ non- $\rho(770) \nu_{\tau}$	$(3.0 \pm 3.2) \times 10^{-3}$
$K^{-} \pi^{0} \nu_{\tau}$	[g] $(4.33 \pm 0.15) \times 10^{-3}$
$h^{-} \geq 2 \pi^{0} \nu_{\tau}$	$(10.81 \pm 0.09) \%$
$h^{-} 2 \pi^{0} \nu_{\tau}$	$(9.48 \pm 0.10) \%$
$h^{-} 2 \pi^{0} \nu_{\tau}\left(\right.$ ex. $\left.K^{0}\right)$	$(9.32 \pm 0.10) \%$
$\pi^{-} 2 \pi^{0} \nu_{\tau}\left(\mathrm{ex} . K^{0}\right)$	[g] ($9.26 \pm 0.10) \%$
$\pi^{-} 2 \pi^{0} \nu_{\tau}\left(\mathrm{ex} . \mathrm{K}^{0}\right)$,	$<9 \times 10^{-3} \mathrm{CL}=95$
$\left.\pi^{-} \quad \begin{array}{l} \text { scalar } \\ 2 \pi^{0} \nu_{\tau}(\text { ex. } \end{array} K^{0}\right)$	$<7 \times 10^{-3} \mathrm{CL}=95$
$K^{-} \stackrel{\text { vector }}{2 \pi^{0}} \nu_{\tau}\left(\right.$ ex. $\left.K^{0}\right)$	$[g] \quad\left(\begin{array}{ll}6.5 & \pm 2.2) \times 10^{-4}\end{array}\right.$

If a tau decays to an electron or muon, we already detected it.

So our goal is to detect the hadronic decays of the tau.

Trouble is, if it decays to hadrons... then how is the endresult different from just quarks/gluons that produce hadrons (a jet) ?

Tau reconstruction

Taus are tough....

Pick some properties and set requirements such that we end up selecting more τ and less of the
 background

CMS Tau identification

Architecture of a deep neural network (a multiclassifier) to identify hadronically decaying τ leptons.

Machine Learning for now

You will get a full set of lectures later in the school.

CMS Tau identification

Inputs:

Many many high level and low-level variables

Particle $\quad N_{\text {var }}$ Inputs
PF charged hadron 27 Track PV/SV/quality, PUPPI, HCAL energy fraction
PF neutral hadron 7 PUPPI, HCAL energy fraction
Electron 37 Electron track quality, track/cluster matching, cluster shape
PF electron 22 Track PV/SV/quality, PUPPI
PF photon 23 Track PV/SV/quality, PUPPI
Muon 37 Track quality, muon station hits, ECAL deposits
PF muon 23 Track PV/SV/quality, PUPPI

Output:
"Probability" that object is electron, muon, usual jet or hadronically decaying tau.

Architecture of a deep neural network (a multiclassifier) to identify hadronically decaying τ leptons.

b-jets and c-jets

Special properties of the heavy quarks

High masses

- 4.2 GeV for b quark
-1.3 GeV for c quark
(Strange quark mass 93 MeV)
Long lifetimes
- c $\tau \sim 450 \mu \mathrm{~m}$ for b quark Or $\sim 5 \mathrm{~mm}$ at $50 \mathrm{GeV} \mathrm{P}_{\mathrm{T}}$
- c τ ~100-300 $\mu \mathrm{m}$ for c quark Or $\sim 1-3 \mathrm{~mm}$ at $50 \mathrm{GeV} \mathrm{p}_{\mathrm{T}}$

High number of tracks associated to the jet on average

Special properties of the heavy quarks

Devdatta Majumder

b-tagging, c-tagging

Algorithms based on
track properties,
or holistic properties (charged/neutral hadrons, leptons), or secondary vertex properties.

Ultimately all combined into a multivariate (NN) based approach.

b-tagging, c-tagging

Particle Identification

Which particles can we detect directly?

Electrons, Muons, Taus, Photons,
Quarks, gluons manifest as jets (of hadrons)
(b-jet, c-jet, q-g discrimination)

> These hadronize, producing hadrons such as pions, kaons, neutrons etc.

Standard Model of Elementary Particles

Consider the transverse plane

The beam is in \& out of page at the center.

Missing momentum

Defined as the negative of the vector sum of p_{T} of all observed particles.

This means one has to understand all the observed particles well.

Mismeasurements in measuring existing particle 4 -vectors will impact missing momentum.

Reality check: pileup

Pileup: Multiple protonproton interactions in the same bunch crossing

Mean number of interactions

CMS Average Pileup, pp, 2018, $\sqrt{s}=13 \mathrm{TeV}$

CMS Average Pileup

Impact of pileup

Additional pileup interactions also deposit energy in the calorimeters.

Impact of pileup

Impact of pileup

Additional pileup interactions also impact lepton isolation.

Accounting for pileup

There are several different ways in which the effect of pileup is corrected for.
Corrections based on overall energy deposits

Jet grooming (later...) aims to locally correct effect Use estimates of charged hadrons and vertices to subtract

PileUp Per Particle Identification (PUPPI):
Use all of these to give a weight to how likely a particle is
from primary vertex (or from pileup) - then use this
weight downstream.

Acquiring the data

Triggers

$\mathrm{N}=\mathcal{L} \sigma$

Collisions (i.e. bunch crossings) happen at 40 MHz This rate (given the event size [$\sim 1 \mathrm{MB}]$) is too large for us to write everything to storage ($\sim 40 \mathrm{~TB} / \mathrm{s}$)

Technology limits us to writing output at about $\mathbf{1 k H z}$

How to pick which 1000 events/s to keep out of the 40 million collisions/s ?
proton - (anti)proton cross sections

Rept.Prog.Phys.70:89,2007
arXiv:hep-ph/0611148

Trigger

Our goal is to capture all events of 'interest'

We can only analyse events that the trigger keeps, we wish to be as inclusive as possible.

A trigger works online, i.e. it has to decide as the data is coming in.

It is a fast filter that decides rapidly whether to keep the data from an event or not.

Trigger

Our goal is to capture all events of 'interest'

We select 'interesting' events:
Anything that passes some predecided conditions
(a) Single muon with $\mathrm{pT}>40 \mathrm{GeV}$
(b) Two electrons with $\mathrm{pT}>25,15 \mathrm{GeV}$
(c) $\mathrm{MET}>400 \mathrm{GeV}$

> Each of these is a path, and the final decision to keep event is a logical OR of each condition.
> All together called as a trigger table.

Etc.

Trigger deadtime : Trigger is not live for some reason so we cannot collect data

Trigger prescale : Keep every $n^{\text {th }}$ event that fires the trigger, adjusting n to allowed bandwidth

CMS trigger design

P. Bortignon

Fractions of the 100 kHz rate allocation for singleand multi-object triggers and cross triggers in a typical CMS physics menu during Run 2.

LV 1 is hardware based
HLT is software based

