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Lecture 3: Object Reconstruction
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Summary so far...
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Manifested hadrons are what
actually escape, and will be
detected.

Proton-proton

collision

Both baryons/mesons produced, both
stable/unstable produced. Unstable hadrons

undergo decays, of course.
(Different ways to hadronize ‘same’ initial state)

Recall that ‘colored’ particles produce hadrons.
These hadrons will travel together, and we would like to combine them into a single unit,

called a jet.

We want the jet properties (4-vector) to correlate well with the properties of the initial
colored particle that gave rise to the jet.
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What are jets made of?
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Jet clustering

Calorimeter towers
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Jet clustering




Jet clustering

| H
-

The Jet clustering algorithm runs on the objects we give it
(such as calorimeter towers).

It merges objects together, until we end up with one logical objects
(i.e. a single 4-vector)



Jet clustering
|

Objects can be list of calorimeter towers,

list of charged/neutral hadrons, list of truth/generator particles

It merges objects together, until we end up with one logical objects
(i.e. a single 4-vector)
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Charged hadron

Jet clustering
|

Objects can be list of calorimeter towers,

list of charged/neutral hadrons, list of truth/generator particles

It merges objects together, until we end up with one logical objects
(i.e. a single 4-vector)
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What do we need to worry about?

VAR Y

LO partons NLO partons parton shower hadron level
Jet | Def" Jet | Def" Jet | Def" Jet | Def"
jet 1 jet 2 jet 1 jet 2 jet 1 jet 2 jet 1 jet 2

VAR VAR VAR V4

Projection to jets should be resilient to QCD effects
IRC safety

Gavin Salam, @Oxford, Feb 2020
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Jet clustering algorithm

Sequential combination algorithms

Consider two objects i and j with Two parameters: Rand p

kr = transverse momentum,
y = rapidity, ¢ = azimuthal angle
B =beam, R =‘radius’ parameter

2
Rz
A = (Ay)* + (Ag)’

dij = min(ky], k;7)—:

t1

If dij < dis , then merge i and j (new 1)
If dig < dj, theni isajet. D
Repeat till all i are exhausted. dip = ki,

=

-

-
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Jet clustering algorithms

Phil Harris

2
i (12D 1.2\
dij = min(ky;, ki )@

p=1: kralgorithm
Start small

p=0: Cambridge-Aachen algorithm

Start closest

p=-1: anti-kralgorithm
Start big
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Jet clustering algorithm

JHEP 0804:063,2008
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Not just hadronized quarks/gluons

Pileup Jet

Many Phases of Jets

V Boson Jet

Wiz Quark

AVAYAY.

B-quark Jet
Displaced vertex

Quark/Gluon Jet

Higgs Jet
4b
lA‘B
H A
__________ VA
) AV
W

Phil Harris
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If a tau decays to an electron or muon, we already
detected it.

So our goal is to detect the hadronic decays of the tau.
Trouble is, if it decays to hadrons... then how is the end-

result different from just quarks/gluons that produce
hadrons (ajet) ?



Tau reconstruction
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Taus are tough....

Pick some properties and set

requirements such that we end up
selecting more t and less of the
background

Can you think of some properties?

True 1p decay
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CMS Tau identification

4 outputs

|
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Applied similarly for inner and outer cells
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TP: trainable parameter

Applied similarly for inner and outer cells

Architecture of a deep neural network (a multiclassifier) to identify

arxXiv:2201.08458 [hep-ex]

hadronically decaying t leptons.



Machine Learning for now

You will get a full set of lectures later in the school.
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This description will suffice us for now, and we will
of course revisit it as needed.

A box which takes inputs

: : Bkgd
(object/event properties) and
gives an output f such that f

is distributed as

)

Signal

Score

An MVA will take in several inputs and

give an output that aims to “classify” the

Inputs into two or more categories.
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Inputs:

Many many high level and .
. 188 inputs each et/ 64 outputs each g 5
low-level variables et T [ ] B>
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CMS Tau identification
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Applied similarly for inner and outer cells

Particle Nyar Inputs
PF charged hadron 27  Track PV/SV/quality, PUPPI, HCAL energy fraction
PF neutral hadron 7 PUPPI, HCAL energy fraction
Electron 37  Electron track quality, track/cluster matching, cluster shape
PF electron 22 Track PV/SV/quality, PUPPI
PF photon 23 Track PV/SV/quality, PUPPI
Muon 37  Track quality, muon station hits, ECAL deposits
PF muon 23 Track PV/SV/quality, PUPPI

Architecture of a deep neural network (a multiclassifier) to identify

hadronically decaying t leptons. arxiv:2201.08458 [hep-ex]



jet

b-jets and c-jets

displaced
jet , tracks charged

We also aim to identify jets that
come from the heavy-flavor quarks

(the b’s and the ¢’s)
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Special properties of the heavy quarks

Impact- P Displaced
Parameter Secondary
(IP) Vertex (SV)

”"B' T

G

Primary
Vertex (PV)

Tracks associated to jet

Devdatta Majumder

Jet Cone

High masses
- 4.2 GeV for b quark

-1.3 GeV for c quark
(Strange quark mass 93 MeV)

Long lifetimes
- ¢t ~450 pm for b quark
Or ~5 mm at 50 GeV pr

- ¢t ~100-300 pum for c quark
Or ~1-3 mm at 50 GeV py

High number of tracks
associated to the jet on
average
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Special properties of the heavy quarks

Impact- P Displaced * jet cone  High masses
Parameter Secondary : :
(IP) Vertex (SV) -Look for SV with high mass

Long lifetimes
Look for tracks with high
impact parameters

e e eon i

Primary .
Vertex (PV) High number of tracks
Tracks associated to jet associated to the jet on
P average

Devdatta Majumder
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b-tagging, c-tagging

Algorithms based on
track properties,

or holistic properties (charged/neutral hadrons, leptons),
or secondary vertex properties.

Ultimately all combined into a multivariate (NN) based approach.

Also then discriminating quark jets from gluon jets....



b-tagging, c-tagging

Jets / 0.02 units
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Particle Identification

Which particles can we detect directly?

Electrons, Muons, Taus,

Photons,

Quarks, gluons manifest as jets (of hadrons)

(b-jet, c-jet, q-g discrimination)

1
These hadronize, producing !
1

. 1

hadrons such as pions, kaons, |
i

]

]

111111

Standard Model of Elementary Particles

interactions / force carriers
(bosons)

three generations of matter
(fermlons)

It1 e

L
=173.1 GeV/c? I =124.97 GeVic?
0

I A t I g/ 0 H

EEI&M eVic?

charm top gluon higgs
-l.l' e &
4.7 MeWic? 96 MeWic? I 4.18 GeVie? I
} |I e g w

I down JI strangeJI bottomJ photon l

=0.511 MeW/c? =105.66 Me\/c2 =1.7768 GeV/c? =91.19 GeVic?

-1

S @ @ || @

_d
electron muon tau Z boson l
<1.0 eVic? <0.17 MeVic? <18.2 MeVic? =B0.39 GeV/c?
. |I-&@ |- & || &
-
neutrino || neutrino | | neutrino | | W boson
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Consider the transverse plane
"""" e L

The beam is in & out of page at the center.
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Missing momentum

Defined as the negative of the vector sum of pr of
all observed particles.

This means one has to understand all the observed
particles well.

Mismeasurements in measuring existing particle
4-vectors will impact missing momentum.
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Reality chek plleup

Pileup: Multiple proton-
proton interactions in the
same bunch crossing

CMSExp riment at the LHE; GERN
' orded; 2016-0ct-14 00:56:16.733952 GMT
»_‘..

R /E At/ LS7225171./ 142530805 /254"



Simulated Z — uu event

Pileup 4 =2 @ i | | AT LAS

EXPERIMENT
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Additional pileup interactions also deposit energy in the calorimeters.
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Impact of pileup




Accounting for pileup

There are several different ways in which the effect of pileup is corrected for.

energy jet M

Corrections based on overall energy deposits

’—I/ —L pileup
Jet grooming (later...) aims to locally correct effect

Use estimates of charged hadrons and vertices to subtract E\R /H}r

PileUp Per Particle Identification (PUPPI):

Use all of these to give a weight to how likely a particle is
from primary vertex (or from pileup) — then use this
weight downstream.
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Acquiring the data



Triggers

N=Lo

Collisions (i.e. bunch crossings) happen at 40 MHz
This rate (given the event size [-1 MB]) is too large
for us to write everything to storage (~ 40 TB/s)

Technology limits us to writing output at
about 1kHz

How to pick which 1000 events/s to keep out of the
40 million collisions/s ?

proton - (anti)proton cross sections

l(} § LI | II L} T T LI Il
. C
10 ; Utl:lt
10" F ’ :
a Tevatron LLHC
10° F : g
10°
E o,
10" F
10 F
0 b 9u(E" > vs/20)
10" F Oy
10" . UZ
3 jet
F 0, (E/" > 100 GeV)
10" F
10°
10’ o,
10 0" >vs/4)
10° [ Oiggs(My, = 150 GeV)
10° Eg (M, =500 GeV
o UHiggs( H € )
I(}'_"‘ i IIII L L IIIIIII Illl N
0.1 1 10

Vs (TeV)

Rept.Prog.Phys.70:89,2007

arXiv:hep-ph/o611148
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Trigger

Our goal is to capture all events of ‘interest’

We can only analyse events that the trigger keeps, we wish to be as
inclusive as possible.

A trigger works online, i.e. it has to decide as the data is coming in.

It is a fast filter that decides rapidly whether to keep the data from an
event or not.
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Trigger

Our goal is to capture all events of ‘interest’

We select ‘interesting’ events:

Anything that passes some predecided conditions
(2) Single muon with pT>40 GeV
(b) Two electrons with pT> 25, 15 GeV
(c) MET > 400 GeV

Each of these is a path, and the final
decision to keep event is a logical OR

of each condition.
All together called as a trigger table.

Etc.
Trigger deadtime : Trigger is not live for some reason so we cannot
collect data

Trigger prescale : Keep every n't event that fires the trigger,
adjusting » to allowed bandwidth
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CMS trigger design

P. Bortignon

40 MHz Detectors
Digitizers
QVD ——1 Front end pipelines
Us ;

Readout buffers

100 kHz

Switching networks

LXH

HLT Processor farms

~1000 Hz 6

LV1is hardware based
HLT is software based

Jets + Energy sums
Energy sums

u + Jets or Energy sums
p+e/y

e/~ + Jets or Energy sums
T 4 p or e/~ or Jets or Energy sums
Multi e/~

Single

Single or Multi Jets

Single or Multi 7

Multi p

Single e/~

JINST 15 (2020) P10017

| 24.8%

Fractions of the 100 kHz rate allocation for single-

and multi-object triggers and cross triggers in a

typical CMS physics menu during Run 2.
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