

Precise time and charge digitization for the Hyper-Kamiokande experiment

Lucile Mellet

On behalf of Hyper-Kamiokande France

R&D and design

International Laboratory for Astrophysics, **N**eutrino and **C**osmology Experiments

Lucile Mellet

30th June 2022

IRN Annecy

C E

Laboratoire Leprince-Ringuet

HK in a nutshell

Global scheme of our participation to HK's electronics

30th June 2022

IRN Annecy

Lucile Mellet

- Efficient collection of the charge

- Precise **timing** for signal coincidence

Some of the requirements

- Charge resolution :
 - Low energies : Solar ν
- High energies : Atmospheric ν → Large dynamic range
- Time resolution :

 - < 300 ps when > 1 p.e-- then < 200 ps above 10 p.e-
- Charge linearity : 1%
- Discriminator threshold : 1/6 p.e.

Proposed solution

- Based on HKROC chip
 - 3 gains per channel (low, medium, high)
 - Dynamic range from 0-2500 pC = 0-1250 p.e-
 - 1 readout for 3 PMTs \rightarrow 1 trigger = read all 3 (hint for fake hit)

- Waveform-like digitizer @40MHz

: 1 point/25 ns

IRN Annecy

Lucile Mellet

Some results

30th June 2022

IRN Annecy

Lucile Mellet

Requirements

30th June 2022

IRN Annecy

Lucile Mellet

By the way, why a waveform digitizer ?

- Reduces dead time (requirement < 1 μs) up to 30ns

Allows for separation between close events in time (pile-up) :
Software reconstruction
Delayed signals (decay e-, direct/indirect light, ...)
High rate of SN explosion signal

Time after trigger (ns)

14	10

Precise timing for Hyper-Kamiokande

Detailed scheme of our solution

- A GNSS antenna + receiver : link to universal time (UTC)

30th June 2022

IRN Annecy

Lucile Mellet

Two-stages distribution

+ Redundancy

Two-stages distribution

Trigger & aux. in _ 12 / Gen. purpose out TTL Config. & DAQ $\leftarrow \frac{2}{1}$ GTR I/O's Buttons Slow Control First Distribution 24 V input × 2 Stage board Fan × 2 enclosure

30th June 2022

IRN Annecy

Lucile Mellet

TDM = Time division multiplexer

- 2 stages

- Electronic boards and cards are being designed and prototype

Two-stages distribution

- Electronic boards and cards are being designed and prototype

30th June 2022

IRN Annecy

Lucile Mellet

TDM = Time division multiplexer

Undergoing tests in collaboration between French and Italian groups

12

Characterization of the proposed generation system

Our proposed system : Why ?

Atomic clock : the most stable at short term

- Tested a Rubidium clock
- Will test Passive Hydrogen Maser

GNSS signal : more stable at long term + link to UTC

Allan Standard Deviation (ASD) statistical tool :
$$2 + 1 + 2$$

$$\sigma_{y}^{2}(\tau) = \frac{1}{2} < \left(\bar{y}_{n+1} - \bar{y}_{n}\right)^{2} >$$

Variance of Δt as a function of interval length : allows to separate noise types = visualize stability at various time scales

Purple curve : Rubidium clock stability (OP71 as reference)

Green curve : Received GPS time stability (OP71 as reference) Blue curve : Received Galileo time stability (OP71 as reference)

Septentrio antenna on the roof of the lab

Set-up for tests @ LPNHE

RS STANFORD RESEARCH SYSTEM

One or the oth

Lucile Mellet

the.

How to test the stability of a frequency?

Against a much more stable reference signal

 \Rightarrow Data : Δt between each signal at each pulse

CGGTTS files :

- Infos on satellites
- All info on applied corrections
- Time difference between input and GPS time in 0.1 ns

OP71 calibrated signal through optical fiber from :

Systèmes de Référence Temps-Espace

Characterization of our solution

- Cross checks to find same performances as @ SYRTE - Test of the proposed set-up : Rb clock as an input to the receiver

IRN Annecy

Lucile Mellet

30th June 2022

Remove linear drift over time = deterministic noise of the clock

Characterization of our solution

The system has to be robust against :

- Power outage \rightarrow reboot procedure + calibration
- Limited nb of visible satellites (mountain area)

Common view Time transfer technique

How to obtain UTC time tags / corrections ?

Site A CGGTTS data : GPS Time – SiteA Time = Δ Site B CGGTTS data : GPS Time – SiteB Time = Δ Time transfer software computes $\tau_{SA} - \tau_{SB}$

$$\Delta t_{GPS-A} = \tau_{SA}$$
$$\Delta t_{GPS-B} = \tau_{SB}$$

$$s = \Delta t_{siteA}$$
 wrt UTC

Last step of the process

Need tests and simulation to optimize the applied correction

17

Conclusion

- R&D has been happening for 2.5 years, almost final
- Internal HK reviews ongoing, choice this year
- Collaboration between at least 4 different groups
- Great synergy between the 2 items : digitizer and time distribution
- So far, everything seems to meet and exceed HK's requirements Increase physics possibilities

