PIMENT – Development of a PICOSEC

Micromegas detector for ENUBET

Alexandra Kallitsopoulou

IRFU, CEA, Université Paris Saclay

Thomas Papaevangelou

IRFU, CEA, Université Paris Saclay

IRN Neutrino meeting 29-30 June 2022

LAPP Annecy

OUTLINE

- Objectives & Research hypothesis
- PICOSEC-Micromegas Detector Concept
- Project State of the Art Plans
- Detector's Performance & Latest Results

Project Collaboration

Partners:

- Thomas Papaevangelou (CEA/DRF/IRFU) Anselmo Meregaglia(CNRS/IP2I Bordeaux) Dominique Breton (IN2P3/IJCLab) Michal Pomorski (CEA/DRT/LIST)

- Duration: 36 months started from Jan 2022

- **External Partners:**

Liberté Égalité Fraternité

 CERN (L. Ropelewski, E. Oliveri, F. Brunbauer, Rui d'Oliveira, A. Utrobičić, M.Lisowska)
 University of Thessaloniki(S.Tzamarias, I.Angelis, D.Sampsonidis, K.Kordas, Ch.Lampoudis, A.Tsiamis)
 USTC Hefei China (Zhou Yi) **ENUBET Collaboration (A.Longhin)**

Context of ENUBET

- Need of precise timing resolution critical for :
 Clean reconstruction of the events &

 - Reduction of mixing different events due to pile-up
- ENUBET characteristics facility (*more on Francesco Teranova presentation*)
 Monitored neutrino beam with no one-to-one
 - correlation between positrons tagged
- in beamline and neutrinos tagged in the far detector
 Sub-ns sampling would offer this correlation

 - On an event-by-event basis Determine the flavor of neutrino

Development of new instrumentation based on PICOSEC Micromegas Detectors

Need of PIMENT Context

- 3-year R&D Project aiming to:
 Develop novel instrumentation based on PICOSEC-MM detector concept
 - Demonstrate the impact of such detectors on New Physics searches
 - Investigate the possibility of a real tagged neutrino beam

- PICOSEC MM embedded in bulk of EC as time tagger of EM showers
- II. Thin TO-layers for individual particles
- III. Instrumentation of the hadron dump (muon monitoring)
- IV. * Micromegas photodetector for TO at far detector

Possible exploitation Scenarios:

PICOSEC Micromegas Detector Concept

Classical MM modification

- Stochastic nature of ionization
- Randomness of the last ionization
- Time jitter of a few ns
- PICOSEC Concept → Timing with tens of Picosecond precision
- Modifications in MM geometry :
 Smaller Drift Gap (3mm→200µm)
 Elimination of stochastic nature of ionization
 Higher applied Drift Voltage -> Pre-avanalache
- Additional Components in MM geometry :
 Cherenkov Radiator
 Photocathode (prompt photoelectrons)

PICOSEC Micromegas Detector Performance

SinglePad Prototype: Thin Gap with MgF2 & Csl photocathode

MultiPad Prototype: Thin Gap with MgF2 & Csl photocathode

photocathode

- detectors so far

Successful goals:

S. Aune et al, "Timing performance of a multi-pad PICOSEC-Micromegas detector prototype", Nucl. Instrum. Meth.A 993 (2021) 165076, https://doi.org/10.1016/j.nima.2021.165076

Large Area MultiPad Prototype: Thin Gap with MgF2 & Csl

Detector's Performance studied in : Muon Test Beam @ 150GeV muons Laser Test Beam @ IRAMIS

Reaching extremely precise timing resolution for gaseous

Proof-of-principle — **picosec** order timing resolution

Anode segmentation, BUT special care for detector planarity

Different photocathode candidate materials have been tested

Next steps Towards an engineered PICOSEC MM module for **PIMENT:**

multiple directions in detector development

Scalable MM Detector (IRFU/CERN)

- 10x10cm2
- Prove the performance in a multichannel setup
- Flatness (Planarity < 10µm)
- **Robustness & Efficiency** (LIST/USTC/CERN)
 - Research on various photocathode materials
 - Replace Csl with B4C, DLC,...)
 - Resistive prototypes

- **Pixelated MM Detector** (IJCLab/IRFU/CERN)

• Development of front-end & back-end readout electronics for the prototype (~100 channels)

Physics Studies (LP2I Bordeaux/AUTh / IRFU)

- T0 tagger and/or embedded in a calorimeter
- Muon monitoring

As a photodetector for TO tagging at the neutrino detector

- Tree possible approaches for modular prototypes with 10x10cm2 active zone :
- **Rigid, ceramic-core PCB for the MM readout**
 - Crystal coupled to the PCB with spacers
 - MgF2 crystal & MM board will be decoupled from the chamber
 - Second PCB will be used for signals towards the amplifiers

Drawback: Increased detector material ->timing layers

- Pillars on MM bulk readout
- Backwards with a glued honeycomb layer

- Advantage:

The ATLAS NSW Approach:

Pressing against the marble table

Low material budget on the detector Allow the fabrication of large flat boards

Longer pillars MM module:

Pressed against Cherenkov radiator

First multi-pad prototype: single-pad response

MgF2 radiator 3 mm thick,18 nm CsI on 5 nm Cr, 200 µm drift gap, operation point: V_{drift}/V_{anode}: -475V/+275V

S. Aune et al, "Timing performance of a multi-pad PICOSEC-Micromegas detector prototype", Nucl. Instrum. Meth.A 993 (2021) 165076, https://doi.org/10.1016/j.nima.2021.165076

After corrections, we can restore the timing performance of 25ps for all tracks

Pixelated MM Detector

- Develop appropriate frond-end & back-end electronics ~100channels
- **Discrete current preamplifiers**
 - Low noise RMS < 1mV
 - High gain > 30dB
 - Bandwidth >1GHz

- **Discrete current preamplifiers**
- **Recent development @ CERN**
- 10-channel amplifier boards

metable/#20220614.detailed

More info : A. Utrobičić on RD51 collaboration meeting

Research on possible usage of customade charge-sensitive amplifiers — Hans Muller (CERN)

Simulation Studies shown:

Use multiple thresholds (based on amplitude distribution of sample)

Reaching timing resolution **BELOW** 20ps

More details on Master Theses- Development of a Simulation model and Precise Timing Techniques for PICOSEC-Micromegas Detectors by A.Kallitsopoulou on https://arxiv.org/pdf/2112.14113.pdf

- Develop appropriate frond-end & back-end electronics ~100channels
- Multi-channel digitizer SAMPIC
 - 8.5 GS/s sampling frequency
 - Possible 64-ch to stack
 - Bandwidth 1.6GHz
 - Intergal FPGA-algorithms for signal processing

Alternative of multi -ToT algorithm

Dominique Breton (IJCLAB/CEA)

Feasibility test for SAMPIC digitizer:

Feed an Artificial Neural Network Use an input layer with 64 digitization points of waveforms recorded with oscilloscope

More details on Master Theses- *Development of a Simulation model and Precise Timing Techniques for* PICOSEC-Micromegas Detectors by A.Kallitsopoulou on https://arxiv.org/pdf/2112.14113.pdf

Studies on Detector performance

- **Embed in EM Calorimeter**
- First indications from laser test measurements @ IRAMIS/CEA

First Simulation Studies with Geant4

For more info see the presentation by **A**. Kallitsopoulou the RD51 Mini Week, CERN (7-10 Feb 2022)

https://indico.cern.ch/event/1110129/con tributions/4733737/attachments/2388605 /4082733/PICOSEC in electron beam.pdf

Test Beam Set Up

- **CERN SPS H4 Beam Line**
- 80GeV muon beam

- Trigger / Tracking / Timing Telescope
 - Triggering
 - Scintillators (small & large area)
 - Tracking
 - Triple GEM detectors, XY readout
 - Timing
 - MCP PMT (11mm diameter)
- **Goals:**
 - **Optimization/Stability**
 - Single pad & Multi pad detectors

- Analysis of the Experimental data •
- Adjust a curve, i.e. fitting the leading edge with a logistic function •
- Timing at 20% of peak amplitude both for the reference device and ٠
 - PICOSEC signals (Signal Arrival Time)
- Subtract the PICOSEC signal from the reference signal ٠
- Create Calibration curves (Correct for dynamical errors)

Detector performance- Most Recent Results

- Multi-Pad with Csl photocathode (Tested in Oct 2021 Test Beam)
- Horizontal and vertical scan of PADs. \bullet
- Measurements of time response within the pad \bullet
- Measurements of signal sharing between 4 pads. •

Analysis by Alexandra Kallitsopoulou, Ioannis Maniatis and Spyros Tzamarias. More info in the contribution to the RD51 Collaboration Meeting and "Wide Dynamic Range Operation of MPGDs" workshop, CERN (15-19 November 2021) by A. Kallitsopoulou https://indico.cern.ch/event/1071632/sessions/408832/#20211116

Detector performance- Most Recent Results

Thin gap – 100 channel Multi-pad Prototype & Customade electronics

For more info see the presentation by **A. Utrobičić** *the RD51 Collaboration Meeting, CERN* (13-17 June 2022) https://indico.cern.ch/event/1138814/timetable/#20220614.detailed

UV detection with Micromegas

Use as a **photodetector for T_n tagging** at the neutrino detector (detection of liquid argon scintillation light)

Reflective photocathode:

- Photosensitive material the micromesh
- Photoelectrons follow the field lines to the amplification region
- The photocathode does not "see" the avalanche -> no photon *feedback* \rightarrow higher gain in a single stage (~ 10⁵)
- Higher electron extraction efficiency

<u>Semi-transparent photocathode</u>:

- Photosensitive material on MgF_2 window (drift electrode)
- Extra preamplification stage \rightarrow better long-term stability
- Higher total gain
- Decoupling of chamber photocathode
- Lower photon extraction efficiency
- Photocathode exposure to sparks

Ion backflow radiation hardness

PhD Theses:

- Sohl L., "Development of PICOSEC-Micromegas for fast timing in high rate environments", CEA Saclay 17/12/2020, https://www.theses.fr/2020UPASP084
- Maniatis I. "Research and Development of MicroMegas Detectors for New Physics Searches", AUTh. Greece 25/02/2022, http://ikee.lib.auth.gr/record/339482/files/GRI-2022-35238.pdf

Publications:

- J. Bortfeldt et al., ""PICOSEC: Charged particle timing at sub-25 picosecond precision with a Micromegas based detector", Nucl. Instrum. Meth. A903 (2018) 317-325. https://doi.org/10.1016/j.nima.2018.04.033
- J. Bortfelt et al. (PICOSEC Collaboration), "Timing Performance of a Micro-Channel-Plate Photomultiplier Tube", Nucl. Instrum. Meth. A960 (2020) 163592, <u>https://doi.org/10.1016/j.nima.2020.163592</u>
- J. Bortfeldt et al. (PICOSEC collaboration), "Modeling the Timing Characteristics of the PICOSEC Micromegas Detector", Nucl. Instrum. Meth. A993 (2021) 165049, https://doi.org/10.1016/j.nima.2021.165049
- S. Aune et al. (PICOSEC collaboration), "Timing performance of a multi-pad PICOSEC-Micromegas detector prototype", • Nucl. Instrum. Meth. A993 (2021) 165076, https://doi.org/10.1016/j.nima.2021.165076
- T. Papaevangelou et al., "Fast Timing for High-Rate Environments with Micromegas", EPJ Web Conf. 174 (2018) 02002, ۲ https://doi.org/10.1051/epjconf/201817402002
- L. Sohl et al. (PICOSEC collaboration), "Progress of the Picosec Micromegas concept towards a robust particle detector with • segmented readout, 9th international symposium on Large TPCs for low-energy rare event detection, 2018, https://doi.org/10.1088/1742-6596/1312/1/012012
- L. Sohl et al. (PICOSEC collaboration), "Single photoelectron time resolution studies of the PICOSEC-Micromegas detector", • JINST 15 (2020) 04, C04053, Contribution to: IPRD1, https://doi.org/10.1088/1748-0221/15/04/C04053

- In this project we examine alternative applications of PICOSEC MM detector technology
- We plan to test prototypes in 3 Test Beam campaigns each year @ CERN SPS H4 Beam Line
- We plan to participate in common test beams of ENUBET @ CERN
- The importance of precise timing is necessary in future Particle Physics experiments
- PICOSEC for ENUBET will substantially mitigate the pile-up
 - AND enable bunch tagging to determine the neutrino energy without relying on final state reconstruction
 - AND would increase the PID capabilities of the Near Detector

Thank you for your attention

etector technology ERN SPS H4 Beam Line

Back up slides

PICOSEC Signal Processing Analysis

Physics

- •

ELSEVIER

Modeling the timing characteristics of the PICOSEC Micromegas detector

• Synchronous Cherenkov photons Synchronous Photoelectrons from the photocathode Photoelectron conversion(Townset Coeff) **Preamplification Avalanche** Transport through the mesh **Amplification Avalanches**

> Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment Volume 993, 21 March 2021, 165049

J. Bortfeldt^{b, 1}, F. Brunbauer^{b, 1}, C. David^{b, 1}, D. Desforge^{a, 1}, G. Fanourakis^{e, 1}, M. Gallinaro^{g, 1}, F. García^{k, 1}, I. Giomataris^{a, 1}, T. Gustavsson^{i, 1}, F.J. Iguaz^{a, 1}, M. Kebbiri^{a, 1}, K. Kordas^{d, 1}, C. Lampoudis^{d, 1}, P. Legou^{a, 1}, M. Lisowska^{b, 1}, J. Liu^{c, 1}, M. Lupberger^{b, 1, 2}, O. Maillard^{a, 1}, I. Manthos^{d, 1}, H. Müller^{b, 1}, V. Niaouris^{d, 1}, E. Oliveri^b ¹, T. Papaevangelou ^{a, 1}, K. Paraschou ^{d, 1}, M. Pomorski ^{j, 1}, B. Qi ^{c, 1}, F. Resnati ^{b, 1}, L. Ropelewski ^{b, 1}, D. Sampsonidis ^{d, 1}, L. Scharenberg ^{b, 1}, T. Schneider ^{b, 1}, L. Sohl ^{a, 1}, M. van Stenis ^{b, 1}, Y. Tsipolitis ^{f, 1}, S.E. Tzamarias ^d ≈¹ ∞, A. Utrobicic^{b, 1}, R. Veenhof^{h, 1, 3}, X. Wang^{c, 1}, S. White^{b, 1}, Z. Zhang^{c, 1}, Y. Zhou^{c, 1}

The PICOSEC MM Protypes

Sensors:

Bulk Micromegas (ø 1cm)

- Capacity ~ 8 pF \geq
- Amplification gap 64 / 128 / 192 µm \succ

Thin-mesh (~5 µm) Bulk Micromegas

- High optical transparency \geq
- Amplification gap 128 µm \succ

Resistive Bulk Micromegas (ø 1cm)

- Resistive pads: (10 M Ω / \Box , 300 k Ω / \Box). \geq
- Floating pads (25 M Ω). \geq
- Amplification gap 64 / 128 / 192 µm \geq

Multipad Bulk Micromegas

- Hexagonal pads ø 1cm. \succ
- Normal & resistive \geq
- Ensure homogeneous small drift gap & photocathode Ē polarization

Photocathodes: MgF2 crystal +

- Metallic substrate + Csl •
- Metallic (Cr, Al) •
- Metallic substrate + polycrystalline diamond •
- DLC •
- B4C, Metallic substrate + B4C ٠

1-ch (∅1cm) Proof of concept Resistive and nonresistive prototypes.

7-ch (Ø 2.6 cm) Resistive prototypes Signal sharing

19-ch (Ø 3.6cm) Signal sharing.

Very thin detector active part (<5 mm)

- First investigation of timing response Laser Beam Test (IRAMIS/SLIC, CEA Saclay)
- Ultra short pulses with duration of a few ps τo 120 fs Beam adjusted to 265 nm
- Pulse Picker to adjust the repetition rate
- Beam is split between a reference device and PICOSEC-
- Attenuator filters to control number of photoelectrons
 - Best time resolution for single photoelectron
 measurements : 76.0 ± 0.4 ps @ -425/450V

Strong dependence with electric field

Total energy after the absorber

50 GeV electrons on 5 radiation length absorber

AUTH (Greece) I. Angelis, K. Kordas, C. Lampoudis¹, I. Maniatis¹, I. Manthos, K. Paraschou, D. Sampsonidis, A. Tsiamis¹, S. E. Tzamarias

CEA - IRFU, LIST, LIDYL (France) S. Aune, D. Desforge, I. Giomataris, T. Gustavsson, F.J. Iguaz, A. Kallitsopoulou, M. Kebbiri, P. Legou, T. Papaevangelou, M. Pomorski, E. Scorsonne, L. Sohl

CERN (Switzerland) J. Bortfeldt², F. Brunbauer, C. David, M. Lupberger², M. Lisowska, H. Müller³, E. Oliveri, F. Resnati, L. Ropelewski, L. Scharenberg, T. Schneider, A. Utrobicic, M. van Stenis, R. Veenhof⁴, S. White

HIP (Finland) F. García

LIP (Portugal) M. Gallinaro

NCSR Demokritos, (Greece) G. Fanourakis

NTUA (Greece) Y. Tsipolitis

USTC (Hefei, China) J. Liu, B. Qi, X. Wang, Z. Zhang, Y. Zhou

SBU and Jlab (USA) Kondo Gnanvo

(1) Also Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Thessaloniki 57001, Greece.

- (2) Now at University of Bonn, D-53115 Bonn, Germany.
- (3) Also University of Bonn, D-53115 Bonn, Germany
- (4) Also at National Research Nuclear University MEPhI, Kashirskoe Highway 31, Moscow, Russia; and Department of Physics, Uluda University, 16059 Bursa, Turke

10 institutes from 6 countries 44 collaborators