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Development of a PICOSEC Micromegas Detector for ENUBET

Project Collaboration
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Context of ENUBET

• Need of precise timing resolution critical for : 
• Clean reconstruction of the events &
• Reduction of mixing different events due 

to pile-up

Objectives & Research Hypothesis

• ENUBET characteristics facility 
(more on Francesco Teranova presentation)
• Monitored neutrino beam with no one-to-one

correlation between positrons tagged
in beamline and neutrinos tagged in the far detector 

• Sub-ns sampling would offer this correlation 
• On an event-by-event basis 
• Determine the flavor of neutrino  

Development of new instrumentation based on 

PICOSEC Micromegas Detectors



Need of PIMENT Context

• 3-year R&D Project aiming to: 
• Develop novel instrumentation based on 

PICOSEC-MM detector concept 
• Demonstrate the impact of such detectors 

on New Physics searches
• Investigate the possibility of a real tagged 

neutrino beam 

Objectives & Research Hypothesis

I. PICOSEC MM embedded in bulk of EC as time 
tagger of EM showers

II. Thin T0-layers for individual particles 

III. Instrumentation of the hadron dump (muon 
monitoring)

IV. * Micromegas photodetector for T0 at far 
detector 

Possible exploitation Scenarios:



PICOSEC Micromegas Detector Concept 

Classical MM modification
• Stochastic nature of ionization 

• Randomness of the last ionization

• Time jitter of a few ns 

• PICOSEC Concept     Timing with tens of Picosecond 
precision  

• Modifications in MM geometry :
• Smaller Drift Gap (3mm        200μm)
• Elimination of stochastic nature of ionization
• Higher applied Drift Voltage -> Pre-avanalache

• Additional Components in MM geometry :
• Cherenkov Radiator
• Photocathode (prompt photoelectrons)



• Large Area MultiPad Prototype: Thin Gap with MgF2 & CsI
photocathode  

• SinglePad Prototype: Thin Gap with MgF2 & CsI photocathode  

• MultiPad Prototype: Thin Gap with MgF2 & CsI photocathode

Timing resolution:

24.0±0.2 ps

• Detector’s Performance studied in :
• Muon Test Beam @ 150GeV muons
• Laser Test Beam @ IRAMIS

• Reaching extremely precise timing resolution for gaseous 
detectors so far

1.2mm diameter

1.0 cm diameter

10 x 10 cm -> 1cm per square

Successful goals:
• Proof-of-principle picosec order timing resolution
• Anode segmentation, BUT special care for detector planarity
• Different photocathode candidate materials have been tested

PICOSEC Micromegas Detector Performance 

S. Aune et al, "Timing performance of a multi-pad PICOSEC-Micromegas detector prototype", Nucl. 

Instrum. Meth.A 993 (2021) 165076, https://doi.org/10.1016/j.nima.2021.165076

Timing resolution:

23.1±0.5 ps

https://doi.org/10.1016/j.nima.2021.165076


• Scalable MM Detector (IRFU/CERN)  
• 10x10cm2 
• Prove the performance in a 

multichannel setup
• Flatness (Planarity < 10μm)

PICOSEC Micromegas Detector Performance 

Next steps Towards an engineered PICOSEC MM module for 

PIMENT:

multiple directions in detector development

• Robustness & Efficiency 
(LIST/USTC/CERN)

• Research on various 
photocathode materials

• Replace CsI with B4C, 
DLC,…) 

• Resistive prototypes 

• Pixelated MM Detector
(IJCLab/IRFU/CERN)

• Development of front-end 
& back-end readout 
electronics for the 
prototype (~100 channels ) 

• Physics Studies
(LP2I Bordeaux/AUTh /IRFU)  

• T0 tagger and/or 
embedded in a 
calorimeter 

• Muon monitoring

• As a photodetector for T0 
tagging at the neutrino 
detector  



• Tree possible approaches for modular prototypes with 
10x10cm2 active zone : 

Ensure FLATNESS <10μm

• Rigid, ceramic-core PCB for the MM readout
• Crystal coupled to the PCB with spacers
• MgF2 crystal & MM board will be decoupled from the 

chamber
• Second PCB will be used for signals towards the amplifiers 

• Longer pillars MM module:
• Pressed against Cherenkov radiator

• Drawback: Increased detector material ->timing layers  

• Advantage:
• Low material budget on the detector 
• Allow the fabrication of large flat boards

Risk to damage the bulk MM

• The ATLAS NSW Approach:
• Pillars on MM bulk readout 
• Pressing against the marble table 
• Backwards with a glued honeycomb layer 

Risk to damage the photocathode



• MgF2 radiator 3 mm thick,18 nm CsI on 5 nm Cr, 200 μm drift 
gap,  operation point: Vdrift/Vanode: -475V/+275V

After corrections, we can restore 
the timing performance  of 25ps 

for all tracks

First multi-pad prototype: single-pad response

19 hexagonal pads 5mm side

All tracks passing within  R<2mm from 
the center of any pad

All tracks passing within  R<2mm 
from any pad corner

σ = 32.2 psσ = 25.8 ps

S. Aune et al, "Timing performance of a multi-pad PICOSEC-Micromegas 

detector prototype", Nucl. Instrum. Meth.A 993 (2021) 165076, 

https://doi.org/10.1016/j.nima.2021.165076

https://doi.org/10.1016/j.nima.2021.165076


• Develop appropriate frond-end & back-end electronics 
~100channels

Pixelated MM Detector

• Discrete current preamplifiers 
• Low noise RMS < 1mV
• High gain > 30dB 
• Bandwidth >1GHz 

• Simulation Studies shown: 
• Use multiple thresholds (based on amplitude distribution 

of sample)
• Reaching timing resolution BELOW 20ps

Phillippe Legou CEA Saclay

• Research on possible usage of customade charge-sensitive 
amplifiers             Hans Muller (CERN)

Timing Resolution: 

19.0±0.3 ps

CFD Technique

Multi-charge over thr
• Discrete current preamplifiers 

• Recent development @ CERN 
• 10-channel amplifier boards

https://indico.cern.ch/event/1138814/ti
metable/#20220614.detailedMore info : A. Utrobičić on RD51 collaboration meeting 

More details on Master Theses- Development of a Simulation model and Precise Timing Techniques for 
PICOSEC-Micromegas Detectors by A.Kallitsopoulou on https://arxiv.org/pdf/2112.14113.pdf

PRELIMINARY

Timing Resolution: 

20.0±0.6 ps



• Develop appropriate frond-end & back-end electronics 
~100channels

Pixelated MM Detector II

• Multi-channel digitizer SAMPIC 
• 8.5 GS/s sampling frequency
• Possible 64-ch to stack 
• Bandwidth 1.6GHz
• Intergal FPGA-algorithms

for signal processing

• Feasibility test for SAMPIC digitizer: 
• Feed an Artificial Neural Network 
• Use an input layer with 64 digitization points of 

waveforms recorded with oscilloscope 

Alternative of multi -ToT algorithm  

Timing resolution :

18.5±0.6 ps

• Multi-channel digitizer SAMPIC 
• 8.5 GS/s sampling frequency
• Possible 64-ch to stack 
• Bandwidth 1.6GHz
• Intergal FPGA-algorithms

for signal processing

Dominique Breton 
(IJCLAB/CEA)

More details on Master Theses- Development of a Simulation model and Precise Timing Techniques for 
PICOSEC-Micromegas Detectors by A.Kallitsopoulou on https://arxiv.org/pdf/2112.14113.pdf



Studies on Detector performance 

• First indications from laser test measurements @ IRAMIS/CEA

• Embed in EM Calorimeter

~70pes

Timing resolution :

6.8±0.3 ps

• First Simulation Studies with 
Geant4 

Simulation Information

• 30GeV electron
• 2 plastic Scintillators 

of 1cm thickness 
• Pb Absorber with 

5 RL thickness
• 3mm MgF2 radiator

All shower 

electrons multiplicity

~74
shower electrons multiplicity

with energy > 5MeV
inside a ring of 3mm radius

~24 electrons

Timing distribution on PICO radiator ~12ps
Overall timing resolution ~17ps

Mean distance
of the center

of the shower ~5mm
Energy distribution on PICOSEC

Radiator

Energy distribution on PICOSEC

Radiator

For more info see the presentation by A.
Kallitsopoulou the RD51 Mini Week, CERN 
(7-10 Feb 2022)
https://indico.cern.ch/event/1110129/con
tributions/4733737/attachments/2388605
/4082733/PICOSEC_in_electron_beam.pdf



Test Beam Set Up

• CERN SPS H4 Beam Line 
• 80GeV muon beam 

• Trigger / Tracking / Timing Telescope 
• Triggering

• Scintillators (small & large area)
• Tracking 

• Triple GEM detectors, XY readout
• Timing 

• MCP PMT (11mm diameter)

• Goals:
• Optimization/Stability 

• Single pad & Multi pad detectors

• Analysis of the Experimental data

• Adjust a curve, i.e. fitting the leading edge with a logistic function

• Timing at 20% of peak amplitude both for the reference device and 

PICOSEC signals (Signal Arrival Time) 

• Subtract the PICOSEC signal from the reference signal 

• Create Calibration curves (Correct for dynamical errors) 

PICOSEC

Timing resolution:

24.0±0.2 ps

PICOSEC Signal Processing Analysis   



Detector performance- Most Recent Results  

• Multi-Pad with CsI photocathode ( Tested in Oct 2021 Test Beam) • Proof of the uniformity of our detector 
• Horizontal and vertical scan of PADs.
• Measurements of time response within the pad
• Measurements of signal sharing between 4 pads.

Analysis by Alexandra Kallitsopoulou, Ioannis Maniatis and Spyros Tzamarias. More info in 
the contribution to the RD51 Collaboration Meeting and “Wide Dynamic Range Operation 
of MPGDs” workshop, CERN (15-19 November 2021) by A. Kallitsopoulou  
https://indico.cern.ch/event/1071632/sessions/408832/#20211116

Preliminary

PAD-22

PAD-32

PAD-21

PAD-31

Preliminary

σcomb.=30.0

https://indico.cern.ch/event/1071632/sessions/408832/#20211116


Detector performance- Most Recent Results  

• Different Prototypes  Tested in Oct 21/May 2022 Test Beam

For more info see the presentation by A. Utrobičić the RD51 Collaboration Meeting, CERN 
(13-17 June 2022) https://indico.cern.ch/event/1138814/timetable/#20220614.detailed

Preliminary

Thin gap – Single pad Prototype

Thin gap – 100 channel Multi-pad Prototype
& Customade electronics
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Reflective photocathode:

• Photosensitive material the micromesh

• Photoelectrons follow the field lines to the amplification region
• Smaller ion backflow ➔ radiation hardness 

• The photocathode does not “see” the avalanche ➔ no photon 
feedback➔ higher gain in a single stage (~ 105)

• Higher electron extraction efficiency

photon

electron

insulator

anode

micromesh

photocathode

avalanche

crystal

photon

electron

insulator

anode

micromesh

photocathode

avalanche

crystal

preamplification

UV detection with Micromegas 

• Use as a photodetector for T0 tagging at the neutrino detector (detection of liquid argon scintillation light)

Semi-transparent photocathode:
• Photosensitive material on MgF2 window (drift electrode)
• Extra preamplification stage ➔ better long-term stability

• Higher total gain

• Decoupling of chamber - photocathode

• Lower photon extraction efficiency

• Photocathode exposure to sparks
• Ion backflow ➔ radiation hardness 



Further Information – Publication List  

PhD Theses:
• Sohl L., “Development of PICOSEC-Micromegas for fast timing in high rate environments”, CEA Saclay 17/12/2020, 

https://www.theses.fr/2020UPASP084

• Maniatis I. “Research and Development of MicroMegas Detectors for New Physics Searches”, AUTh. Greece 25/02/2022,

http://ikee.lib.auth.gr/record/339482/files/GRI-2022-35238.pdf

Publications:
• J. Bortfeldt et al., ““PICOSEC: Charged particle timing at sub-25 picosecond precision with a Micromegas based detector”, 

Nucl. Instrum. Meth. A903 (2018) 317-325. https://doi.org/10.1016/j.nima.2018.04.033

• J. Bortfelt et al. (PICOSEC Collaboration), "Timing Performance of a Micro-Channel-Plate Photomultiplier Tube", Nucl. 

Instrum. Meth. A960 (2020) 163592, https://doi.org/10.1016/j.nima.2020.163592

• J. Bortfeldt et al. (PICOSEC collaboration), "Modeling the Timing Characteristics of the PICOSEC Micromegas Detector", 

Nucl. Instrum. Meth. A993 (2021) 165049, https://doi.org/10.1016/j.nima.2021.165049

• S. Aune et al. (PICOSEC collaboration), "Timing performance of a multi-pad PICOSEC-Micromegas detector prototype", 

Nucl. Instrum. Meth. A993 (2021) 165076, https://doi.org/10.1016/j.nima.2021.165076

• T. Papaevangelou et al., “Fast Timing for High-Rate Environments with Micromegas“ , EPJ Web Conf. 174 (2018) 02002, 

https://doi.org/10.1051/epjconf/201817402002

• L. Sohl et al. (PICOSEC collaboration), “Progress of the Picosec Micromegas concept towards a robust particle detector with 

segmented readout”, 9th international symposium on Large TPCs for low-energy rare event detection, 2018, 

https://doi.org/10.1088/1742-6596/1312/1/012012

• L. Sohl et al. (PICOSEC collaboration), “Single photoelectron time resolution studies of the PICOSEC-Micromegas detector”, 

JINST 15 (2020) 04, C04053, Contribution to: IPRD1, https://doi.org/10.1088/1748-0221/15/04/C04053

https://www.theses.fr/2020UPASP084
http://ikee.lib.auth.gr/record/339482/files/GRI-2022-35238.pdf
https://doi.org/10.1016/j.nima.2018.04.033
https://doi.org/10.1016/j.nima.2020.163592
https://doi.org/10.1016/j.nima.2021.165049
https://doi.org/10.1016/j.nima.2021.165076
https://doi.org/10.1051/epjconf/201817402002
https://doi.org/10.1088/1742-6596/1312/1/012012
https://doi.org/10.1088/1748-0221/15/04/C04053


Conclusions 

• In this project we examine alternative applications of PICOSEC MM detector technology

• We plan to test prototypes in 3 Test Beam campaigns each year @ CERN SPS H4 Beam Line 

• We plan to participate in common test beams of ENUBET @ CERN 

• The importance of precise timing is necessary in future Particle Physics experiments 

• PICOSEC  for ENUBET will substantially mitigate the pile-up 
• AND enable bunch tagging  to determine the neutrino energy without relying on final state reconstruction 
• AND would increase the PID capabilities of the Near Detector  

Thank you for your attention



Back up slides



PICOSEC Signal Processing Analysis   

Physics 

• Synchronous  Cherenkov photons

• Synchronous Photoelectrons from the photocathode

• Photoelectron conversion(Townset Coeff)

• Preamplification Avalanche

• Transport through the mesh

• Amplification Avalanches 



The PICOSEC MM Protypes 

Sensors:

Bulk Micromegas (ø 1cm)

➢ Capacity ~ 8 pF

➢ Amplification gap 64 / 128 / 192 μm

Thin-mesh (~5 μm) Bulk Micromegas

➢ High optical transparency

➢ Amplification gap 128 μm

Resistive Bulk Micromegas (ø 1cm)

➢ Resistive pads: (10 MΩ/□, 300 kΩ/□).

➢ Floating pads (25 MΩ).

➢ Amplification gap 64 / 128 / 192 μm

Multipad Bulk Micromegas

➢ Hexagonal pads ø 1cm.

➢ Normal & resistive

 Ensure homogeneous small drift gap & photocathode 
polarization

Photocathodes: MgF2 crystal + 

• Metallic substrate + CsI

• Metallic (Cr,  Al)

• Metallic substrate + polycrystalline diamond

• DLC

• B4C, Metallic substrate + B4C

1-ch (1cm)

Proof of concept

Resistive and non-

resistive prototypes.

7-ch ( 2.6 cm)

Resistive prototypes

Signal sharing

19-ch ( 3.6cm)

Signal sharing.

Very thin detector active part (<5 mm) 
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Laser Test Setup 

• First investigation of timing response 
• Laser Beam Test (IRAMIS/SLIC, CEA Saclay)
• UV laser light
• Ultra short pulses with duration of a few ps το 120 fs
• Beam adjusted to 265 nm
• Pulse Picker to adjust the repetition rate
• Beam is split between a reference device and PICOSEC-

MM
• Attenuator filters to control number of photoelectrons

• Best time resolution for single photoelectron 
measurements : 76.0 ± 0.4 ps @ -425/450V

Strong dependence with electric field 



Simulation of Electron Beam Test

50 GeV electrons
on 5 radiation length absorber

Total energy after the absorber

Spatial distribution of shower electrons

on radiator

Total energy of the shower electrons 

On their distance of the center of the shower 
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