

Technical University of Munich

Latest results from KATRIN

Service Contraction

IRN Neutrino meeting at LAPP Lisa Schlüter - on behalf of the KATRIN collaboration

2022, June 30

Outline

1. Neutrino mass via Tritium β -decay

and the second second

- 2. KATRIN experiment
- 3. Current status & results
- 4. Beyond neutrino mass

Absolute neutrino mass scale

- Neutrino oscillations
 - > They have a mass
 - > Mass splittings Δm_{ij}^2 and mixing

Absolute neutrino mass scale

- Neutrino oscillations
 - > They have a mass
 - > Mass splittings Δm_{ij}^2 and mixing
- Absolute mass scale?

Neutrino mass determination

			3H 3H	
	Cosmology	Search for $0\nu\beta\beta$	$oldsymbol{eta}$ -decay and electron capture	
Observable	$M_{\nu} = \sum_{i} m_{i}$	$m_{\beta\beta} = \left \sum_{i} U_{ei}^2 \ m_i \right $	$m_{\beta}^2 = \sum_{i=1}^{N} U_{ei} ^2 m_i^2$	
Present upper limit	0.11 - 0.54 eV*	0.061 – 0.165 eV**	0.8 eV	
Model dependence	 Multi-parameter cosmological model 	 Majorana nature Possible cancellations in coherent sum 	 Direct, only kinematics No cancellation in incoherent sum 	
Experiments	Planck satellite	• GERDA, KAMLAND-Zen, MAJORANA, LEGEND, (n)Exo,	 KATRIN, Project8, PTOLEMY ECHo, HOLMES 	
*source: PDG 2020: Neutrinos in Cosmology **source: PDG 2020 Neutrino masses				

2022, June 30 IRN Neutrino meeting

Tritium β -decay

	³ Н
	Super-allowed β -decay
T _{1/2}	12.3 years
Eo	18.6 keV

Tritium β -decay

KATRIN Measurement Principle

Windowless gaseous Tritium source

- Molecular tritium in closed loop system
- 10¹¹ decays/s

KATRIN Measurement Principle

KATRIN Measurement Principle

2022, June 30 IRN Neutrino meeting

Spectrum and Fit

Fit Parameter

- 1. m_{ν}^2 neutrino mass
- 2. E_0^{fit} endpoint
- 3. *N*_{sig} signal normalization
- 4. *B*_{base} energy-independent background rate

Spectrum and Fit

Fit Parameter

- 1. m_{ν}^2 neutrino mass
- 2. E_0^{fit} endpoint
- 3. *N*_{sig} signal normalization
- 4. **B**_{base} energy-independent background rate

Three complementary analysis strategies

- Different statistics:
 - Least-squares
 - Maximum-likelihood
- Different systematics treatments:
 - Covariance matrices
 - MC error propagation
 - Pull terms
- Independent implementation

naturet Timeline 2016 2018 2001 2006 2019 2021 KATRIN inauguration Founding of Spectrometer arrives First electrons First upper limit First sub-eV limit First Tritium in Karlsruhe KATRIN m_{eta} < 1.1 eV (90% C.L.) m_{eta} < 0.8 eV (90% C.L.) **Until 2024** Measurements ARLSRUHE TRITIUM NEUTRINO EXPERIMENT (KATRIN) INAUGURATION KIT, 11th June 2018

- Commissioning
- Only 0.5% tritium

- Commissioning
- Only 0.5% tritium
- 1st campaign
- $1.5 \cdot 10^6 \beta$ -electrons

• $m_{\nu} < 1.1 \text{ eV}$

Blinding

- Prevent human-induced bias
- History of negative neutrino mass squared

1. full analysis on MC data

Systematics studies, cross checks, fitter comparison, ...

Blinding

- Prevent human-induced bias
- History of negative neutrino mass squared
- Final State distribution of parent & daughter molecule
 - Rotational and Vibrational excitations
 - Electronic excitations

Blinding

- Prevent human-induced bias
- History of negative neutrino mass squared
- Final State distribution of parent & daughter molecule
 - Rotational and Vibrational excitations
 - Electronic excitations

Neutrino-mass results

1st campaign (spring 2019):

- Best fit: $m_{\nu}^2 = (-1.0 \pm 1.0) \text{ eV}^2$
- Upper limit: $m_{\nu} \le 1.1 \text{ eV} (90\% \text{ C. L.})$

2nd campaign (autumn 2019):

- Best fit: $m_{\nu}^2 = (0.26 \pm 0.32) \text{ eV}^2$
- Upper limit: $m_{\nu} \le 0.9 \text{ eV} (90\% \text{ C. L.})$
- ▶ Combined upper limit: $m_{\nu} \leq 0.8 \text{ eV} (90\% \text{ C. L.})$

More details:

- Phys. Rev. Lett. 123, 221802 (2019)
- Phys. Rev. D 104, 012005 (2021)
- Nature Physics 18, 160–166 (2022)

Systematic effects overview

Systematic effects overview

Sterile neutrinos in KATRIN

Result 1st campaign

- No sterile neutrino signal at 95% C.L.
- Calculate exclusion contour
- Sensitive to $m_4^2 \le 40^2 \text{ eV}^2$
- Restricted by measurement energy range
- Loose sensitivity small m_4^2
- Small signal/background ratio

------ KATRIN (KSN1) 95% C.L.

- No sterile neutrino signal at 95% C.L.
- Calculate exclusion contour
- Sensitive to $m_4^2 \le 40^2 \text{ eV}^2$
- Restricted by measurement energy range
- Loose sensitivity small m_4^2
- Small signal/background ratio

- No sterile neutrino signal at 95% C.L.
- Calculate exclusion contour
- Exclude partially parameter space:
 - Reactor Anomaly (RAA)
 - Gallium anomaly (GA) + BEST
 - Neutrino-4

More details:

- Phys. Rev. Lett. 126, 091803 (2021)
- Phys. Rev. D 105, 072004 (2022)

- No sterile neutrino signal at 95% C.L.
- Calculate exclusion contour
- Exclude partially parameter space:
 - Reactor Anomaly (RAA)
 - Gallium anomaly (GA) + BEST
 - Neutrino-4

More details:

- Phys. Rev. Lett. 126, 091803 (2021)
- Phys. Rev. D 105, 072004 (2022)

- No sterile neutrino signal at 95% C.L.
- Calculate exclusion contour
- Exclude partially parameter space:
 - Reactor Anomaly (RAA)
 - Gallium anomaly (GA) + BEST
 - Neutrino-4

More details:

- Phys. Rev. Lett. 126, 091803 (2021)
- Phys. Rev. D 105, 072004 (2022)

Relic neutrino capture

- 56 cm⁻³ relic neutrinos per species from the Big Bang
- $\langle E_{\rm kin} \rangle \approx 0.2 \, {\rm meV}$

•

- To date no observation
 - In KATRIN expected rate: $R_{\nu}^{\text{eff}} = 10^{-6} \text{ yr}^{-1} \cdot \eta$

...depends on neutrino nature: ×1/2 for Dirac particles, ×1 for Majorana

Relic neutrino capture

- 56 cm⁻³ relic neutrinos per species from the Big Bang
- $\langle E_{\rm kin} \rangle \approx 0.2 \, {\rm meV}$
- To date no observation
- In KATRIN expected rate: $R_{v}^{\mathrm{eff}} = 10^{-6} \mathrm{\ yr}^{-1} \cdot \boldsymbol{\eta}$

...depends on neutrino nature: ×½ for Dirac particles, ×1 for Majorana

... local gravitational clustering possible: $oldsymbol{\eta}$ overdensity

- No evidence for <u>large</u> relic neutrino overdensity
- Upper limit: $\eta < 1.1 \cdot 10^{11} (95\% \text{ C. L.})$
- Limited by statistical uncertainties
- Improved constraints from other laboratory experiments by 2 orders of magnitude

More details:

Phys. Rev. Lett. 129, 011806 (2022)

٠

٠

• $m_{\nu} < 1.1 \text{ eV}$ • $m_{\nu} < 0.9 \text{ eV}$

٠

٠

• $m_{\nu} < 1.1 \text{ eV}$ • $m_{\nu} < 0.9 \text{ eV}$

٠

٠

Take home message

- KATRIN is taking tritium data since 2018
- Neutrino mass measurement via kinematics of tritium β -decay
- Current upper limit $m_{\nu} \leq 0.8 \text{ eV} (90\% \text{ C. L.})$
- Beyond nu-mass
 - Constraints on eV-scale sterile neutrinos
 - Constraints on relic neutrino over-density

Thank you for your attention!

Backup

Background in KATRIN

- 1. Rydberg background:
 - Radioactive decay in spectrometer walls
 - neutral Rydberg atoms enter spectrometer
 - Ionization through thermal radiation
 - low-energetic electrons are accelerated toward detector
 - energy and time independent

2. Radon background:

- α -decay of Radon isotopes in spectrometer pumps
- Multiple high-energetic electrons (relaxation processes, etc.)
- Large transversal momentum \rightarrow become trapped in spectrometer
- Scatter on residual gas \rightarrow produce low energetic electrons
- Acceleration toward FPD \rightarrow energy and time independent background
- Varies more than expected from Poisson statistics

3. Penning trap background

- Penning trap between pre- and main spectrometer
- Traps electrons, discharge \rightarrow background
- increases as a function of time
- 4. Further backgrounds
 - intrinsic FPD background

2022, June 30 IRN Neutrino meeting

inner surface: 650m² volume: 1400m³

Shifted analyzing plane

- Background scale with active flux tube volume downstream of analyzing plane
- New magnetic field configuration:
 - "Shifted Analyzing Plane"
 - Reduce flux tube volume
 - ✓ Background rate reduction $\times 2$

Sterile Neutrino Search

Two analysis cases:

- I. Hierarchical scenario
 - $m_4^2 \gg m_1, m_2, m_3$
 - $m_{\nu}^2 = 0 \text{ eV}^2$ fixed
- II. Generic scenario:
 - m_{ν}^2 as free nuisance parameter
 - correlation between active and sterile decay branches

Systematic uncertainties in sterile-neutrino search

- Investigate systematic effects
- 1σ uncertainty on $|U_{e4}|^2$ for fixed m_4^2 values via raster scan

$$\sigma_{
m syst} = \sqrt{\sigma_{
m total}^2 - \sigma_{
m stat}^2}$$

- Result:
 - Both campaigns are statistics dominated
 - Similar influence of systematic uncertainties

Systematic uncertainty breakdown sterile-neutrino search

Dominant syst. effects:

- Source-potential variations
- Scan—step-duration dependent background
- Background rate over-dispersion

