

v Electroweak Baryogenesis

Salvador Rosauro-Alcaraz **IRN Neutrino meeting, Annecy** 29/06/22

This project has received funding /support from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska -Curie grant agreement No 860881-HIDDeN

In collaboration with E. Fernández-Martínez, J. López-Pavón & T. Ota based on JHEP 10 (2020) 063

Introduction

Planck Collaboration, arXiv:1807.06209

$$Y_B^{obs} = \frac{n_b - n_{\bar{b}}}{s} \simeq (8.59 \pm 0.08) \times 10^{-10}$$

Sakharov's conditions

•C and CP violation

•B violation

•Out-of-equilibrium conditions

A. D. Sakharov, Pisma Zh. Eksp. Teor. Fiz. 5 (1967) 32-35

Electroweak baryogenesis

Shaposhnikov, Nucl. Phys B287 (1987)

CP violation from CKM matrix

B + L violation from sphalerons Kuzmin, Rubakov & Shaposhnikov, Phys. Lett. 155B (1985) 36

1^{*st*} order phase transition

Sakharov's conditions

•C and CP violation

•B violation

•Out-of-equilibrium conditions

A. D. Sakharov, Pisma Zh. Eksp. Teor. Fiz. 5 (1967) 32-35

Electroweak baryogenesis

Shaposhnikov, Nucl. Phys B287 (1987)

CP violation from CKM matrix

B+L violation from sphalerons Kuzmin, Rubakov & Shaposhnikov, Phys. Lett. 155B (1985) 36

1st order phase transition

K. Fuyuto, Springer 2018

Electroweak baryogenesis

Shaposhnikov, Nucl. Phys B287 (1987)

CP violation from CKM matrix

M. B. Gavela, P. Hernandez, J. Orloff & O. Pene, arXiv:hep-ph/9312215

M. B. Gavela, P. Hernandez, J. Orloff, O. Pene & C: Quimbay, arXiv:hep-ph/9406289

B + L violation from sphalerons

Kuzmin, Rubakov & Shaposhnikov, Phys. Lett. 155B (1985) 36

1st order phase transition

K. Fuyuto, Springer 2018

Electroweak baryogenesis

Shaposhnikov, Nucl. Phys B287 (1987)

CP violation from CKM matrix

M. B. Gavela, P. Hernandez, J. Orloff & O. Pene, arXiv:hep-ph/9312215

M. B. Gavela, P. Hernandez, J. Orloff, O. Pene & C: Quimbay, arXiv:hep-ph/9406289

B + L violation from sphalerons

Kuzmin, Rubakov & Shaposhnikov, Phys. Lett. 155B (1985) 36

1st order phase transition

K. Kajantie, M. Laine, K. Rummukainen, & M. E. Shaposhnikov, arXiv:hep-ph/9605288

Electroweak baryogenesis with new physics

Electroweak baryogenesis

Shaposhnikov, Nucl. Phys B287 (1987)

CP violation from CKM matrix

B + L violation from sphalerons

Kuzmin, Rubakov & Shaposhnikov, Phys. Lett. 155B (1985) 36

1ST order phase transition

New sources of CP violation

Bounds on new CP violation

 $|d_e|$

G. Panico, M. Riembau, T. Vantalon, arXiv:1712.06337

Tight bounds from the electron's EDM

$$< 1.1 \times 10^{-29} e \cdot cm$$

E. Hall, T. Konstandin, R. McGehee, H. Murayama & G. Servant, arXiv: 1910.08068 M. Carena, M. Quirós & Y. Zhang, arXiv: 1811.09719

ACME Collaboration, Nature 562 (2018)

Rely on some dark sector to introduce new CP violation

Bounds on new CP violation

 $|d_e|$

Tight bounds from the electron's EDM

$$< 1.1 \times 10^{-29} e \cdot cm$$

E. Hall, T. Konstandin, R. McGehee, H. Murayama & G. Servant, arXiv: 1910.08068 M. Carena, M. Quirós & Y. Zhang, arXiv: 1811.09719

ACME Collaboration, Nature 562 (2018)

Rely on some dark sector to introduce new CP violation

v masses in low-scale seesaws $\mathscr{L} \supset -\bar{L}_L Y_{\nu} \tilde{H} N_R - \bar{N}_L \phi Y_N N_R + h \cdot c \cdot - V(\phi, H^{\dagger} H)$

v masses in low-scale seesaws $\mathscr{L} \supset -\bar{L}_L Y_{\nu} \tilde{H} N_R - \bar{N}_L \phi Y_N N_R + h \cdot c \cdot - V(\phi, H^{\dagger} H)$

 $\mathscr{L} \supset -\bar{\nu}_L m_D N_R - \bar{N}_L M N_R + h.c.$

Bounded by EW precision and flavour observables

E. Fernandez-Martinez, J. Hernandez & J. Lopez-Pavon, arXiv: 1605.08774

v masses in low-scale seesaws $\mathscr{L} \supset -\bar{L}_L Y_{\nu} \tilde{H} N_R - \bar{N}_L \phi Y_N N_R + h \cdot c \cdot - V(\phi, H^{\dagger} H)$

Explain light ν masses

Inverse Seesaw

M. Malinsky et al., arXiv:0506296

 $\mathscr{L} \supset -\bar{\nu}_I m_D N_R - \bar{N}_I M N_R + h.c.$

 $m_{\mu} = 0, \quad \theta \equiv m_D M^{-\Gamma}$

Bounded by EW precision and flavour observables

E. Fernandez-Martinez, J. Hernandez & J. Lopez-Pavon, arXiv: 1605.08774

 $m_{\nu} \sim \mu_L \theta^2$

CP violation in low-scale seesaws $\mathscr{L} \supset -\bar{L}_{I}Y_{I}\tilde{H}N_{R} - \bar{N}_{I}q$

 $\mathscr{L} \supset -\bar{\nu}_L m_D N$

 $\delta_{CP} \propto (M_1^2 - M_2^2)(M_2^2 - M_3^2)(M_2^2 - M_3^2)(M_3^2 - M_3^2))$

$$\phi Y_N N_R + h \cdot c \cdot - V(\phi, H^{\dagger}H)$$

$$V_R - \bar{N}_L M N_R + h \cdot c$$
.

$$M_3^2 - M_1^2) Im \left[(\theta^{\dagger} \theta)_{12} (\theta^{\dagger} \theta)_{23} (\theta^{\dagger} \theta)_{31} \right]$$

CP violation in low-scale seesaws $\mathscr{L} \supset -\bar{L}_L Y_{\nu} \tilde{H} N_R - \bar{N}_L \phi Y_N N_R + h \cdot c \cdot - V(\phi, H^{\dagger} H)$

 $\mathscr{L} \supset -\bar{\nu}_I m_D N_R - N_I M N_R + h.c.$

 $\left|\delta_{CP} \propto (M_1^2 - M_2^2)(M_2^2 - M_3^2)(M_3^2 - M_1^2)Im\left[(\theta^{\dagger}\theta)_{12}(\theta^{\dagger}\theta)_{23}(\theta^{\dagger}\theta)_{31}\right]\right|$

Hierarchical heavy neutrinos.

CP violation in low-scale seesaws $\mathscr{L} \supset -\bar{L}_{I}Y_{I}\tilde{H}N_{R} - \bar{N}_{I}\phi Y_{N}N_{R} + h.c. - V(\phi, H^{\dagger}H)$

 $\mathscr{L} \supset -\bar{\nu}_I m_D N_R - N_I M N_R + h.c.$

 $\delta_{CP} \propto (M_1^2 - M_2^2)(M_2^2 - M_3^2)(M_2^2 - M_3^2)(M_3^2 - M_3^2))$

Hierarchical heavy neutrinos.

$$M_3^2 - M_1^2)Im\left[(\theta^{\dagger}\theta)_{12}(\theta^{\dagger}\theta)_{23}(\theta^{\dagger}\theta)_{31}\right]$$

Avoid electric dipole moment bounds

A. Abada & T. Toma, arXiv: 1605.07643

Electroweak baryogenesis and low-scale seesaws

First proposed in

P. Hernandez & N. Rius, arXiv: hep-ph/9611227

 $\mathcal{L} \supset -\bar{L}_L Y_{\nu} \tilde{H} N_R - \bar{N}_L \phi Y_N N_R + h \cdot c \cdot - V(\phi, H^{\dagger} H)$

Large mixing and CPV

Trigger strong 1st order phase transition

Electroweak baryogenesis and low-scale seesaws

First proposed in

P. Hernandez & N. Rius, arXiv: hep-ph/9611227

 $\mathscr{L} \supset -\bar{L}_L Y_\nu \tilde{H} N_R - \bar{N}_L \phi$

"Artistic" depiction of a sphaleron

$$\phi Y_N N_R + h \cdot c \cdot - V(\phi, H^{\dagger}H)$$

18

Flavoured CP asymmetries

Strong GIM cancellation when summing over flavours

$$\sum_{i} \Delta \mathscr{R}^{u} \left(N_{Ri} \to \nu_{L\alpha} \right) \sim \int_{z} \sum_{i,j,\beta} f(z) m_{d_{\alpha}}^{2} Im \left(V_{Ri\alpha} V_{Ri\beta}^{*} V_{Rj\beta} V_{Rj\beta}^{*} V_{Rj\beta$$

M. Joyce, T. Prokopec & N. Turok, arXiv: hep-ph/9410281 $\frac{\Gamma_{\tau}}{T} \sim 0.28 \alpha_{V}$

Safe to neglect the wash-out with the τ

$$_W Y_\tau^2 \ll \frac{\Gamma_S}{T} = 9\kappa \alpha_W^5$$

M. Joyce, T. Prokopec & N. Turok, arXiv: hep-ph/9410281 $\frac{\Gamma_{\tau}}{T} \sim 0.28 \alpha_{\rm W}$

Safe to neglect the wash-out with the τ

$$\frac{\Gamma_{N_{Ri}\nu_{L\alpha}}}{T} \sim \frac{1}{128\pi} \left(Y_t^2 + Y_b^2 \right) |(Y_{\nu})_{\alpha i}|^2 \sim 0.0024 |\theta_{\alpha i}|^2 \frac{2M_i^2}{v_H^2}$$

$$M_i \gtrsim 200 \ GeV$$

$$_W Y_\tau^2 \ll \frac{\Gamma_S}{T} = 9\kappa \alpha_W^5$$

We need to include the wash-out from the RH neutrinos

Larger baryon asymmetry: Breaking of GIM cancellation

• Introduction of N_R asymmetry,

which diffuse more than ν_L

$$N_R \to \nu_L \to B$$

Current bound at 2σ on θ

Electroweak baryogenesis with new physics

Electroweak baryogenesis

Shaposhnikov, Nucl. Phys B287 (1987)

CP violation from CKM matrix

B + L violation from sphalerons

Kuzmin, Rubakov & Shaposhnikov, Phys. Lett. 155B (1985) 36

1st order phase transition

Add singlet scalar ϕ

M. Dine, P. Huet, R. L. Sigleton, Jr & L. Susskind, Phys. Lett. B257 (1991) J. R. Espinosa, T. Konstandin & F. Riva, arXiv: 1107.5441

Electroweak baryogenesis and low-scale seesaws

 $\mathcal{L} \mathfrak{I} - \bar{L}_L Y_{\nu} \tilde{H} N_R - \bar{N}_L \phi Y_N N_R + h \cdot c \cdot - V(\phi, H^{\dagger} H)$

Large mixing and CPV

 $V\left(\phi, H^{\dagger}H\right) = -\frac{1}{2}\mu_{h}^{2}H^{\dagger}H + \frac{1}{4}\lambda_{h}(H^{\dagger}H)^{2} + \frac{1}{2}\mu_{s}^{2}\phi^{2} + \frac{1}{4}\lambda_{s}\phi^{4}$ $+\frac{1}{\Lambda}\mu_m\phi(H^{\dagger}H) + \frac{1}{\Lambda}\lambda_m\phi^2(H^{\dagger}H) + \mu_1^3\phi + \frac{1}{3}\mu_3\phi^3$

J. R. Espinosa, T. Konstandin & F. Riva, arXiv:11075441 T. Robens & T. Stefaniak, arXiv:1501.02234 D. Butazzo, F. Sala & A. Tesi, arXiv:1505.05488 A. V. Kotwal, J. M. No, M. J. Ramsey-Musolf & P. Winslow, arXiv:1605.06123 C. Chen, J. Kozaczuk & I. M. Lewis, arXiv:1704.05844 C. Chiang, Y. Li & E. Senaha, arXiv:1808.01098 M. Carena, Z. Liu & Y. Wang, arXiv:1911.10206 J. Kozaczuk, M. J. Ramsey-Musolf & J. Shelton, arXiv:1911.10210 E. Fuchs, O. Matsedonskyi, I. Savoray & M. Schlaffer, arXiv.2008.12773 A.Papaefstathiou & G. White, arXiv:2010.00597 S. Dawson, P. P. Giardino & S. Homiller, arXiv:2102.02823 M. Carena, J. Kozaczuk, Z. Liu, T. Ou, M. J. Ramsey-Musolf, J. Sherlon, Y. Wang & K. Xie, arXiv:2203.08206

Trigger strong 1st order phase transition

 $V_{HT}(s,h) = -\frac{1}{2}\mu_h^2 h^2 + \frac{1}{4}\lambda_h h^4 + \frac{1}{2}\mu_s^2 s^2 + \frac{1}{4}\lambda_s s^4 + \frac{1}{4}\mu_m sh^2 + \frac{1}{4}\lambda_m s^2 h^2 + \mu_1^3 s + \frac{1}{3}\mu_3 s^3$ $+ \left| \frac{1}{2} c_h h^2 + \frac{1}{2} c_s s^2 + m_3 s \right| \left(T^2 - \left(T_c^2 \right) \right)$ T-dependent correction $V_{HT}(0,0) = V_{HT}(v,w)$ **Critical temperature**

J. R. Espinosa, T. Konstandin & F. Riva, arXiv:11075441 M. Quiros, arXiv:hep-ph/9901312

 $V_{HT}(s,h) = -\frac{1}{2}\mu_h^2 h^2 + \frac{1}{4}\lambda_h h^4 + \frac{1}{2}\mu_s^2 s^2$ $\frac{1}{12} \left[2\lambda_m + 3\lambda_s + \right]$ $C_{\rm s} = -$

J. R. Espinosa, T. Konstandin & F. Riva, arXiv:11075441 M. Quiros, arXiv:hep-ph/9901312

$$\left[\frac{1}{4} \lambda_{s} s^{4} + \frac{1}{4} \mu_{m} sh^{2} + \frac{1}{4} \lambda_{m} s^{2} h^{2} + \mu_{1}^{3} s + \frac{1}{3} \mu_{3} s^{3} \right]$$

$$\left[c_{s} s^{2} + m_{3} s \right] \left(T^{2} - T_{c}^{2} \right)$$

$$\cdot 2 \mathscr{Y}_N^2$$

3

$V_{HT}(s,h) = -\frac{1}{2}$ Wish list for a successful phase transition • Degenerate minima at T_c

- Potential barrier between minima
- Correct minimum (

 $c_s = \frac{1}{12} \left[2\lambda_m + 3\lambda_s + 2\mathcal{Y}_N^2 \right]$

Nucleation \bullet

J. R. Espinosa, T. Konstandin & F. Riva, arXiv:11075441 M. Quiros, arXiv:hep-ph/9901312

$$v_{EW} \sim 246$$
 GeV) at $T = 0$

$$\mathcal{Y}_N^2 \equiv tr(Y_N^{\dagger}Y_N)$$

 $u^2 + \mu_1^3 s + \frac{1}{2} \mu_3 s^3$

$V_{HT}(s,h) = -\frac{1}{2}$

Wish list for a successful phase transition Degenerate minima at T_c

- Potential barrier between minima
- Correct minimum (

 $2\lambda_m + 3\lambda_s + 2\gamma$

Nucleation

J. R. Espinosa, T. Konstandin & F. Riva, arXiv:11075441 M. Quiros, arXiv:hep-ph/9901312

$$v_{EW} \sim 246$$
 GeV) at $T = 0$

$$\mathscr{Y}_N^2 \equiv tr(Y_N^{\dagger}Y_N)$$

 $+\mu_1^3 s + \frac{1}{2}\mu_3 s^3$

Nucleation

Nucleation

Bounce solution 24

S. Coleman, Phys. Rev. D (1977) A. Amarati, arXiv:2009.14102

 $\Gamma/V \sim e^{-S_3/T_N} \sim H(T_N)$

 $S_3 / T_N \sim 140$

Nucleation

Phenomenology
Constraints on scalar mixing

$$h' = \cos \xi h + \sin \xi s$$

 $s' = -\sin \xi h + \cos \xi s$
Higgs signal strength
 $\cos \xi = \mu \equiv \frac{\sigma \cdot BR}{(\sigma \cdot BR)_{SM}}$

CMS Collaboration, record/2706103

Phenomenology Nucelation + constraints on cos

Successful nucleation greatly reduces the parameter space

Phenomenology Nucelation + constraints on $\cos \xi$

Phenomenology Higgs trilinear coupling

15.0

12.5

10.0

7.5

5.0

2.5

0.0

-2.5

-5.0

-7.5

 \mathcal{K}_{λ}

$$\kappa_{\lambda} \equiv \frac{\lambda_{hhh}}{\lambda_{hhh}^{SM}}$$

$$-5 \leq \kappa_{\lambda} \leq 12$$

ATLAS Collaboration, arXiv:1906.02025

Singlet vev controlling neutrino masses

- Flavour effects play a crucial role in generating the correct BAU
- active neutrinos \rightarrow In reach for colliders

Low-scale neutrino mass mechanism could help in the generation of the BAU

• Explain the **BAU** with states with $M \sim 100 GeV$ which significantly mix with

- Low-scale neutrino
- Flavour effects play
- Explain the BAU wit active neutrinos→I

38

nucleation the singlet neutrino mass scale is fixed

• We expect deviations up to 10% in the Higgs trilinear coupling

Need extra scalar to have SFOPT. From the scalar potential and a successful

Interesting interplay and possible searches between fermion and scalar sectors

This project has received funding /support from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska -Curie grant agreement No 860881-HIDDeN

Back up slides

CP violation in low-scale seesaws $\mathscr{L} \supset -\bar{L}_I Y_I \tilde{H} N_R - \bar{N}_I \phi Y_N N_R + h \cdot c \cdot - V(\phi, H^{\dagger} H)$

 $m_D \equiv U_l m_d V_R^{\dagger}$ Unphysical when neglecting charged lepton masses

 $\mathscr{L} \supset -\bar{\nu}_I m_D N_R - \bar{N}_I M N_R + h.c.$

 $\delta_{CP} \propto (M_1^2 - M_2^2)(M_2^2 - M_3^2)(M_3^2 - M_1^2)Im \left[(\theta^{\dagger}\theta)_{12}(\theta^{\dagger}\theta)_{23}(\theta^{\dagger}\theta)_{31}\right]$

CP violation in low-scale seesaws $\mathscr{L} \supset -\bar{L}_{I}Y_{I}\tilde{H}N_{R}-\bar{N}_{I}q$

 $\mathscr{L} \supset -\bar{\nu}_L m_D N$

 $\delta_{CP} \propto (M_1^2 - M_2^2)(M_2^2 - M_3^2)(M_2^2 - M_3^2)(M_3^2 - M_3^2))$

 $m_D \equiv U_l m_d V_R^{\dagger}$

$$\phi Y_N N_R + h \cdot c \cdot - V\left(\phi, H^{\dagger}H\right)$$

$$V_R - \bar{N}_L M N_R + h \cdot c$$
.

$$M_3^2 - M_1^2) Im \left[(\theta^{\dagger} \theta)_{12} (\theta^{\dagger} \theta)_{23} (\theta^{\dagger} \theta)_{31} \right]$$

$$Tr\left[\theta\theta^{\dagger}\right] = Tr\left[m_d^2 V_R^{\dagger} M^{-2} V_R\right]$$

CP asymmetries

Diffusion equations Vanilla scenario

M. Joyce, T. Prokopec & N. Turok, arXiv: hep-ph/9410281

$$D_B \partial_z^2 n_B - v_W \partial_z n_B - 3\Gamma_S$$

P. Hernandez & N. Rius, arXiv: hep-ph/9611227

$_{S}\mathcal{H}(-z)n_{B}-\Gamma_{S}\mathcal{H}(-z)n_{L}=0$ $D_L \partial_z^2 n_L - v_W \partial_z n_L - \Gamma_S \mathcal{H}(-z) n_L - 3\Gamma_S \mathcal{H}(-z) n_B = \xi_L j_L \partial_z \delta(z)$

Diffusion equations Vanilla scenario

M. Joyce, T. Prokopec & arXiv: hep-ph/9410281

$$\begin{split} D_B \partial_z^2 n_B &- v_W \partial_z n_B - 3\Gamma_S \mathscr{H}(-z) n_B - \Gamma_S \mathscr{H}(-z) n_L = 0\\ \partial_z^2 n_L &- v_W \partial_z n_L - \Gamma_S \mathscr{H}(-z) n_L - 3\Gamma_S \mathscr{H}(-z) n_B = \xi [j_U \partial_z \delta(z)\\ \hline \text{Follow the total } B \text{ and } L \text{ asymmetries}\\ \text{and their conversion through sphalerons} \end{split}$$

P. Hernandez & N. Rius, arXiv: hep-ph/9611227

$$\begin{split} & \mathcal{D}_{B}\partial_{z}^{2}n_{B} - v_{W}\partial_{z}n_{B} - 3\Gamma_{S}\mathscr{H}(-z)n_{B} - \Gamma_{S}\mathscr{H}(-z)n_{L} = 0 \\ & \mathcal{D}_{L}\partial_{z}^{2}n_{L} - v_{W}\partial_{z}n_{L} - \Gamma_{S}\mathscr{H}(-z)n_{L} - 3\Gamma_{S}\mathscr{H}(-z)n_{B} = \xi_{L}j_{U}\partial_{z}\delta(z) \\ & \text{Follow the total } B \text{ and } L \text{ asymmetries and their conversion through sphalerons} \\ & = \frac{1}{\gamma}\sum_{i,a}\int \frac{d^{3}p}{(2\pi)^{3}} \left\{ \Delta \mathscr{T}^{b}(N_{i} \to \nu_{La}) \frac{|p_{zi}^{b}|}{E_{i}^{b}} f_{i}^{b}(p_{i}^{b}) + \Delta \mathscr{R}^{u}(N_{Ri} \to \nu_{La}) \frac{|p_{zi}^{u}|}{E_{i}^{u}} f_{i}^{u}(p_{i}^{u}) \right\} \end{split}$$

$$\begin{split} & \text{In Turok} \quad D_B \partial_z^2 n_B - v_W \partial_z n_B - 3\Gamma_S \mathscr{H}(-z) n_B - \Gamma_S \mathscr{H}(-z) n_L = 0 \\ & D_L \partial_z^2 n_L - v_W \partial_z n_L - \Gamma_S \mathscr{H}(-z) n_L - 3\Gamma_S \mathscr{H}(-z) n_B = \xi \int_{D_U} \partial_z \delta(z) \\ & \text{Follow the total } B \text{ and } L \text{ asymmetries and their conversion through sphalerons} \\ & j_\nu = \frac{1}{\gamma} \sum_{i,\alpha} \int \frac{d^3 p}{(2\pi)^3} \bigg\{ \Delta \mathscr{T}^b(N_i \to \nu_{L\alpha}) \frac{|p_{zi}^b|}{E_i^b} f_i^b(p_i^b) + \Delta \mathscr{R}^u(N_{Ri} \to \nu_{L\alpha}) \frac{|p_{zi}^u|}{E_i^u} f_i^u(p_i^u) \bigg\} \end{split}$$

Diffusion equations Vanilla scenario

Bound on θ if avoiding the

Vev profiles in the bubble wall

 $\theta(z) = \frac{v_H(z)}{v_{\phi}(z)} \frac{Y_{\nu}}{\sqrt{2}} Y_N^{-1}$

Vev profiles in the bubble wall

Electroweak baryogenesis and low-scale seesaw

First proposed in

P. Hernandez & N. Rius, arXiv: hep-ph/9611227

 $\mathscr{L} \supset -\bar{L}_L Y_{\nu} \tilde{H} N_R - \bar{N}_L \phi Y_N N_R + h \cdot c \cdot - V(\phi, H^{\dagger} H)$

 $\psi = e^{-iEt} \begin{pmatrix} L(z) \\ R(z) \end{pmatrix} \bigotimes \chi_s$

 $\psi = e^{-iEt} \begin{pmatrix} L(z) \\ R(z) \end{pmatrix} \otimes \chi_s$

 $z \to \infty$

Electroweak baryogenesis and low-scale seesaw

 $\mathscr{L} \supset -\bar{L}_L Y_{\nu} \tilde{H} N_R - \bar{N}_L \phi Y_N N_R + h \cdot c \cdot - V(\phi, H^{\dagger} H)$

 $\psi = e^{-iEt} \begin{pmatrix} L(z) \\ R(z) \end{pmatrix} \otimes \chi_s$

 $|\mathcal{R}^{u}|^{2} + |\mathcal{T}^{u}|^{2} = 1$

 $z \to \infty$

 \mathcal{N}_i

 $D_B \partial_z^2 n_B - v_W \partial_z n_B - 3\Gamma_S \mathcal{H}(-z) n_B - \Gamma_S \mathcal{H}(-z) \sum n_{\nu_a} = 0$ α

 N_{P}

 $D_{Ri}\partial_z^2 n_{\nu_{N_{Ri}}} - \nu_W \partial_z n_{\nu_{N_{Ri}}} + \sum$

$$\Gamma_{S}\mathscr{H}(-z)\sum_{\beta}n_{\nu_{\beta}}-\sum_{i}\Gamma_{N_{Ri}\nu_{\alpha}}\left(\frac{1}{2}n_{\nu_{\alpha}}-n_{N_{Ri}}\right)=\xi_{L}j_{\nu_{\alpha}}\partial_{z}$$

$$\sum_{\alpha} \Gamma_{N_{Ri}\nu_{\alpha}} \left(\frac{1}{2} n_{\nu_{\alpha}} - n_{N_{Ri}} \right) = \xi_{Ri} j_{N_{Ri}} \partial_{z} \delta(z)$$

Effect of vev profiles

$$v_{H}(z)/v_{H} = \frac{1}{2} \left[1 + \tanh\left(\xi \frac{z - (5/\xi) \,\delta_{W}/2}{\delta_{W}}\right) \right]$$
$$v_{\phi}(z)/v_{\phi} = \frac{1}{2} \left[1 + \tanh\left(5 \frac{z - \delta_{W}/2}{\delta_{W}}\right) \right]$$

1.251.50

Effect of vev profiles

Scalar potential Tree level

 $V(s,h) = -\frac{1}{2}\mu_h^2 h^2 + \frac{1}{4}\lambda_h h^4 + \frac{1}{2}\mu_s^2 s^2 + \frac{1}{4}\lambda_s s^4 + \frac{1}{4}\mu_m sh^2 + \frac{1}{4}\lambda_m s^2 h^2 + \mu_1^3 s + \frac{1}{4}\mu_3 s^3$

Analytical conditions to have

J. R. Espinosa, T. Konstandin & F. Riva, arXiv:11075441

Minima located at $(\langle h \rangle, \langle s \rangle) = (0,0)$ and (v, w)separated by tree-level barrier

Scalar potential **Tree level**

 $V(s,h) = -\frac{1}{2}\mu_h^2 h^2 + \frac{1}{4}\lambda_h h^4 + \frac{1}{2}\mu_s^2 s^2 +$

Minima loc Se

Analytical conditions to have

$$+\frac{1}{4}\lambda_{s}s^{4} + \frac{1}{4}\mu_{m}sh^{2} + \frac{1}{4}\lambda_{m}s^{2}h^{2} + \mu_{1}^{3}s + \frac{1}{3}\mu_{3}s^{3}$$

J. R. Espinosa, T. Konstandin & F. Riva, arXiv:11075441

ated at
$$(\langle h \rangle, \langle s \rangle) = (0,0)$$
 and (v, w)
eparated by tree-level barrier

Need to include finite T corrections

Scalar potential One-loop potential

$$V_{1l}(h,s) = \frac{1}{64\pi^2} \sum_{\alpha} N_{\alpha}$$

Physical mass as function of (h, s)

Scalar potential **Finite temperature effects**

$$\delta_{\alpha} V_T(h,s) = \frac{T^4}{2\pi^2} N_{\alpha} \int_0^\infty dx x^2 \log\left(1 =$$

J. R. Espinosa, T. Konstandin & F. Riva, arXiv:11075441 M. Quiros, arXiv:hep-ph/9901312

Scalar potential T = 0

 $\left\lfloor \frac{1}{2} \right\rfloor$

$$v \Big|_{T=0}$$

$$M_h \Big|_{T=0}$$

$$\left[\frac{1}{2}c_{h}h^{2} + \frac{1}{2}c_{s}s^{2} + m_{3}s \right] T_{c}^{2}$$

$$= v_{EW}^{exp} = 246.22 \text{ GeV}$$

$$= M_h^{exp} = 125.10 \text{ GeV}$$

1

Scalar potential T = 0

 $-\left|\frac{1}{2}\right|$

$$v \Big|_{T=0}$$

$$M_h \Big|_{T=0}$$

$$\frac{1}{2}c_{h}h^{2} + \frac{1}{2}c_{s}s^{2} + m_{3}s T_{c}^{2}$$

 $= v_{EW}^{exp} = 246.22 \text{ GeV}$

Global minimum

$$= M_h^{exp} = 125.10 \text{ GeV}$$

3

Structure of the potential

Structure of the potential

Structure of the potential

Nucleation 300 250 - $\Gamma/V \sim e^{-S_3/T_N} \sim H(T_N)$ 200 - $S_3 / T_N \sim 140$ (GeV) 150 - \mathfrak{O} 100 -50 - $T_c \sim 87 \,\, {\rm GeV}$ 0 - 1000 -100A. V. Kotwal, J. M. No, M. J. Ramsey-Musolf & P. Winslow, arXiv:1605.06123 M. Carena, Z. Liu & Y. Wang, arXiv:1911.10206 J. Kozaczuk, M. J. Ramsey-Musolf & J. Shelton, arXiv:1911.10210

C. L. Wainwright, arXiv:1109.4189

P. Athron et al., arXiv:1901.03714 V. Guada, M. Nemevsek & M. Pintar, arXiv:2002.00881 P. Athron, C. Balazs, A. F. Y. Zhang, arXiv:2003.02859

Nucleation 300 250 - $\Gamma/V \sim e^{-S_3/T_N} \sim H(T_N)$ 200 - $S_3 / T_N \sim 140$ Seg 150 - $\boldsymbol{\mathcal{O}}$ 100 -50 - $T_c \sim 87 \,\, \mathrm{GeV}$ 0 - 1-100A. V. Kotwal, J. M. No, M. J. Ramsey-Musolf & P. Winslow, arXiv:1605.06123 M. Carena, Z. Liu & Y. Wang, arXiv:1911.10206 J. Kozaczuk, M. J. Ramsey-Musolf & J. Shelton, arXiv:1911.10210

