Constraining PBH with Photon Flux from ALPs

Yongsoo Jho^a, Tae Geun Kim^a, Jong-Chul Park^b, Seong Chan Park^a, Yeji Park^a

^a Department of Physics and IPAP, Yonsei University

^b Department of Physics and Institute of Quantum Systems (IQS), Chungnam National University

LIO International Conference and France-Korea STAR Workshop June 20, 2022

Introduction

- PBH generated in the very early universe is the one of candidates for dark matter. . Nature volume 253, pages 251–252 (1975)
- It releases the particles through evaporation. . Phys. Rev. D 13, 198 (1976)
- Through this predicted flux, we estimate the sensitivity to the primordial black hole abundance of experiments.
- Measurement of the photons in the range of $\rm MeV-GeV$ (currently COMPTEL, e-ASTROGAM in future) are providing the most stringent upper limit on PBH abundance.
- Photon travels in straight line, transparent after CMB, and there are many observable devices in a wide energy range.
- It is a topic that is being actively studied.
- Phys.Lett.B 808 (2020) 135624
- Phys. Rev. D 101, 123514 (2020)
- We figured out how to produce this photon flux more effective.

Introduction

Areas that covered by future detections are colored with a bit transparency, while areas that are not are we already have.

Hawking Radiation from PBHs

Hawking radiation is an approximately thermal particle emission with temperature

An uncharged, non-rotating Schwarzschild PBH

• the temperature of PBH

$$k_B T_{
m PBH} = rac{\hbar c^3}{8\pi G M_{
m PBH}} ~~ \sim 10.6 \left(rac{10^{15} {
m g}}{M_{
m PBH}}
ight) {
m MeV}$$

• Emission rates of *i* particle

$$rac{d^2 N_i}{dEdt} = rac{g_i}{2\pi} rac{\Gamma(T,M_{
m PBH})}{e^{(E+m_i)/k_BT_{
m PBH}}+1} \qquad \Gamma(T,M_{
m PBH})$$
: the graybody factor

• the lifetime of PBH

• Eur.Phys.J.C 82 (2022) 4, 384

$$au_{
m PBH} \sim 13.8 imes 10^9 {
m yr} \left(rac{M_{
m PBH}}{5 imes 10^{14} {
m g}}
ight)^3$$
 For the massless particles, $au_{
m PBH} = rac{5120 \pi G^2}{\hbar c^4} M_{
m PBH}^3$

• Phys. Rev. D 13, 198 (1976)

ALP decays to a photon pair

• ALP (Axion-Like Particle) :

- 1. SOLELY interact with 2 photons
- 2. mass and coupling are INDEPENDENT

$${\cal L}_{
m int} = -rac{g_{a\gamma\gamma}}{4} a F_{\mu
u} ilde{F}^{\mu
u}$$

• The ALP decay rate

$$\Gamma_{a\gamma\gamma}=rac{g_{a\gamma\gamma}^2m_a^3}{64\pi}$$

• The lifetime of ALP observed at lab frame

$$au_a^\prime \equiv \gamma au_a = rac{\gamma}{\Gamma_{a\gamma\gamma}} = rac{64\pi E_a}{g_{a\gamma\gamma}^2 m_a^4}$$

Extragalactic Contribution

We considered only the extragalactic contribution

- From detections, the fraction of PBH is a very small.
- \Rightarrow we focused on extragalactic contribution to accumulate a sufficient amount of signal
- Sensitivity in e-ASTROGAM is better for extragalactic contribution

E (MeV)	ΔE spectrum ^(a) (MeV)	PSF ^(b)	Effective area ^(c) (cm ²)	Inner Galaxy Backgr. rate (count s ⁻¹)	Inner Galaxy Sensitivity (ph cm ⁻² s ⁻¹)	Galactic Center ^(d) Sensitivity (ph cm ⁻² s ⁻¹)	Extragal. Backgr. rate (count s ⁻¹)	Extragal. Sensitivity 3σ (ph cm ⁻² s ⁻¹)
10	7.5 - 15	9.5°	215	3.4×10^{-2}	7.7×10^{-6}	1.3×10^{-5}	3.8×10^{-3}	2.6×10^{-6}
30	15 - 40	5.4°	846	1.6×10^{-2}	1.4×10^{-6}	2.4×10^{-6}	1.6×10^{-3}	4.3×10^{-7}
50	40 - 60	2.7°	1220	4.0×10^{-3}	4.6×10^{-7}	8.0×10^{-7}	3.4×10^{-4}	1.4×10^{-7}
70	60 - 80	1.8°	1245	1.3×10^{-3}	2.6×10^{-7}	4.5×10^{-7}	1.0×10^{-4}	7.2×10^{-8}
100	80 - 150	1.3°	1310	5.1×10^{-4}	1.6×10^{-7}	2.7×10^{-7}	3.2×10^{-5}	3.9×10^{-8}
300	150 - 400	0.51°	1379	4.8×10^{-5}	4.5×10^{-8}	7.8×10^{-8}	1.1×10^{-6}	6.9×10^{-9}
500	400 - 600	0.30°	1493	1.4×10^{-5}	2.2×10^{-8}	3.8×10^{-8}	1.8×10^{-7}	3.3×10^{-9}
700	600 - 800	0.23°	1552	6.3×10^{-6}	1.5×10^{-8}	2.5×10^{-8}	7.6×10^{-8}	3.2×10^{-9}
1000	800 - 2000	0.15°	1590	2.1×10^{-6}	8.3×10^{-9}	1.4×10^{-8}	2.1×10^{-8}	3.1×10^{-9}
3000	2000 - 4000	0.10°	1810	3.3×10^{-7}	2.9×10^{-9}	5.0×10^{-9}	2.9×10^{-9}	2.8×10^{-9}

• Experimental Astronomy 44 (2017) 25-82

Calculation Set Up

- $E_a(t_a)$: The energy of the ALP emitted by the evaporation of PBH at time t_a
- $\tilde{E}_a(t_{a\gamma\gamma})$: The redshift energy of $E_a(t_a)$ observed at time $t_{a\gamma\gamma}$
- $E'_{\gamma}(t_{a\gamma\gamma})$: The boosted energy of decay photon from ALP at time $t_{a\gamma\gamma}$
- E_{γ_0} : The energy of photon observed from Earth at t_0 , which is redshifted energy of E'_{γ}

Redshift Effect

Redshift effect for particles propagating in an expanding universe

$$V(t) \propto (1+z(t))^{-3}$$
, $p|_t \propto (1+z(t))^{-3}$

$$\begin{array}{l} \bullet \ \frac{n(t_1)}{n(t_2)} = \frac{V(t_2)}{V(t_1)} = \frac{(1+z(t_1))^3}{(1+z(t_2))^3} \ \Rightarrow \ n(t_1) = \left(\frac{1+z(t_1)}{1+z(t_2)}\right)^3 n(t_2) \\ \bullet \ \frac{p|_{t_1}}{p|_{t_2}} = \frac{(1+z(t_1))}{(1+z(t_2))} \ \Rightarrow \ p|_{t_1} = \frac{1+z(t_1)}{1+z(t_2)} p|_{t_2} \end{array}$$

$$egin{aligned} E|_{t_1} &= rac{1+z(t_1)}{1+z(t_2)} E|_{t_2}: ext{for massless particles} \ E|_{t_1} &= \sqrt{m^2 + rac{1+z(t_1)}{1+z(t_2)}} p|_{t_2} = \sqrt{m^2 + rac{1+z(t_1)}{1+z(t_2)}} (E|_{t_2}^2 - m^2) &: ext{for massive particles} \end{aligned}$$

STEP 1 The number density of ALPs with time

The number density of ALPs with energy \tilde{E}_a at time $t_{a\gamma\gamma}$

$$n_a(ilde{E}_a,t_{a\gamma\gamma}) = \int_{(t_a)_{
m min}}^{t_{a\gamma\gamma}} dT \; \left(rac{1+z(t_{a\gamma\gamma})}{1+z(T)}
ight)^3 imes rac{\widetilde{dn_a}}{dT}(ilde{E}_a,t_{a\gamma\gamma};T)$$

$$\bullet \quad \widetilde{\frac{dn_a}{dT}}(\tilde{E}_a,t_{a\gamma\gamma};T) = \frac{dn_a}{dT}(E_a,T) \times P_{\rm surv}(t_{a\gamma\gamma}-T) \qquad |P_{\rm surv}(\Delta t) = e^{-\frac{\Delta t}{\tau_a'(E)}}$$

: The number density of ALPs with \tilde{E}_a at $t_{a\gamma\gamma}$ emitted from PBH at T

• $\frac{dn_a}{dT}(E_a, t_a)$

: The emitted number density of ALPs with E_a at t_a

- During the ALPs emission period, $T = \left[(t_a)_{\min} \,, t_{a\gamma\gamma}
 ight]$
- By using the logarithmic energy bin $\Delta E \simeq E$: $\frac{dn_a}{dT}(E_a,T) \simeq n_{\rm PBH}(T) \cdot E_a \frac{d^2N_a}{dEdT}\Big|_{E=E_a}$

$$\begin{split} \frac{d}{dt_{a\gamma\gamma}} n_a(\tilde{E}_a, t_{a\gamma\gamma}) & \quad \text{o Change of } n_{PBH} \text{ by redshift} \\ = & \left[n_{\text{PBH}}(t_0) \frac{\partial}{\partial t_{a\gamma\gamma}} \left\{ (1 + z(t_{a\gamma\gamma}))^3 \right\} \int_{(t_a)_{\min}}^{t_{a\gamma\gamma}} dT \left[E_a \frac{d^2 N_a}{dEdT} \right]_{E=E_a} \times e^{-\frac{t_{a\gamma\gamma} - T}{\tau_a'(E_a)}} \right] \\ & \quad + n_{\text{PBH}}(t_0)(1 + z(t_{a\gamma\gamma}))^3 \cdot \tilde{E}_a \frac{d^2 N_a}{dEdt_{a\gamma\gamma}} \right]_{E=\tilde{E}_a} \\ & \quad + n_{\text{PBH}}(t_0)(1 + z(t_{a\gamma\gamma}))^3 \int_{(t_a)_{\min}}^{t_{a\gamma\gamma}} dT \left[\frac{\partial}{\partial t_{a\gamma\gamma}} \left\{ E_a \frac{d^2 N_a}{dEdT} \right]_{E=E_a} \right\} \times e^{-\frac{t_{a\gamma\gamma} - T}{\tau_a'(E_a)}} \\ & \quad + n_{\text{PBH}}(t_0)(1 + z(t_{a\gamma\gamma}))^3 \int_{(t_a)_{\min}}^{t_{a\gamma\gamma}} dT \left[E_a \frac{d^2 N_a}{dEdT} \right]_{E=E_a} \\ & \quad + n_{\text{PBH}}(t_0)(1 + z(t_{a\gamma\gamma}))^3 \int_{(t_a)_{\min}}^{t_{a\gamma\gamma}} dT \left[E_a \frac{d^2 N_a}{dEdT} \right]_{E=E_a} \\ & \quad + n_{\text{PBH}}(t_0)(1 + z(t_{a\gamma\gamma}))^3 \int_{(t_a)_{\min}}^{t_{a\gamma\gamma}} dT \left[E_a \frac{d^2 N_a}{dEdT} \right]_{E=E_a} \\ & \quad + n_{\text{PBH}}(t_0)(1 + z(t_{a\gamma\gamma}))^3 \int_{(t_a)_{\min}}^{t_{a\gamma\gamma}} dT \left[E_a \frac{d^2 N_a}{dEdT} \right]_{E=E_a} \\ & \quad + n_{\text{PBH}}(t_0)(1 + z(t_{a\gamma\gamma}))^3 \int_{(t_a)_{\min}}^{t_{a\gamma\gamma}} dT \left[E_a \frac{d^2 N_a}{dEdT} \right]_{E=E_a} \\ & \quad + n_{\text{PBH}}(t_0)(1 + z(t_{a\gamma\gamma}))^3 \int_{(t_a)_{\min}}^{t_{a\gamma\gamma}} dT \left[E_a \frac{d^2 N_a}{dEdT} \right]_{E=E_a} \\ & \quad + n_{\text{PBH}}(t_0)(1 + z(t_{a\gamma\gamma}))^3 \int_{(t_a)_{\min}}^{t_{a\gamma\gamma}} dT \left[E_a \frac{d^2 N_a}{dEdT} \right]_{E=E_a} \\ & \quad + n_{\text{PBH}}(t_0)(1 + z(t_{a\gamma\gamma}))^3 \int_{(t_a)_{\min}}^{t_{a\gamma\gamma}} dT \left[E_a \frac{d^2 N_a}{dEdT} \right]_{E=E_a} \\ & \quad + n_{\text{PBH}}(t_0)(1 + z(t_{a\gamma\gamma}))^3 \int_{(t_a)_{\min}}^{t_{a\gamma\gamma}} dT \left[E_a \frac{d^2 N_a}{dEdT} \right]_{E=E_a} \\ & \quad + n_{\text{PBH}}(t_0)(1 + z(t_{a\gamma\gamma}))^3 \int_{(t_a)_{\min}}^{t_{a\gamma\gamma}} dT \left[E_a \frac{d^2 N_a}{dEdT} \right]_{E=E_a} \\ & \quad + n_{\text{PBH}}(t_0)(1 + z(t_{a\gamma\gamma}))^3 \int_{(t_a)_{\min}}^{t_{a\gamma\gamma}} dT \left[E_a \frac{d^2 N_a}{dEdT} \right]_{E=E_a} \\ & \quad + n_{\text{PBH}}(t_0)(1 + z(t_{a\gamma\gamma}))^3 \int_{(t_a)_{\min}}^{t_{a\gamma\gamma}} dT \left[E_a \frac{d^2 N_a}{dE} \right]_{E=E_a} \\ & \quad + n_{\text{PBH}}(t_0)(1 + z(t_{a\gamma\gamma}))^3 \int_{(t_a)_{\min}}^{t_{a\gamma\gamma}} dT \left[E_a \frac{d^2 N_a}{dE} \right]_{E=E_a} \\ & \quad + n_{\text{PBH}}(t_0)(1 + z(t_{a\gamma\gamma}))^3 \int_{(t_a)_{\max}^{t_{a\gamma\gamma}}}^{t_{a\gamma\gamma}} dT \left[E_a \frac{d^2 N_a}{dE} \right]_{E=E_a} \\ & \quad + n_{\text{PBH}}(t_0)(1 + z(t_{a\gamma\gamma}))^3 \int_{(t_a)_{\max}^{t_{a\gamma\gamma}}}^{t_{a\gamma\gamma}} dT \left[E_a \frac{d^2$$

- During the ALPs emission period, $T = \left[(t_a)_{\min} \, , t_{a\gamma\gamma}
 ight]$
- By using the logarithmic energy bin $\Delta E \simeq E$: $\frac{dn_a}{dT}(E_a,T) \simeq n_{\rm PBH}(T) \cdot E_a \frac{d^2N_a}{dEdT}\Big|_{E=E_a}$

$$\begin{split} \frac{d}{dt_{a\gamma\gamma}} n_a(\tilde{E}_a, t_{a\gamma\gamma}) \\ &= n_{\text{PBH}}(t_0) \frac{\partial}{\partial t_{a\gamma\gamma}} \bigg\{ (1 + z(t_{a\gamma\gamma}))^3 \bigg\} \int_{(t_a)_{\min}}^{t_{a\gamma\gamma}} dT \ E_a \frac{d^2 N_a}{dEdT} \bigg|_{E=E_a} \times e^{-\frac{t_{a\gamma\gamma} - T}{\tau_a'(E_a)}} \\ &+ \bigg\{ n_{\text{PBH}}(t_0)(1 + z(t_{a\gamma\gamma}))^3 \cdot \tilde{E}_a \frac{d^2 N_a}{dEdt_{a\gamma\gamma}} \bigg|_{E=\tilde{E}_a} \bigg\} \quad \text{o ALPs emission at } t_{a\gamma\gamma} \\ &+ n_{\text{PBH}}(t_0)(1 + z(t_{a\gamma\gamma}))^3 \int_{(t_a)_{\min}}^{t_{a\gamma\gamma}} dT \ \frac{\partial}{\partial t_{a\gamma\gamma}} \bigg\{ E_a \frac{d^2 N_a}{dEdT} \bigg|_{E=E_a} \bigg\} \times e^{-\frac{t_{a\gamma\gamma} - T}{\tau_a'(E_a)}} \\ &+ n_{\text{PBH}}(t_0)(1 + z(t_{a\gamma\gamma}))^3 \int_{(t_a)_{\min}}^{t_{a\gamma\gamma}} dT \ E_a \frac{d^2 N_a}{dEdT} \bigg|_{E=E_a} \bigg\} \times e^{-\frac{t_{a\gamma\gamma} - T}{\tau_a'(E_a)}} \\ &+ n_{\text{PBH}}(t_0)(1 + z(t_{a\gamma\gamma}))^3 \int_{(t_a)_{\min}}^{t_{a\gamma\gamma}} dT \ E_a \frac{d^2 N_a}{dEdT} \bigg|_{E=E_a} \times \frac{\partial}{\partial t_{a\gamma\gamma}} \bigg\{ e^{-\frac{t_{a\gamma\gamma} - T}{\tau_a'(E_a)}} \bigg\} \end{split}$$

- During the ALPs emission period, $T = \left[(t_a)_{\min} \, , t_{a\gamma\gamma}
 ight]$
- By using the logarithmic energy bin $\Delta E \simeq E$: $\left. \frac{dn_a}{dT}(E_a,T) \simeq n_{\mathrm{PBH}}(T) \cdot E_a \frac{d^2 N_a}{dEdT} \right|_{E=E_a}$

$$\begin{split} \frac{d}{dt_{a\gamma\gamma}} n_a(\tilde{E}_a, t_{a\gamma\gamma}) \\ &= n_{\text{PBH}}(t_0) \frac{\partial}{\partial t_{a\gamma\gamma}} \bigg\{ (1 + z(t_{a\gamma\gamma}))^3 \bigg\} \int_{(t_a)_{\min}}^{t_{a\gamma\gamma}} dT \ E_a \frac{d^2 N_a}{dEdT} \bigg|_{E=E_a} \times e^{-\frac{t_{a\gamma\gamma} - T}{\tau_a'(E_a)}} \\ &+ n_{\text{PBH}}(t_0)(1 + z(t_{a\gamma\gamma}))^3 \cdot \tilde{E}_a \frac{d^2 N_a}{dEdt_{a\gamma\gamma}} \bigg|_{E=\tilde{E}_a} \cdot \begin{array}{c} \text{Change in the number of ALPs} \\ \text{emitted from one PBH by redshift} \\ &+ \left[n_{\text{PBH}}(t_0)(1 + z(t_{a\gamma\gamma}))^3 \int_{(t_a)_{\min}}^{t_{a\gamma\gamma}} dT \ \frac{\partial}{\partial t_{a\gamma\gamma}} \bigg\{ E_a \frac{d^2 N_a}{dEdT} \bigg|_{E=E_a} \bigg\} \times e^{-\frac{t_{a\gamma\gamma} - T}{\tau_a'(E_a)}} \\ &+ n_{\text{PBH}}(t_0)(1 + z(t_{a\gamma\gamma}))^3 \int_{(t_a)_{\min}}^{t_{a\gamma\gamma}} dT \ E_a \frac{d^2 N_a}{dEdT} \bigg|_{E=E_a} \bigg\} \times e^{-\frac{t_{a\gamma\gamma} - T}{\tau_a'(E_a)}} \bigg\} \end{split}$$

- During the ALPs emission period, $T = \left[(t_a)_{\min} \, , t_{a\gamma\gamma}
 ight]$
- By using the logarithmic energy bin $\Delta E \simeq E$: $\left. \frac{dn_a}{dT}(E_a,T) \simeq n_{\rm PBH}(T) \cdot E_a \frac{d^2N_a}{dEdT} \right|_{E=E_a}$

$$\begin{split} \frac{d}{dt_{a\gamma\gamma}} n_a(\tilde{E}_a, t_{a\gamma\gamma}) \\ &= n_{\text{PBH}}(t_0) \frac{\partial}{\partial t_{a\gamma\gamma}} \left\{ (1 + z(t_{a\gamma\gamma}))^3 \right\} \int_{(t_a)_{\min}}^{t_{a\gamma\gamma}} dT \left[E_a \frac{d^2 N_a}{dEdT} \right]_{E=E_a} \times e^{-\frac{t_{a\gamma\gamma} - T}{\tau_a'(E_a)}} \\ &+ n_{\text{PBH}}(t_0)(1 + z(t_{a\gamma\gamma}))^3 \cdot \tilde{E}_a \frac{d^2 N_a}{dEdt_{a\gamma\gamma}} \right]_{E=\tilde{E}_a} \\ &+ n_{\text{PBH}}(t_0)(1 + z(t_{a\gamma\gamma}))^3 \int_{(t_a)_{\min}}^{t_{a\gamma\gamma}} dT \left[\frac{\partial}{\partial t_{a\gamma\gamma}} \left\{ E_a \frac{d^2 N_a}{dEdT} \right]_{E=E_a} \right\} \times e^{-\frac{t_{a\gamma\gamma} - T}{\tau_a'(E_a)}} \\ \frac{dn_a^{\text{dec}}}{dt_{a\gamma\gamma}} (\tilde{E}_a, t_{a\gamma\gamma}) \equiv + \left[n_{\text{PBH}}(t_0)(1 + z(t_{a\gamma\gamma}))^3 \int_{(t_a)_{\min}}^{t_{a\gamma\gamma}} dT \left[E_a \frac{d^2 N_a}{dEdT} \right]_{E=E_a} \right] \times \frac{\partial}{\partial t_{a\gamma\gamma}} \left\{ e^{-\frac{t_{a\gamma\gamma} - T}{\tau_a'(E_a)}} \right\} \\ \bullet \text{ Decay ALPs = Photon Production} \end{split}$$

Boost Effect

Lorentz transformation

STEP 3 Boosted photon number density after decay

STEP 3 Boosted photon number density after decay

• Phys.Rev. D88 (2013) 5, 057701

STEP 4 The expected differential photon flux with respect to energy

$$n_{\gamma_0}(E_{\gamma_0},t_0) = \int_{(t_{a\gamma\gamma})_{\min}}^{\min(au_{ ext{PBH}},t_0)} dt_{a\gamma\gamma} (1+z(t_{a\gamma\gamma}))^{-3} imes rac{dn_{\gamma}}{dt_{a\gamma\gamma}} (E'_{\gamma},t_{a\gamma\gamma})$$

$$The expected photon spectral flux$$

The expected photon spectral flux

$$rac{dF_{\gamma_0}}{dE_{\gamma_0}}=rac{n_{\gamma_0}}{E_{\gamma_0}}\qquad$$
 in the natur

al units

The Spectral Photon Flux

The Spectral Photon Flux

Differential Flux w.r.t photon energy

- $m_{\mathrm{PBH}} = 1 imes 10^{16} \mathrm{~g}$
- $g_{a\gamma\gamma} = [10^{-11}, 10^{-15}, 10^{-17}, 10^{-18}, 10^{-19}] \ {
 m GeV}^{-1}$
- The black line : Direct photon (EG) from PBH
- The green line over the Direct photon:

the concave region

Comparision of examples

m_a	$1.0 \; \mathrm{MeV}$	$10 { m MeV}$
Peak Energy (PBH $\rightarrow a \rightarrow \gamma\gamma$)	Lower	Higher
D. Flux (PBH $\rightarrow a \rightarrow \gamma\gamma$)	Higher	Lower

There is a region where the generated photon in our model exceed the direct photon.

e-ASTROGAM Sensitivity

The exceed area seen earlier exists on the scale by MeV

- e-ASTROGAM open the window of ${\rm MeV}$ range
- One-two orders of magnitude improvement in sensitivity comparing to COMPEL experiment

e-ASTROGAM Sensitivity

e-ASTROGAM sensitivity

Gamma rays in the ${\rm MeV}-{\rm GeV}$ range

E (MeV)	$\Delta E \ ({ m MeV})$	Extragal. Sensitivity 3σ (ph cm $^{-2}$ s $^{-1}$
10	7.5 - 15	2.6e-6
30	15 - 40	4.3e-7
50	40 - 60	1.4e-7
70	60 - 80	7.2e-8
100	80 - 150	3.9e-8
300	150 - 400	6.9e-9
500	400 - 600	3.3e-9
700	600 - 800	3.2e-9
1000	800 - 2000	3.1e-9
3000	2000 - 4000	2.8e-9

If C' < C effectively \Rightarrow Enhanced!

Result

Summary

- PBH is a good source for emitting both SM / BSM particles through hawking radiation.
- For numerical calculations, the emission rate of particles containing a complex graybody factor was calculated using the program BlackHawk.
- Considering the redshift and boost effects of particles flying across the expanding universe, we formulate the amount of photon flux observed from the Earth.
- The process (PBH $\rightarrow a \rightarrow \gamma \gamma$) can significantly increase the amount of photon flux some parameter space.
- Through the sensitivity of e-ASTROGAM, which is 1-2 orders of magnitude better than the previous observation, Our model imposes the stringent constraint of $f_{\rm PBH}$ in the $(g_{a\gamma\gamma} m_a)$ parameter space.