

Search for light vector boson using J/Ψ at BESIII and Belle I

Kayoung Ban (Yonsei Univ.)

Collaborated with Yongsoo Jho, Youngjoon Kwon,

Seong Chan Park, Seokhee Park, and Po-Yan Tseng

Based on JHEP 04 (2021) 091

LIO International Conference and France-Korea STAR Workshop on "Fundamental Forces from Colliders to Gravitational Waves" 2022.06.20

Introduction

- The Standard Model (SM) is a successful theory describing the physics at particle level and their interactions.
- There have been discussions of extending the SM by gauging the lepton number, e.g. $L_{\mu} L_{\tau}$ or $L_e L_{\tau}$, mainly intending to explain the muon anomalous magnetic moments $(g 2)_{\mu}$.
- This gives rise to a **leptophilic light vector boson X.**
- The X boson may couple to the SM quark sector via interactions with heavy vector-like fermions mixing with SM quark.

- Recent result of ⁸Be^{*} anomaly from Atomki experiment prefers a 17 MeV vector boson that couples to the electrons, u- and d- quarks.
- High luminosity lepton colliders, such as BESIII and Belle II, provide less QCD background than hadron colliders, making them ideal environments to search for sub-GeV particles with feeble couplings to SM particles.

Introduction

- In this work, we focus on the light vector boson search in association with J/Ψ at **BESIII** and **Belle II**
- At **BESIII**, if the vector boson is lighter than about 110 MeV, it can be produced through $J/\Psi \rightarrow \eta_c + X$ followed by the $X \rightarrow e^+e^-$ or $X \rightarrow \nu\bar{\nu}$ decays.
- At Belle II, the process $e^+e^- \rightarrow \ell^+\ell^- J/\Psi \rightarrow \ell^+\ell^-\eta_c X \rightarrow \ell^+\ell^-\eta_c e^+e^-$, in which J/Ψ and η_c are inferred by the recoil masses of $\ell^+\ell^-$ and $\ell^+\ell^-e^+e^-$, respectively

 J/Ψ decay channel

- The alternative channel at Belle II is $e^+e^- \rightarrow X + J/\Psi$, which is only relevant to the X boson-electron coupling.
- Due to higher center-of-mass (CM) energy and J/Ψ mass, the boosted X can travel several millimeters before it decays into e^+e^- , thereby resulting in effective suppression of background.

 J/Ψ associated channel

Model – with constraints

• The vectorlike interactions of the X boson with the SM fermions, f, are introduced by the effective Lagrangian:

$$\mathcal{L} \supset -eX_{\mu} \sum_{f} \varepsilon_{f} \bar{f} \gamma^{\mu} f$$

If the new boson X is responsible for the recent Atomki anomaly via the process
 ⁸Be + X → ⁸Be + e⁺e⁻, its mass should be m_X ≃ 17 MeV and couples to the first
 generation quarks with the coupling strengths:

$$|\varepsilon_u + \varepsilon_d| \simeq 3.7 \times 10^{-3},$$

• For the couplings to first generation quarks, the strong constraint from NA48/2 for $\pi^0 \to X\gamma$ requires protophobic condition

$$|2\varepsilon_u + \varepsilon_d| < 8 \times 10^{-4}$$

• Taking both relations into account, we finally get the preferred value for up-type and down-type quark couplings:

$$\varepsilon_u \simeq \pm 3.7 \times 10^{-3}, \ \varepsilon_d \simeq \mp 7.4 \times 10^{-3},$$

• The coupling to the leptons, especially to electron, are stringently constrained by the beam dump experiment SLAC E141 and the anomalous magnetic moment of the electron (g-2)

$$4.2 \times 10^{-4} \lesssim |\varepsilon_e| \lesssim 1.4 \times 10^{-3}$$

Model J/Ψ decay channel

- Here, we assume the X boson has <u>universal coupling to each quark</u> <u>generation</u>, so that if $2m_e \lesssim m_X \lesssim m_{J/\Psi} - m_{\eta_c} \simeq 113$ MeV, the decay process $J/\Psi \rightarrow \eta_c + X \rightarrow \eta_c + e^+e^-$ is kinematic allowed and can be used to search for the 17 MeV or other light vector bosons.
- Lepton colliders such as **BESIII** and **Belle II** can copiously produce J/Ψ and therefore are sensitive to the J/Ψ rare decay channels.

• The dominating background comes from the off-shell photon contribution, $J/\Psi \rightarrow \eta_c + \gamma^* \rightarrow \eta_c + e^+e^-$

Model J/Ψ decay channel **BESIII**

• In order to exclusively reconstruct the $J/\Psi \rightarrow \eta_c e^+ e^-$ decays, we have to consider η_c decay modes that can be fully reconstructed with a reasonable background contamination.

TABLE I. The branching fractions of η_c decay modes with corresponding efficiencies.

6

Branching Ratio	Detection efficiency
$\overline{\mathrm{Br}(\eta_c \to K^+ K^- \pi^0) = (1.15 \pm 0.12)\%}$	18.82%
$Br(\eta_c \to K_S^0 K^{\pm} \pi^{\mp}) = (2.60 \pm 0.21)\%$	21.22%
Br $(\eta_c \to 2(\pi^+\pi^-\pi^0)) = (15.2 \pm 1.8)\%$	3.07%

- The overall efficiency ϵ of the above three η_c modes is obtained by adding the individual efficiencies weighted by their corresponding branching fractions: $\epsilon = 1.23\%$
- And taking 17 MeV X boson for ⁸Be* anomaly, we can summarize the significance in Table II

	TABLE	II. For $N_{J/\Psi} = 10$	0^{11} , and chose fav	voured parameters	$\varepsilon_c = \varepsilon_u = 3.7 \times 10^{-10}$	$10^{-3}, \ \varepsilon_e = 10^{-3},$			
$\int_{C}^{(m_X + \sigma_m)^2} dq^2 \frac{d\Gamma_{\eta_c X^*}}{dq^2}$	$m_X =$	$J_X = 17 \text{ MeV}$ for ⁸ Be [*] anomaly, the significances of signal to background from $J/\Psi \rightarrow \eta_c e^+ e^-$ ith various energy resolutions of detector and 1.23% η_c reconstruction efficiency.							
$S = N_{J/\Psi} \times \frac{\Gamma_{J/\Psi}}{\Gamma_{J/\Psi}}$	with va								
$B = N_{L/L} \times \frac{\int_{(m_X - \sigma_m)^2}^{(m_X + \sigma_m)^2} dq^2 \frac{d\Gamma_{\eta_c \gamma^*}}{dq^2}}{dq^2}$		$\sigma_m = 1 \text{ MeV}$	$\sigma_m {=}2 { m MeV}$	$\sigma_m {=}5~{ m MeV}$	$\sigma_m = 10 \text{ MeV}$	$\sigma_m = 15 \text{ MeV}$			
$\Gamma_{J/\Psi}$	S	188	263	277	277	277			
$\Gamma_{J/\Psi} = 92.9 \mathrm{keV}$	В	3686	7399	18989	42436	87640			
,	S/\sqrt{B}	3.10	3.06	2.01	1.34	0.94			

Model J/Ψ decay channel **BESIII**

• In order to exclusively reconstruct the $J/\Psi \rightarrow \eta_c e^+ e^-$ decays, we have to consider η_c decay modes that can be fully reconstructed with a reasonable background contamination.

TABLE I. The branching fractions of η_c decay modes with corresponding efficiencies.

Branching Ratio	Detection efficiency
$\overline{\mathrm{Br}(\eta_c \to K^+ K^- \pi^0) = (1.15 \pm 0.12)\%}$	18.82%
$Br(\eta_c \to K_S^0 K^{\pm} \pi^{\mp}) = (2.60 \pm 0.21)\%$	21.22%
Br $(\eta_c \to 2(\pi^+\pi^-\pi^0)) = (15.2 \pm 1.8)\%$	3.07%

- The overall efficiency ϵ of the above three η_c modes is obtained by adding the individual efficiencies weighted by their corresponding branching fractions: $\epsilon = 1.23\%$
- And taking 17 MeV X boson for ⁸Be* anomaly, we can summarize the significance in Table II

		IADLE	TABLE II. For $N_{J/\Psi} = 10^{-4}$, and chose havoured parameters $\varepsilon_c = \varepsilon_u = 5.7 \times 10^{-4}$, $\varepsilon_e = 10^{-4}$,							
S = N	$\int_{(m_X - \sigma_m)^2}^{(m_X + \sigma_m)^2} dq^2 \frac{d\Gamma_{\eta_c X^*}}{dq^2}$	$m_X = 2$	$u_X = 17$ MeV for ⁸ Be [*] anomaly, the significances of signal to background from $J/\Psi \rightarrow \eta_c e^+ e^-$							
$S = N_{J/\Psi} \times$	$\Gamma_{J/\Psi}$	with va	with various energy resolutions of detector and $1.23\% \eta_c$ reconstruction efficiency.							
$B - N_{L/T} \times$	$\frac{\int_{(m_X - \sigma_m)^2}^{(m_X + \sigma_m)^2} dq^2 \frac{d\Gamma_{\eta_c \gamma^*}}{dq^2}}{dq^2}$		$\sigma_m = 1 \text{ MeV}$	$\sigma_m = 2 \text{ MeV}$	$\sigma_m = 5 \text{ MeV}$	$\sigma_m = 10 \text{ MeV}$	$\sigma_m {=} 15 \text{ MeV}$			
$D = N_{J/\Psi} \times \frac{\Gamma_{J/\Psi}}{\Gamma_{J/\Psi}}$	S	188	263	277	277	277				
$\Gamma_{J/\Psi}$	$= 92.9 \mathrm{keV}$	В	3686	7399	18989	42436	87640			
- / -		S/\sqrt{B}	3.10	3.06	2.01	1.34	0.94			

TADLE II For N 10¹¹ and share foregoing tensor tensor $z = 2.7 \times 10^{-3}$

10 - 3

Model J/Ψ decay channel **BESIII**

- For general light vector boson searches through $J/\Psi \rightarrow \eta_c e^+ e^-$, we show the variation of the expected significance over $(m_X, \varepsilon_c, \varepsilon_e)$
- The red boxes indicate the preferred regions for ${}^{8}\mathrm{Be}^{*}$ anomaly.

- The alternative way to reconstruct η_c from $J/\Psi \to \eta_c e^+ e^-$ at **BESIII** is using the recoil of $e^+ e^-$.
- With an improvement of low-energy electron identification in the future, the **BESIII** with $N_{J/\Psi} = 10^{11}$ can reach the sensitivity of $|\varepsilon_c| \simeq 10^{-3}$.

Cross section estimation

For vector meson J/Ψ , the partial width is given by the formula

$$\Gamma_{J/\Psi \to e^+e^-} = \frac{g_{J/\Psi ee}^2}{12\pi} m_{J/\Psi} \left(1 + \frac{2m_e^2}{m_{J/\Psi}^2} \right) \sqrt{1 - \frac{4m_e^2}{m_{J/\Psi}^2}}$$
$$\Gamma_{J/\Psi \to e^+e^-} = 5.53 \text{ keV} \implies g_{J/\Psi ee} = 8.2048 \times 10^{-3}$$

Model J/Ψ decay channel Belle II

Cross section estimation Event generation and detector Simulation

With the design integrated luminosity $L = 50 \text{ ab}^{-1}$, we estimate $N_{J/\Psi} = 1.75 \times 10^7$ events for $e^+e^- \rightarrow \gamma^* + J/\Psi \rightarrow \ell^+\ell^- J/\Psi$ at Belle II.

$$S = L \times \sigma(e^+e^- \to \ell^+\ell^- J/\Psi) \times \operatorname{Br}(J/\Psi \to \eta_c X^* \to \eta_c e^+e^-) \simeq 28.2 \left(\frac{\varepsilon_c}{10^{-2}}\right)^2$$
$$B = L \times \sigma(e^+e^- \to \ell^+\ell^- J/\Psi) \times \operatorname{Br}(J/\Psi \to \eta_c \gamma^* \to \eta_c e^+e^-) \simeq 1772$$

- The e^+e^- invariant mass (left) and $e^+e^-\ell^+\ell^-$ recoil mass (right) distributions for the parton level Monte-Carlo simulation data with the smearing effect.
- We give the Gaussian smearing effect with the momentum resolution

$$\sigma_{p_{\ell^{\pm}}}/p_{\ell^{\pm}} = 0.005$$

on the parton level data for our event analysis.

Model J/Ψ decay channel Belle II

[Baseline Cuts]

• To simulate the effects of the Belle II detector, we apply the following baseline cuts: $|\eta_{l^{\pm}}^*| \leq 1.60$ in the CM frame, $|E_{\mu^{\pm}}| \geq 0.6$ GeV, and $|E_{e^{\pm}}| \geq 0.06$ GeV in the lab frame.

Table 3. Signal and background events of $e^+e^- \rightarrow \ell^+\ell^-e^+e^-\eta_c$ after cuts at Belle II.

Sensitivity

Luminosity	$50 {\rm ~ab^{-1}}$	100 ab^{-1}	200 ab^{-1}
$ arepsilon_c $	$\gtrsim 1.76 \times 10^{-2}$	$\gtrsim 1.48\times 10^{-2}$	$\gtrsim 1.24 \times 10^{-2}$

Table 4. Sensitivities on ε_c of 17 MeV X boson from $\ell^+\ell^- J/\Psi \to \ell^+\ell^- e^+ e^- \eta_c$ search at Belle II with luminosities 50, 100, and 200 ab⁻¹. Here we require $S/\sqrt{B} = 2$.

- **Mode** J/Ψ associated channel Belle II
- $e^+e^- \to X + J/\Psi \to e^+e^- + J/\Psi$
- The X boson can be boosted from the process $e^+e^- \rightarrow X + J/\Psi$ and travels several millimeters before decaying into e^+e^- in the Belle II detector.

• If the displaced vertex is between $2 \text{ mm} \le d_{xy} \le 8 \text{ mm}^*$, which is inside the beam pipe, and outside the interaction region, it provides excellent vertex reconstruction and almost free from SM backgrounds.

Model

[Baseline Cuts]

- To simulate the effects of the Belle II detector, we apply the following baseline cuts: $|\eta_{l^{\pm}}^*| \leq 1.60$ in the CM frame, $|E_{\mu^{\pm}}| \geq 0.6$ GeV, and $|E_{e^{\pm}}| \geq 0.06$ GeV in the lab frame.
- With the baseline cuts and $2 \text{ mm} \le d_{xy} \le 8 \text{ mm}$, we estimate the signal sensitivity by considering two cases:

(i) explicitly reconstructing $J/\Psi \rightarrow \ell^+ \ell^-$ ($e^+ e^- \ell^+ \ell^-$ channel)

(ii) using the recoil mass of $X \to e^+e^-$ to infer J/Ψ (e^+e^- channel)

$$\sigma(e^+e^- \to X + J/\Psi) = 2.77 \times 10^{-2} \times \left(\frac{\varepsilon_e}{10^{-3}}\right)^2 \text{ fb}$$
¹³

Mode J/Ψ associated channel Belle II

• The displaced e^+e^- vertex searches can probe the 17 MeV X boson in the region

 $2.5 \times 10^{-4} \le \varepsilon_e \le 8.0 \times 10^{-4}$

with significance larger than **2** by assuming near-zero background B = 0.1 and it covers the ε_e region preferred by Atomki.

e^+	e^{-}	channel	

$\varepsilon_e/10^{-4}$	8.0	7.0	5.0	4.0	3.0	2.0	1.0
Baseline $Cuts(\%)$	17.6	17.6	17.6	17.6	17.6	17.6	17.6
$2\mathrm{mm} < d_{xy} < 8\mathrm{mm}(\%)$	1.6	5.3	12.3	12.9	7.4	2.3	0.5
N_S	14.6	35.7	42.7	28.7	9.23	1.28	0.07
Significance $(B = 0.1)$	$> 5\sigma$					2.2σ	0.4σ
Significance $(B = 1)$	$> 5\sigma$					1.6σ	0.9σ

Table 6. The same as table 5, but using the e^+e^- channel.

• While we expect less than **one** signal event with the currently available Belle data sample of 1 ab^{-1} , we can start exploring the Atomki preferred region within a few years once Belle II accumulates data sample of 10 ab^{-1} or more.

Model J/Ψ decay channel J/Ψ associated channel

The yellow (green) contour corresponds $\geq 2\sigma$ significance assuming SM background B = 0.1 (B = 1) from e^+e^- channel at Belle II with 50 ab^{-1} luminosity, which probes rest of the favor parameter region of Atomki (red vertical band). e^+e^- channel e^+e^-

• This study can probe the parameter region of $5 \text{ MeV} \le m_X \le 100 \text{ MeV}$ and $1.0 \times 10^{-4} \le \varepsilon_e \le 3 \times 10^{-3}$, which have not been constrained by any existing experiments.

 e^-, μ^-

 J/Ψ

Summary

- We propose several studies using J/Ψ at lepton colliders such as Belle II and BESIII, to search for light vector boson around the mass range suggested by the ⁸Be^{*} anomaly of the ATOMKI experiment.
- At **BESIII**, the $J/\Psi \rightarrow \eta_c X \rightarrow \eta_c e^+ e^-$ channel with the currently available sample of $N_{J/\Psi} = 10^{10}$ and effective η_c reconstruction efficiency of 1.23%, we can exclude the region $|\varepsilon_c| \gtrsim 5 \times 10^{-3}$ for $m_X = 17 \text{ MeV}$.
- On the other hand at Belle II with higher CM energy, we propose to study the process $e^+e^- \rightarrow \ell^+\ell^- J/\Psi$ followed by $J/\Psi \rightarrow \eta_c X \rightarrow \eta_c e^+e^-$ and this channel can yield the sensitivity of $|\varepsilon_c| \gtrsim 1.8 \times 10^{-2}$ at $m_X = 17 \text{ MeV}$.
- Alternatively, we can study the process e⁺e⁻ → X + J/Ψ → e⁺e⁻ℓ⁺ℓ⁻ at Belle II and the X boson is boosted and produce displaced vertex of X → e⁺e⁻ which is longer than several millimeters.
- Selecting the $2 \text{ mm} \le d_{xy} \le 8 \text{ mm}$ window and requiring $> 2\sigma$ significance, it gives the sensitivity $2.0 \times 10^{-4} \le |\varepsilon_e| \le 8.0 \times 10^{-4}$ at $m_X = 17 \text{ MeV}$ for 50 ab^{-1} luminosity and covers most of the favored signal region from the claimed ⁸Be^{*} anomaly.
- Extending the range of the X boson mass, this method can cover the unprecedented parameter space of $9 \text{ MeV} \le m_X \le 100 \text{ MeV}$ and $1.0 \times 10^{-4} \le |\varepsilon_e| \le 10^{-3}$.

Thank you for your attention

Appendix

 $\Gamma(J/\Psi \rightarrow \eta_c \gamma) = 1.5793 \text{ keV}, \ m_{J/\Psi} = 3.0969 \text{ GeV}, \text{ and } m_{\eta_c} = 2.9839 \text{ GeV}$

20

Model J/Ψ decay channel

• Starting from the partial width of J/Ψ radiative decay

$$\Gamma(J/\Psi \to \eta_c \gamma) = \frac{1}{3} \frac{\alpha_{\rm EM} (m_{J/\Psi}^2 - m_{\eta_c}^2)^3}{8m_{J/\Psi}^3} |f_{VP}(0)|^2$$

• Differential widths for off-shell photon and X boson are

$$\frac{d\Gamma_{\eta_c\gamma^*}}{dq^2\Gamma_{J/\Psi\to\eta_c\gamma}} = |F_{VP}(q^2)|^2 \times F_{\text{QED}}(q^2)$$
$$\frac{d\Gamma_{\eta_cX^*}}{dq^2\Gamma_{J/\Psi\to\eta_c\gamma}} = |F_{VP}(q^2)|^2 \times F_X(q^2) \,,$$

where $\Gamma_{\eta_c\gamma^*}$ and $\Gamma_{\eta_cX^*}$ are respectively partial decay widths of $J/\Psi \rightarrow \eta_c\gamma^* \rightarrow \eta_c e^+e^-$ and $J/\Psi \rightarrow \eta_cX^* \rightarrow \eta_c e^+e^-$

$$(2m_e)^2 \leq q^2 = m_{e^+e^-}^2 \leq (m_{J/\Psi} - m_{\eta_c})^2$$

$$F_{VP}(q^2) \equiv f_{VP}(q^2) / f_{VP}(0) = 1/(1 - \frac{q^2}{\Lambda^2})$$

from the pole approximation with pole mass $\Lambda = m_{\psi'} = 3.686097 \text{ GeV}$ for J/Ψ .

• The F_{QED} includes amplitude square and phase space is for off-shell photon, while F_X is adopted for off-shell X boson case as

$$F_X(q^2) = \frac{\alpha_{\rm EM}(\varepsilon_c \cdot \varepsilon_e)^2}{3\pi} \left(\frac{q^2}{[(q^2 - m_X^2)^2 + m_X^2 \Gamma_X^2]} \right) \\ \times \left(1 - \frac{4m_e^2}{q^2} \right)^{1/2} \left(1 + \frac{2m_e^2}{q^2} \right) \left[\left(1 + \frac{q^2}{m_{J/\Psi}^2 - m_{\eta_c}^2} \right)^2 - \frac{4m_{J/\Psi}^2 q^2}{(m_{J/\Psi}^2 - m_{\eta_c}^2)^2} \right]^{3/2}$$

Model J/Ψ decay channel

favoured coupling values $\varepsilon_c = \varepsilon_u = 3.7 \times 10^{-3}$, $\varepsilon_e = 10^{-3}$ fixing $m_X = 17$ MeV

$$\frac{\operatorname{Br}(J/\Psi \to \eta_c X^* \to \eta_c e^+ e^-) = 1.64 \times 10^{-6} \left(\frac{\varepsilon_c}{10^{-2}}\right)^2}{\left[\operatorname{Br}(J/\Psi \to \eta_c \gamma^* \to \eta_c e^+ e^-) = 1.03 \times 10^{-4}\right]}$$

• The signal events and background can be statistically separated by the $e^+e^$ invariant mass distributions: signals show resonance peak at m_X , while this background has smooth distributions. $\frac{d\Gamma_{\eta_c\gamma^*}}{da^2\Gamma_{I/\Psi\to\eta\gamma}} = |F_{VP}(q^2)|^2 \times F_{QED}(q^2)$

FIG. 1. The e^+e^- invariant mass distributions of signal $J/\Psi \to \eta_c X^* \to \eta_c e^+e^-$ and background $J/\Psi \to \eta_c \gamma^* \to \eta_c e^+e^-$, where $q^2 \equiv m_{e^+e^-}^2$. Input parameters are $m_X = 17$ MeV, $\varepsilon_c = 3.7 \times 10^{-3}$, and $\varepsilon_e = 10^{-3}$.

 $\varepsilon_e \simeq 10^{-5}$

Model J/Ψ decay channel Belle II

Cross section estimation Event generation and detector Simulation

Then the production cross sections for the background at Belle II yield

$$\sigma(e^+e^- \to \gamma^* + J/\Psi \to e^+e^-J/\Psi) = 286 \text{ fb}$$

$$\sigma(e^+e^- \to \gamma^* + J/\Psi \to \mu^+\mu^-J/\Psi) = 58.4 \text{ fb}$$

With the design integrated luminosity $L = 50 \text{ ab}^{-1}$, we estimate $N_{J/\Psi} = 1.75 \times 10^7$ events for $e^+e^- \rightarrow \gamma^* + J/\Psi \rightarrow \ell^+\ell^- J/\Psi$ at Belle II.

$$S = L \times \sigma(e^+e^- \to \ell^+\ell^- J/\Psi) \times \operatorname{Br}(J/\Psi \to \eta_c X^* \to \eta_c e^+e^-) \simeq 28.2 \left(\frac{\varepsilon_c}{10^{-2}}\right)^2$$
$$B = L \times \sigma(e^+e^- \to \ell^+\ell^- J/\Psi) \times \operatorname{Br}(J/\Psi \to \eta_c \gamma^* \to \eta_c e^+e^-) \simeq 1772$$

The amplitude of the electromagnetic Dalitz decay, $V \rightarrow Pe^+e^-$ can be written in a Lorentz-invariant form

$$T(V \to P e^+ e^-) = 4\pi \alpha_{\rm EM} f_{VP} \epsilon^{\mu\nu\rho\sigma} p_\mu q_\nu \epsilon_\rho \frac{1}{q^2} \bar{u}_1 \gamma_\sigma \nu_2$$

 $\mathcal{L} \supset f_{VP}(-2\sqrt{\pi\alpha_{\rm EM}}\partial_{\mu}P\partial_{\nu}V_{\rho}\epsilon^{\mu\nu\rho\sigma}A_{\sigma} - g_{Xc}\partial_{\mu}P\partial_{\nu}V_{\rho}\epsilon^{\mu\nu\rho\sigma}X_{\sigma}) - g_{eV}\bar{e}\gamma^{\mu}eV_{\mu} - g_{Xe}\bar{e}\gamma^{\mu}eX_{\mu}$

Model J/Ψ associated channel Belle II

• The signal efficiencies and expected significances for various assumed values of ε_e , according to the 50 ab^{-1} luminosity at Belle II

$J/\psi(1S)$	$I^{G}(J^{PC}) = 0^{-}(1$	L)
Mass $m = 3096.90$ Full width $\Gamma = 92.7$ $\Gamma_{ee} = 5.55 \pm 0.14$	$00 \pm 0.006 \; {\sf MeV} \ 9 \pm 2.8 \; {\sf keV} ({\sf S}=1.1) \ {\sf H} \pm 0.02 \; {\sf keV}$	
J/ψ(15) DECAY MODES	Fraction (Γ_i/Γ)	Scale factor/ Confidence level (N
hadrons virtual $\gamma ightarrow hadrons$	$(87.7 \pm 0.5)\%$ $(13.50 \pm 0.30)\%$	
ggg	$(64.1 \pm 1.0)\%$	
e^+e^-	$(5.0 \pm 1.1)\%$ $(5.971 \pm 0.032)\%$	in-3
$\mu^+\mu^-$	$(5.961 \pm 0.033)\%$	

eV/c)

1548 1545

TABLE V. The percentage pass baseline cuts mentioned in Section.IV B and the flight distance $2 \text{ mm} \leq d_{xy} \leq 8 \text{ mm}$ cuts for several values of ε_e of 17 MeV X boson. N_S is the number of signal events from the $e^+e^-\ell^+\ell^-$ channel at Belle II with 50 ab⁻¹ luminosity, and $\mathbb{S}_{B=1}$ ($\mathbb{S}_{B=0.1}$) is the expected significance assuming 1 (0.1) event of background in the analysis channel after all cuts.

$\varepsilon_e/10^{-4}$	8.0	7.0	6.0	5.0	4.5	4.0	3.0
Baseline Cuts(%)	13.8	13.8	13.8	13.8	13.8	13.8	13.8
$2mm < d_{xy} < 8mm$ (%)	1.5	4.7	7.4	10.1	11.0	10.1	5.2
N_S	1.60	3.85	4.42	4.18	3.69	2.69	0.78
$\mathbb{S}_{B=0.1}$	2.4σ	4.6σ	5.0σ	4.8σ	4.5σ	3.6σ	1.5σ
$\mathbb{S}_{B=1}$	1.6σ	2.9σ	3.2σ	3.1σ	2.8σ	2.3σ	1.2σ