Feebly Interacting Particles from cosmic rays showers

Luc Darmé IP2I – CNRS 22/06/2022

Based on 2205.09773

This work has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 101028626

The atmospheric collider

- Cosmic rays (CR) constantly impinge on the higher atmosphere
- Flux extending to extremely large energies, but ...
 →Sharp fall of the flux at larger energies
 →Can only be used as a "beam dump"

- CR are well suited to study light new physics Cf Yongsoo Jho's talk this morning!
- Muons have been discovered in this way
 →Anderson and Neddermeyer 1936

Figure 2: Distribution of fractional losses in 1 cm of platinum.

Atmospheric particle showers

- Initial *pN* interaction creates mostly hadrons final states
- $\pi^0, \eta \rightarrow \gamma \gamma$ decays generates of electromagnetic sub-showers
 - →Typically ½ of the total initial energy goes into the e^+ , e^- , γ
- Particle showers "convert energy to statistics" : $N^{max} \propto \frac{E_{ini}}{0.6 \text{ GeV}} Z_{mat}$
 - → High energy protons convert to many light mesons and a very large number of e^{\pm}
 - → Serve as initial states for production of light new physics

Model of Feebly Interacting Particles

- FIPs= "new light and (quasi)-neutral particles which interact with the SM via suppressed new interactions"
- We consider a light vector FIP V^{μ}

$$\mathcal{L} \supset -\frac{1}{4} V_{\mu\nu} V^{\mu\nu} + \frac{1}{2} M_V^2 V_{\mu} V^{\mu} + \frac{\epsilon}{2} V_{\mu\nu} F^{\mu\nu} + \sum_{\ell=e,\mu,\tau} V_{\mu} \overline{\ell} (g_{V\ell} + \gamma^5 g_{A\ell}) \ell + \text{quarks...}$$

• This constructions are often used in models of thermal sub-GeV dark matters

 $\mathcal{L} \supset -g_D \mathcal{J}_D^\mu V_\mu$

Contains FIP/dark sector interaction, can be large!

 The dark photon will decay to dark matter particles

Dark photon production from CR

- Production occurs through both hadrons- and EM-driven processes
 - \rightarrow Only the hadronic processes included so far

As the shower develops, the secondary e⁺ "scans" over various energy
 → helps reaching the resonant energy condition.

Describing FIPs production in a CR shower

shower

EM sub-showers +

• For mesons, we need the distributions in energy: $f_M(E_M)$

• For γ , e^+/e^- descriptions of EM showers, differential track lengths $T_{\gamma,e^{\pm}}(E)$: ("Distance travelled in the atmosphere by all γ , e^{\pm} at energy E") $\mathcal{N}_{\mathrm{FIP}} \sim \frac{\mathcal{N}_A \rho_{\mathrm{tar}}}{A_{\mathrm{tar}}} \times T_{e^{\pm},\gamma} \times \sigma_{\mathrm{FIP}}$

 $T_{\nu,e^{\pm}}(E)$, $f_M(E_M)$ can be be typically obtained via:

- Empirical distributions of light mesons (BMTP, Sanford-Wang, Burman-Smith)
- Primary hadrons (Pythia8, EPOS@LHC, QGS JETII) + Analytical EM shower description, track length (Tsai, Rossi-Greisen/Lipari)
- Full MC: GEANT4 , FLUKA (include secondaries), KORSIKA

Bonesini et al., hepph/0101163 Sanford, Wang 1967

Burman, Smith 1989

Tsai, 1986 Rossi, Griesen 1941 Lipari, 0809.0190

```
Bierlich et al.
Pierog 2013
Ostapchenko 2007
```

The shower (1): getting the mesons right

- Critical to have an accurate description of the light mesons distributions
 - →light mesons decays serves as EM-showers precursors $\pi^0 \rightarrow \gamma \gamma$
 - \rightarrow direct source of FIP
 - $\pi^0 \to V \gamma$
- For cross-checks, we do both
 - → Primary interaction only in EPOS
 - → Full shower development in CORSIKA
- Then integrate with the proton CR flux

The SM (2): track lengths in EM showers

• In order to estimate the number of FIPs produced, we need the total distance travelled by positrons of a given energy Again se

 The atmospheric density as the shower developed must be accounted for (include overburden)

Dark photon distributions

- Resonant process dominates below ~20 MeV
 - \rightarrow Orders of magnitude enhancement in prod. rates
 - →Typical kinetic energy is lower than for the meson decays
- Huge rates, but in a very noisy environment + fast dark photon decays
 - \rightarrow We will rely on

 $V \rightarrow \chi \chi$ followed by a DM detection in shielded underground detectors

Experimental strategy: neutrinos ktons

- Since the production process is ubiquous, use the biggest low background detector available: kilotons neutrinos detectors
- The signal is DM-electrons scattering process:

 $\chi e \rightarrow \chi e$

Here SK, could work for

Rock

Fiducia Volume

22.5 kton

Rock

Mountain

2700 m.w.e.

Rock

DUNE. JUNO ...

The resonant spectrum dominate at low masses

$$E_{\chi} \sim \frac{M_V^2}{4m_e} \sim O(10s) \text{ MeV}$$

- \rightarrow Looks like supernova neutrinos !
- We can re-interpret to a good extent existing SK constrain in the [16,88] MeV range

Experimental strategy: "heavy" DM detectors

- The DM is relativistic !
 - →Allow high-energy electrons signal / coherent scattering even from sub-GeV DM
 - \rightarrow We also study DM-nucleus scattering:

 $\chi N \rightarrow \chi N$ with coherent enhancement

$$\frac{d\sigma^{cr}}{dE_r} = Z^2 F_{\text{Helm}}^2(Q) \frac{4\pi\varepsilon^2 \alpha_{\text{em}} \alpha_D \tilde{f}_{f,s} M_A}{(E^2 - m_\chi^2)(m_V^2 + Q^2)} ,$$

Here Xenon1T, but also PandaX, DarkLight...

The recoil energy is corresponds to a non-relativistic, heavy DM one
 → Use existing WIMP search

 $Q^2 = 2 m_{Xe} E_r \sim m_V^2 \implies E_r \text{ ten of keV}$

Result: events spectrum

We are a bit short for the WIMP search for MeV DM

- The coherent scattering CS larger than the incoherent electron process
 - \rightarrow But is applicable to much smaller detectors
- The higher DM energy allows for signals in XENON even for (tens of) MeV-scale DM

Dark photons constraints

- Pure dark photon candidate + light DM
- Strong limits from missing energy searches $\rightarrow e^{-}Z \rightarrow e^{-}V$ at NA64 $\rightarrow e^{-}e^{+} \rightarrow \gamma V$ at BaBar
- Beam neutrino experiments can look for the same signatures (smaller volume as SK, but larger fluxes)
- DM experiments subdominant

Baryon number example

- Assume now a « baryon » new gauge group
 - →In absence of lepton couplings, neutrinos/DM experiments become the dominant limits.
 - →CCM120 searched for light DM scattering specifically
- Current WIMP search at XENON1T gives the best limit in this parameter space

Conclusions

- We presented a full simulation of light mesons and their subsequent showers from cosmic rays in the upper atmosphere
- The dominant FIP production channel at low mass is by far driven by the shower EM component

 \rightarrow Resonant production $e^+e^- \rightarrow V$ drives the production rates

- Neutrino "telescopes" (aka kilotons far neutrinos detectors) can give limits competitive with the near detectors using atmosphere DM production
- The sub-dominant flux of relativistic dark matter can be observed in standard direct detection experiments, giving them access to sub-GeV dark matter candidates.
- Using also the e^- flux for EM showers.

Back-up : FIPs et simulations

Couplings to a dark sector

• Interest in FIPs also driven by building models of thermal sub-GeV DM

 Most FIP models can be embedded in a light dark matter setup (of course with various level of complexity ...)

→ Altogether an extremely rich literature of new "mechanisms" to obtain the relic density (Forbidden DM, Secluded DM, Selfish DM, Cannibal DM, etc ...)

Building light inelastic dark matter (1)

• We first construct the Lagrangian for the dark photon mediator:

• After "dark" U(1) symmetry is broken, a massive light dark photon and a correspondingly light dark Higgs *S*.

Inelastic dark matter (2)

$$\mathcal{L}_{pDF}^{\mathrm{DM}} = \bar{\chi} \left(i D - m_{\chi} \right) \chi + y_{SL} S \bar{\chi}^c P_L \chi + y_{SR} S \bar{\chi}^c P_R \chi + \mathrm{h.c.}$$

- Introduce a Dirac fermion dark matter $\chi = (\chi_L, \bar{\chi}_R)$
- The dark Higgs VEV splits both states, leading to a fermionic mass matrix:

$$M_{\chi} = \begin{pmatrix} \sqrt{2}v_S y_{SL} & m_{\chi} \\ m_{\chi} & \sqrt{2}v_S y_{SR} \end{pmatrix}$$

- After diagonalization we get two Majorana fermions
 - \rightarrow Lightest χ_1 state is DM
 - → In the limit $y_{SL} \simeq y_{SR}$, the dark photon only interacts via

$$\mathcal{L} = (ig_D \bar{\chi_2} \gamma^\mu \chi_1 + e\varepsilon \mathcal{J}^\mu_{\rm em}) V_\mu$$

$$M_{V} = g_{\alpha_{D}}q_{S}v_{S} - V$$
$$M_{S} = \sqrt{2\lambda_{S}}v_{S} - S$$
$$\sqrt{2}v_{S}(y_{SR} + y_{SL}) \ddagger \frac{\chi_{2}}{\chi_{1}}$$

Typical regimes with correct relic density

FORBIDDEN REGIME

All cosmic rays

 Protons strongly dominates the fluxes above the GeV

Cosmic Rays and Particle Physics

 Origin of very high energy CRs still not clear

• Many discussions about the origin of the "knee" and of the "ankle"

 Chemical composition above 1 TeV unknown

Clear evidence of PeVatrons in the Universe