Vector Dark Matter via a Fermionic Portal from a New Gauge Sector

Southampton University & Rutherford Appleton Laboratory

2203.04681 and 2204.03510 AB, Luca Panizzi, Aldo Deandrea, Stefano Moretti and Nakorn Thongyoi

LIO International Conference and France-Korea STAR Workshop on "Fundamental Forces from Colliders to Gravitational Waves" 20-24 June 2022 IP2I

Alexander Belyaev

Vector Dark Matter via a Fermionic Portal from a New Gauge Sector

The existence of Dark Matter is confirmed by several independent observations at cosmological scale Galactic rotation curves

DM is very appealing even though we know almost nothing about it!

Alexander Belyaev

Vector Dark Matter via a Fermionic Portal from a New Gauge Sector

- The abelian/non-abelian Vector DM with Higgs portal
 - $U(1)_D$ Group

- The abelian/non-abelian Vector DM with Higgs portal
 - $U(1)_D$ Group
 - $V^{\mu}_D \leftrightarrow -V^{\mu}_D$ Explicit Z_2 symmetry plus a Higgs portal to provide the

stability and the mass for VDM and connect it to the SM

$$\mathcal{L} \supset -\frac{1}{4} V_{\mu\nu} V^{\mu\nu} + (D_{\mu} \Phi)^{\dagger} (D^{\mu} \Phi) - V(\Phi) + \lambda_P |H|^2 |\Phi|^2$$

with $D_{\mu} \Phi \equiv \partial_{\mu} \Phi - g Q_{\Phi} V_{\mu} \Phi$

- The abelian/non-abelian Vector DM with Higgs portal
 - $U(1)_D$ Group
 - $V^{\mu}_D \leftrightarrow -V^{\mu}_D$ Explicit Z_2 symmetry plus a Higgs portal to provide the

stability and the mass for VDM and connect it to the SM

$$\mathcal{L} \supset -\frac{1}{4} V_{\mu\nu} V^{\mu\nu} + (D_{\mu} \Phi)^{\dagger} (D^{\mu} \Phi) - V(\Phi) + \lambda_P |H|^2 |\Phi|^2$$
with $D_{\mu} \Phi \equiv \partial_{\mu} \Phi - g Q_{\Phi} V_{\mu} \Phi$, after SSB $\rightarrow \Phi = \frac{1}{\sqrt{2}} (v_{\Phi} + \varphi(x))$
so one has $m_V^2 = g^2 Q_{\Phi}^2 v_{\phi}^2$

- The abelian/non-abelian Vector DM with Higgs portal
 - $U(1)_D$ Group
 - $V^{\mu}_D \leftrightarrow -V^{\mu}_D$ Explicit Z_2 symmetry plus a Higgs portal to provide the

stability and the mass for VDM and connect it to the SM

$$\mathcal{L} \supset -\frac{1}{4} V_{\mu\nu} V^{\mu\nu} + (D_{\mu} \Phi)^{\dagger} (D^{\mu} \Phi) - V(\Phi) + \lambda_P |H|^2 |\Phi|^2$$
with $D_{\mu} \Phi \equiv \partial_{\mu} \Phi - g Q_{\Phi} V_{\mu} \Phi$, after SSB $\rightarrow \Phi = \frac{1}{\sqrt{2}} (v_{\Phi} + \varphi(x))$
so one has $m_V^2 = g^2 Q_{\Phi}^2 v_{\phi}^2$

- Quite a few papers:
 - Lebedev, Lee, Mambrini 1111.4482,
 - Baek, Ko, Park , Senaha 1212.2131
 - DiFranzo, Fox, Tait 1512.06853

Farzan, Akbarieh 1207.4272 Duch, Grzadkowski, McGarrie 1506.08805

Vector Dark Matter via a Fermionic Portal from a New Gauge Sector

- Non-abelian case
 - Generalisation to SU(N) case:

Gross, Lebedev, Mambrini 1505.07480

SSB with N-1 complex scalar N-plets in fundamental rep of SU(N) – gives mass to VDM and predicts $(N-1)^2$ scalars

- Non-abelian case
 - Generalisation to SU(N) case:

Gross, Lebedev, Mambrini 1505.07480

SSB with N-1 complex scalar N-plets in fundamental rep of SU(N) – gives mass to VDM and predicts $(N-1)^2$ scalars

electroweakly interacting non-abelian vector dark matter:

Abea, Fujiwara, Hisano, Matsushita 2004.00884 $SU(2)_0 \times SU(2)_1 \times SU(2)_2 \times U(1)_Y : SU(2)_0 \leftrightarrow SU(2)_2$ symmetry provides stability for VDM, so there are VDM triplet + vector triplet of unstable W'/Z' bosons

$$\begin{split} V_{\text{scalar}} = m^2 H^{\dagger} H + m_{\Phi}^2 \text{tr} \left(\Phi_1^{\dagger} \Phi_1 \right) + m_{\Phi}^2 \text{tr} \left(\Phi_2^{\dagger} \Phi_2 \right) \\ + \lambda (H^{\dagger} H)^2 + \lambda_{\Phi} \left(\text{tr} \left(\Phi_1^{\dagger} \Phi_1 \right) \right)^2 + \lambda_{\Phi} \left(\text{tr} \left(\Phi_2^{\dagger} \Phi_2 \right) \right)^2 \\ + \lambda_{h\Phi} H^{\dagger} H \text{tr} \left(\Phi_1^{\dagger} \Phi_1 \right) + \lambda_{h\Phi} H^{\dagger} H \text{tr} \left(\Phi_2^{\dagger} \Phi_2 \right) + \lambda_{12} \text{tr} \left(\Phi_1^{\dagger} \Phi_1 \right) \text{tr} \left(\Phi_2^{\dagger} \Phi_2 \right) \end{split}$$

- Non-abelian case
 - Generalisation to SU(N) case:

Gross, Lebedev, Mambrini 1505.07480

SSB with N-1 complex scalar N-plets in fundamental rep of SU(N) – gives mass to VDM and predicts $(N-1)^2$ scalars

electroweakly interacting non-abelian vector dark matter:

Abea, Fujiwara, Hisano, Matsushita 2004.00884 $SU(2)_0 \times SU(2)_1 \times SU(2)_2 \times U(1)_Y : SU(2)_0 \leftrightarrow SU(2)_2$ symmetry provides stability for VDM, so there are VDM triplet + vector triplet of unstable W'/Z' bosons

$$\begin{split} V_{\text{scalar}} = m^2 H^{\dagger} H + m_{\Phi}^2 \text{tr} \left(\Phi_1^{\dagger} \Phi_1 \right) + m_{\Phi}^2 \text{tr} \left(\Phi_2^{\dagger} \Phi_2 \right) \\ + \lambda (H^{\dagger} H)^2 + \lambda_{\Phi} \left(\text{tr} \left(\Phi_1^{\dagger} \Phi_1 \right) \right)^2 + \lambda_{\Phi} \left(\text{tr} \left(\Phi_2^{\dagger} \Phi_2 \right) \right)^2 \\ + \lambda_{h\Phi} H^{\dagger} H \text{tr} \left(\Phi_1^{\dagger} \Phi_1 \right) + \lambda_{h\Phi} H^{\dagger} H \text{tr} \left(\Phi_2^{\dagger} \Phi_2 \right) + \lambda_{12} \text{tr} \left(\Phi_1^{\dagger} \Phi_1 \right) \text{tr} \left(\Phi_2^{\dagger} \Phi_2 \right) \end{split}$$

quite a non-minimal model

- Higgs portal is very-well studied and the parameter space for minimal scenarios is almost excluded
- So, we are driven by curiosity, simplicity and by the experimental data!

- Higgs portal is very-well studied and the parameter space for minimal scenarios is almost excluded
- So, we are driven by curiosity, simplicity and by the experimental data!

ingredients:		$SU(2)_L$	$U(1)_Y$	$SU(2)_{\rm D}$
uge group jed under SU(2)⊳	$\Phi_D = \begin{pmatrix} \varphi_{D+\frac{1}{2}}^0 \\ \varphi_{D-\frac{1}{2}}^0 \end{pmatrix}$	1	0	2
	$\Psi = \begin{pmatrix} \psi_D \\ \psi \end{pmatrix}$	1	Q	2
	$V^D_{\mu} = \begin{pmatrix} V^0_{D+\mu} \\ V^0_{D0\mu} \\ V^0_{D-\mu} \end{pmatrix}$	1	0	3

We consider SM + three ingredients

- SU(2)_D : Dark non-abelian gauge group
 Complex scalar doublet charged under SU(
- VL fermion doublet of SU(2)_D

- Higgs portal is very-well studied and the parameter space for minimal scenarios is almost excluded
- So, we are driven by curiosity, simplicity and by the experimental data!

We consider SM + three ingredients:		$SU(2)_L$	$U(1)_Y$	$SU(2)_{\rm D}$	\mathbb{Z}_2
 SO(2)_D . Dark non-abelian gauge group Complex scalar doublet charged under SU(2)_D VL fermion doublet of SU(2)_D 	$\Phi_D = \begin{pmatrix} \varphi_{D+\frac{1}{2}}^0\\ \varphi_{D-\frac{1}{2}}^0 \end{pmatrix}$	1	0	2	- +
 Note: DM must be Z₂ - odd since it is stable two scalar components of doublet (i.e upper 	$\Psi = \begin{pmatrix} \psi_D \\ \psi \end{pmatrix}$	1	Q	2	- +
part of the doublet) are Z ₂ - odd they become longitudinal component of DM	$V^D_{\mu} = \begin{pmatrix} V^0_{D+\mu} \\ V^0_{D0\mu} \\ V^0_{D-\mu} \end{pmatrix}$	1	0	3	- + -

- Higgs portal is very-well studied and the parameter space for minimal scenarios is almost excluded
- So, we are driven by curiosity, simplicity and by the experimental data!

ingredients: uge group ged under SU(2)D		$SU(2)_L$	$U(1)_Y$	$SU(2)_{\rm D}$	\mathbb{Z}_2
	$\Phi_D = \begin{pmatrix} \varphi_{D+\frac{1}{2}}^0\\ \varphi_{D-\frac{1}{2}}^0 \end{pmatrix}$	1	0	2	- +
is stable ublet (i.e upper dd they become 1 et is Z ₂ -even,	$\Psi = \begin{pmatrix} \psi_D \\ \psi \end{pmatrix}$	1	Q	2	- +
	$V^D_{\mu} = \begin{pmatrix} V^0_{D+\mu} \\ V^0_{D0\mu} \\ V^0_{D-\mu} \end{pmatrix}$	1	0	3	- + -

We consider SM + three ingredients:

- SU(2)_D : Dark non-abelian gauge group
- Complex scalar doublet charged under SU(2)_D
- VL fermion doublet of SU(2)_D

Note:

- DM must be Z₂ odd since it is stable
- two scalar components of doublet (i.e upper part of the doublet) are Z₂ - odd -- they become longitudinal component of DM
- the lower part of scalar doublet is Z₂-even, since its acquires vev

- Higgs portal is very-well studied and the parameter space for minimal scenarios is almost excluded
- So, we are driven by curiosity, simplicity and by the experimental data!

We consider SM + three ingredients:		$SU(2)_L$	$U(1)_Y$	$SU(2)_{\rm D}$	\mathbb{Z}_2
 SO(2)_D . Dark non-abelian gauge group Complex scalar doublet charged under SU(2)_D VL fermion doublet of SU(2)_D 	$\Phi_D = \begin{pmatrix} \varphi_{D+\frac{1}{2}}^0 \\ \varphi_{D-\frac{1}{2}}^0 \end{pmatrix}$	1	0	2	- +
 Note: DM must be Z₂ - odd since it is stable two scalar components of doublet (i.e upper 	$\Psi = \begin{pmatrix} \psi_D \\ \psi \end{pmatrix}$	1	Q	2	- +
 part of the doublet) are Z₂ - odd they become longitudinal component of DM the lower part of scalar doublet is Z₂-even, since its acquires vev 	$V^D_{\mu} = \begin{pmatrix} V^0_{D+\mu} \\ V^0_{D0\mu} \\ V^0_{D-\mu} \end{pmatrix}$	1	0	3	- + -

• this means that one of the components of the vector triplet is Z₂-even

- Higgs portal is very-well studied and the parameter space for minimal scenarios is almost excluded
- So, we are driven by curiosity, simplicity and by the experimental data!

We consider SM + three ingredients:		$SU(2)_L$	$U(1)_Y$	$SU(2)_{\rm D}$	\mathbb{Z}_2
 SO(2)_D : Dark non-abelian gauge group Complex scalar doublet charged under SU(2)_D VL fermion doublet of SU(2)_D 	$\Phi_D = \begin{pmatrix} \varphi_{D+\frac{1}{2}}^0\\ \varphi_{D-\frac{1}{2}}^0 \end{pmatrix}$	1	0	2	-+
 Note: DM must be Z₂ - odd since it is stable two scalar components of doublet (i.e upper 	$\Psi = \begin{pmatrix} \psi_D \\ \psi \end{pmatrix}$	1	Q	2	- +
 part of the doublet) are Z₂ - odd they become longitudinal component of DM the lower part of scalar doublet is Z₂-even, since its acquires vev 	$V^D_{\mu} = \begin{pmatrix} V^0_{D+\mu} \\ V^0_{D0\mu} \\ V^0_{D-\mu} \end{pmatrix}$	1	0	3	- + -

- this means that one of the components of the vector triplet is Z₂-even
- this construction allows the $y' \bar{\Psi}_L \Phi_D f_R^{SM}$ term, connecting dark scalar and VL fermion and SM RH fermion, meaning that one component of VL fermion doublet must be Z₂-even and the other - Z₂-odd

Building Vector Like Fermion(VLF) Portal for Vector DM

$$SU(2)_{D} \qquad V_{\mu}^{D} = \begin{pmatrix} V_{D+}^{0} \\ V_{D0}^{0} \\ V_{D-}^{0} \end{pmatrix} \qquad \Phi_{D} = \begin{pmatrix} \varphi_{D+\frac{1}{2}}^{0} \\ \varphi_{D-\frac{1}{2}}^{0} \end{pmatrix}$$
$$\boxed{SSB: \langle \Phi_{D} \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v_{D} \end{pmatrix}}$$
$$SU(2)_{L} \times U(1)_{Y} \qquad V_{\mu} = \begin{pmatrix} W^{+} \\ W_{3} \\ W^{-} \end{pmatrix}, B_{\mu} \qquad \Phi_{H} = \begin{pmatrix} \phi^{+} \\ \phi^{0} \end{pmatrix} \qquad \begin{pmatrix} u \\ d \end{pmatrix}_{L} \begin{pmatrix} \nu \\ e \end{pmatrix}_{L} \qquad u_{R} \\ d_{R} e_{R} \end{pmatrix}$$
$$\mathcal{L} = -\frac{1}{4} (W_{\mu\nu}^{i})^{2} - \frac{1}{4} (B_{\mu\nu})^{2} + |D_{\mu}\Phi_{H}|^{2} + \mu^{2} \Phi_{H}^{\dagger} \Phi_{H} - \lambda (\Phi_{H}^{\dagger}\Phi_{H})^{2} + \bar{f}^{SM} i \not D f^{SM} - (y \bar{f}_{L}^{SM} \Phi_{H} f_{R}^{SM} + h)^{2} + h^{2} \Phi_{H}^{\dagger} \Phi_{H} - \lambda (\Phi_{H}^{\dagger}\Phi_{H})^{2} + \bar{f}^{SM} i \not D f^{SM} - (y \bar{f}_{L}^{SM} \Phi_{H} f_{R}^{SM} + h)^{2} + h^{2} \Phi_{H}^{\dagger} \Phi_{H} - \lambda (\Phi_{H}^{\dagger}\Phi_{H})^{2} + h^{2} \Phi_{H}^{\dagger} \Phi_{H} + h$$

Building VLF Portal for Vector DM: Higgs portal is possible but not required

$$SU(2)_{D} \qquad V_{\mu}^{D} = \begin{pmatrix} V_{D+}^{0} \\ V_{D0}^{0} \\ V_{D-}^{0} \end{pmatrix} \qquad \Phi_{D} = \begin{pmatrix} \varphi_{D+\frac{1}{2}}^{0} \\ \varphi_{D-\frac{1}{2}}^{0} \end{pmatrix}$$

Higgs portal: $\Phi_{H}^{\dagger} \Phi_{H} \Phi_{D}^{\dagger} \Phi_{D}$
$$SU(2)_{L} \times U(1)_{Y} \qquad V_{\mu} = \begin{pmatrix} W^{+} \\ W_{3} \\ W^{-} \end{pmatrix}, B_{\mu} \qquad \Phi_{H} = \begin{pmatrix} \phi^{+} \\ \phi^{0} \end{pmatrix} \qquad \begin{pmatrix} u \\ d \end{pmatrix}_{L} \begin{pmatrix} \nu \\ e \end{pmatrix}_{L} \qquad u_{R} \\ d_{R} e_{R} \end{pmatrix}$$

Alexander Belyaev

Vector Dark Matter via a Fermionic Portal from a New Gauge Sector

Building VLF Portal for Vector DM: kinetic mixing is generated at higher loops

Building VLF Portal for Vector DM: VLF plays the central role

$$SU(2)_{D} \qquad V^{D}_{\mu} = \begin{pmatrix} V^{0}_{D+} \\ V^{0}_{D0} \\ V^{0}_{D-} \end{pmatrix} \qquad \Phi_{D} = \begin{pmatrix} \varphi^{0}_{D+\frac{1}{2}} \\ \varphi^{0}_{D-\frac{1}{2}} \end{pmatrix} \qquad \Psi = \begin{pmatrix} \psi_{D} \\ \psi \end{pmatrix} \qquad -M_{\Psi} \bar{\Psi} \Psi$$

$$= \begin{pmatrix} \psi_{D} \\ \psi \end{pmatrix} \qquad -M_{\Psi} \bar{\Psi} \Psi$$

$$\Rightarrow lntroducing a fermion$$

$$= \frac{fundamental of SU(2)_{D}}{P} \qquad SU(2)_{D} \qquad SU(2)_$$

Building VLF Portal for Vector DM: VLF couples to SU(2)_D scalar and RH SM F

$$SU(2)_{D} \qquad V^{D}_{\mu} = \begin{pmatrix} V^{0}_{D+} \\ V^{0}_{D0} \\ V^{0}_{D-} \end{pmatrix} \qquad \Phi_{D} = \begin{pmatrix} \varphi^{0}_{D+\frac{1}{2}} \\ \varphi^{0}_{D-\frac{1}{2}} \end{pmatrix} \qquad \Psi = \begin{pmatrix} \psi_{D} \\ \psi \end{pmatrix} \boxed{-M_{\Psi} \bar{\Psi} \Psi}$$
$$\boxed{\mathbb{Z}_{2} : \{+, -\}} \qquad \qquad |D_{\mu} \Phi_{D}|^{2} \qquad -\bar{\Psi}_{L} \Phi_{D} f_{R}^{SM}$$
$$SU(2)_{L} \times U(1)_{Y} \qquad V_{\mu} = \begin{pmatrix} W^{+} \\ W_{3} \\ W^{-} \end{pmatrix}, B_{\mu} \qquad \Phi_{H} = \begin{pmatrix} \phi^{+} \\ \phi^{0} \end{pmatrix} \qquad \begin{pmatrix} u \\ d \end{pmatrix}_{L} \begin{pmatrix} \nu \\ e \end{pmatrix}_{L} \qquad u_{R} \\ d_{R} e_{R} \qquad \psi_{D} \psi$$

$$\mathcal{L} = -\frac{1}{4} (W_{\mu\nu}^{i})^{2} - \frac{1}{4} (B_{\mu\nu})^{2} + |D_{\mu}\Phi_{H}|^{2} + \mu^{2} \Phi_{H}^{\dagger} \Phi_{H} - \lambda (\Phi_{H}^{\dagger}\Phi_{H})^{2} + \bar{f}^{SM} i \not p f^{SM} - (y \bar{f}_{L}^{SM} \Phi_{H} f_{R}^{SM} + h.c.)$$
$$-\frac{1}{4} (V_{\mu\nu}^{Di})^{2} + |D_{\mu}\Phi_{D}|^{2} + \mu_{D}^{2} \Phi_{D}^{\dagger} \Phi_{D} - \lambda_{D} (\Phi_{D}^{\dagger}\Phi_{D})^{2} + \bar{\Psi} i \not p \Psi - M_{\Psi} \bar{\Psi} \Psi - (y' \bar{\Psi}_{L} \Phi_{D} f_{R}^{SM} + h.c)$$
$$-\lambda_{\Phi_{H}\Phi_{D}} \Phi_{H}^{\dagger} \Phi_{H} \Phi_{D}^{\dagger} \Phi_{D} - V_{D}^{\mu\nu a} \Phi_{Dk}^{\dagger} (\sigma^{a})_{kl} \Phi_{Dl} \left(\frac{\kappa_{W}}{\Lambda^{4}} W_{\mu\nu}^{b} \Phi_{Hi}^{\dagger} (\sigma^{b})_{ij} \Phi_{Hj} + \frac{\kappa_{B}}{\Lambda^{4}} B_{\mu\nu} \Phi_{H}^{\dagger} \Phi_{H}\right)$$

Building VLF Portal for Vector DM: V⁰D+ / V⁰D- is Dark Matter

Building VLF Portal for Vector DM: on the origin of Z₂ symmetry

$$SU(2)_D \qquad V^D_\mu = \begin{pmatrix} V^0_{D+} \\ V^0_{D0} \\ V^0_{D-} \end{pmatrix} \qquad \Phi_D = \begin{pmatrix} \varphi^0_{D+\frac{1}{2}} \\ \varphi^0_{D-\frac{1}{2}} \end{pmatrix} \qquad \Psi = \begin{pmatrix} \psi_D \\ \psi \end{pmatrix}$$

If y' = 0 the Φ_D potential has a global custodial symmetry $SU(2)'_D$

$$SU(2)_L \times U(1)_Y \quad V_\mu = \begin{pmatrix} W^+ \\ W_3 \\ W^- \end{pmatrix}, B_\mu \qquad \Phi_H = \begin{pmatrix} \phi^+ \\ \phi^0 \end{pmatrix} \qquad \begin{pmatrix} u \\ d \end{pmatrix}_L \begin{pmatrix} \nu \\ e \end{pmatrix}_L \qquad u_R \qquad \psi_D \ \psi$$

Building VLF Portal for Vector DM: on the origin of Z₂ symmetry

$$SU(2)_{D} \qquad V^{D}_{\mu} = \begin{pmatrix} V^{0}_{D+} \\ V^{0}_{D0} \\ V^{0}_{D-} \end{pmatrix} \qquad \Phi_{D} = \begin{pmatrix} \varphi^{0}_{D+\frac{1}{2}} \\ \varphi^{0}_{D-\frac{1}{2}} \end{pmatrix} \qquad \Psi = \begin{pmatrix} \psi_{D} \\ \psi \end{pmatrix}$$

$$\boxed{When \ y' \neq 0} \quad \text{Explicit breaking:} \quad SU(2)'_{D} \rightarrow U(1)_{c}$$

$$\boxed{global charge conjugation}$$

$$SU(2)_{L} \times U(1)_{Y} \qquad V_{\mu} = \begin{pmatrix} W^{+} \\ W_{3} \\ W^{-} \end{pmatrix}, B_{\mu} \qquad \Phi_{H} = \begin{pmatrix} \phi^{+} \\ \phi^{0} \end{pmatrix} \qquad \begin{pmatrix} u \\ d \end{pmatrix}_{L} \begin{pmatrix} \nu \\ e \end{pmatrix}_{L} \qquad u_{R} \\ d_{R} \ e_{R} \qquad \psi_{D} \ \psi$$

$$\mathcal{L} = -\frac{1}{4}(W^{i}_{\mu\nu})^{2} - \frac{1}{4}(B_{\mu\nu})^{2} + |D_{\mu}\Phi_{H}|^{2} + \mu^{2}\Phi^{+}_{H}\Phi_{H} - \lambda(\Phi^{+}_{H}\Phi_{H})^{2} + \bar{f}^{\text{SM}} \ i \not{\!{}} f^{\text{SM}} - (y \ \bar{f}^{\text{SM}}_{L} \Phi_{H} \ f^{\text{SM}}_{R} + h.c.)$$

$$-\frac{1}{4}(V^{Di}_{\mu\nu})^{2} + |D_{\mu}\Phi_{D}|^{2} + \mu^{2}_{D}\Phi^{+}_{D}\Phi_{D} - \lambda_{D}(\Phi^{+}_{D}\Phi_{D})^{2} + \bar{\Psi}i \not{\!{}} \psi - M_{\Psi} \ \bar{\Psi} \Psi - (y' \ \bar{\Psi}_{L}\Phi_{D} f^{\text{SM}}_{R} + h.c.)$$

$$-\lambda_{\Phi_{H}\Phi_{D}}\Phi^{+}_{H}\Phi_{H} \ \Phi^{+}_{D}\Phi_{D} - V^{\mu\nua}_{D}\Phi^{+}_{D}(\sigma^{a})_{kl}\Phi_{Dl} \left(\frac{\kappa_{W}}{\Lambda^{4}} W^{b}_{\mu\nu}\Phi^{+}_{Hi}(\sigma^{b})_{ij}\Phi_{Hj} + \frac{\kappa_{B}}{\Lambda^{4}} B_{\mu\nu}\Phi^{+}_{H}\Phi_{H} \right)$$

Building VLF Portal for Vector DM: the origin of Z₂ – the conservation of dark charge

$$SU(2)_{D} \qquad V^{D}_{\mu} = \begin{pmatrix} V^{0}_{D+} \\ V^{0}_{D0} \\ V^{0}_{D-} \end{pmatrix} \qquad \Phi_{D} = \begin{pmatrix} \varphi^{0}_{D+\frac{1}{2}} \\ \varphi^{0}_{D-\frac{1}{2}} \end{pmatrix} \qquad \Psi = \begin{pmatrix} \psi_{D} \\ \psi \end{pmatrix}$$

$$When \langle \Phi_{D} \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v_{D} \end{pmatrix} \qquad SSB: SU(2)_{D} \times U(1)_{c} \rightarrow \text{global } U(1) \qquad \mathbb{Z}_{2} \text{ is a subgroup of } U(1)$$

$$diagonal \text{ part}$$

$$SU(2)_{L} \times U(1)_{Y} \qquad V_{\mu} = \begin{pmatrix} W^{+} \\ W_{3} \\ W^{-} \end{pmatrix}, B_{\mu} \qquad \Phi_{H} = \begin{pmatrix} \phi^{+} \\ \phi^{0} \end{pmatrix} \qquad \begin{pmatrix} u \\ d \end{pmatrix}_{L} \begin{pmatrix} \nu \\ e \end{pmatrix}_{L} \qquad u_{R} \qquad \psi_{D} \ \psi$$

$$\mathcal{L} = -\frac{1}{4} (W_{\mu\nu}^{i})^{2} - \frac{1}{4} (B_{\mu\nu})^{2} + |D_{\mu}\Phi_{H}|^{2} + \mu^{2} \Phi_{H}^{\dagger} \Phi_{H} - \lambda (\Phi_{H}^{\dagger}\Phi_{H})^{2} + \bar{f}^{SM} i \not D f^{SM} - (y \bar{f}_{L}^{SM} \Phi_{H} f_{R}^{SM} + h.c.) - \frac{1}{4} (V_{\mu\nu}^{Di})^{2} + |D_{\mu}\Phi_{D}|^{2} + \mu_{D}^{2} \Phi_{D}^{\dagger} \Phi_{D} - \lambda_{D} (\Phi_{D}^{\dagger}\Phi_{D})^{2} + \bar{\Psi} i \not D \Psi - M_{\Psi} \bar{\Psi} \Psi - (y' \bar{\Psi}_{L} \Phi_{D} f_{R}^{SM} + h.c) - \lambda_{\Phi_{H}\Phi_{D}} \Phi_{H}^{\dagger} \Phi_{H} \Phi_{D}^{\dagger} \Phi_{D} - V_{D}^{\mu\nu a} \Phi_{Dk}^{\dagger} (\sigma^{a})_{kl} \Phi_{Dl} \left(\frac{\kappa_{W}}{\Lambda^{4}} W_{\mu\nu}^{b} \Phi_{Hi}^{\dagger} (\sigma^{b})_{ij} \Phi_{Hj} + \frac{\kappa_{B}}{\Lambda^{4}} B_{\mu\nu} \Phi_{H}^{\dagger} \Phi_{H} \right)$$

VLF portal: Z₂-even fermions – RH SM ones and VL ones – mix

The hierarchy between mass eigenstates is always $m_f < m_{\psi} \leq m_F$

VLF portal: Z₂-even fermions – RH SM ones and VL ones – mix

$$-\mathcal{L}_{f} = (y \, \overline{f}_{L}^{\text{SM}} \Phi_{H} \, f_{R}^{\text{SM}} + y' \, \overline{\Psi}_{L} \Phi_{D} f_{R}^{\text{SM}} + h.c) + M_{\Psi} \, \overline{\Psi} \, \text{with} \quad \Psi = \begin{pmatrix} \psi_{D} \\ \psi \end{pmatrix}$$

$$\overset{\langle \Phi_{H} \rangle}{\underset{y}{\overset{\langle \Phi_{D} \rangle}{\underset{y}{\overset{\langle \Phi_{D} \rangle}{\underset{y}{\overset{\langle \Phi_{D} \rangle}{\underset{y}{\overset{\langle \Psi_{D} \\ \langle \psi_$$

The hierarchy between mass eigenstates is always $m_f < m_{\psi} \leq m_F$

Potential to introduce flavour structure(s) with VL fermions, including VL leptons to explain various flavour anomalies, including (g-2) μ !

Alexander Belyaev

The gauge sector: V' / V_D radiative mass split, no tree-level V' – Z mixing

• At tree-level:
$$m_{V_{D\pm}^0} = m_{V_{D0}^0} = \frac{g_D}{2}v_D$$

The gauge sector: V' / V_D radiative mass split, no tree-level V' – Z mixing

• At tree-level: $m_{V_{D\pm}^0} = m_{V_{D0}^0} = \frac{g_D}{2} v_D$

The gauge sector: V' / V_D radiative mass split, no tree-level V' – Z mixing

0.0

• At tree-level:
$$m_{V_{D\pm}^0} = m_{V_{D0}^0} = \frac{g_D}{2} v_D$$

Alexander Belyaev

Vector Dark Matter via a Fermionic Portal from a New Gauge Sector

The scalar sector: when the higgs portal is absent, the interactions become minimal

8 degrees of freedom, 6 massive gauge bosons, 2 physical scalars h, H

$$\mathcal{M}_{S} = \begin{pmatrix} \lambda v^{2} & \frac{\lambda_{\Phi_{H}\Phi_{D}}}{2} vv_{D} \\ \frac{\lambda_{\Phi_{H}\Phi_{D}}}{2} vv_{D} & \lambda_{D} v_{D}^{2} \end{pmatrix} \quad \sin \theta_{S} = \sqrt{2 \frac{m_{H}^{2} v^{2} \lambda - m_{h}^{2} v_{D}^{2} \lambda_{D}}{m_{H}^{4} - m_{h}^{4}}}$$
$$m_{h,H}^{2} = \lambda v^{2} + \lambda_{D} v_{D}^{2} \mp \sqrt{(\lambda v^{2} - \lambda_{D} v_{D}^{2})^{2} + \lambda_{\Phi_{H}\Phi_{D}}^{2} v^{2} v_{D}^{2}}$$

The scalar sector: when the higgs portal is absent, the interactions become minimal

8 degrees of freedom, 6 massive gauge bosons, 2 physical scalars h, H

$$\mathcal{M}_{S} = \begin{pmatrix} \lambda v^{2} & \frac{\lambda_{\Phi_{H}\Phi_{D}}}{2} v v_{D} \\ \frac{\lambda_{\Phi_{H}\Phi_{D}}}{2} v v_{D} & \lambda_{D} v_{D}^{2} \end{pmatrix} \quad \sin \theta_{S} = \sqrt{2 \frac{m_{H}^{2} v^{2} \lambda - m_{h}^{2} v_{D}^{2} \lambda_{D}}{m_{H}^{4} - m_{h}^{4}}}$$
$$m_{h,H}^{2} = \lambda v^{2} + \lambda_{D} v_{D}^{2} \mp \sqrt{(\lambda v^{2} - \lambda_{D} v_{D}^{2})^{2} + \lambda_{\Phi_{H}\Phi_{D}}^{2} v^{2} v_{D}^{2}}$$

If no Higgs portal, the interactions of the new scalar H are limited to:

VL portal VDM: the summary of particle content

					Scalars	SU(2)) _L $U(1)_Y$	SU(2)	$_{D} \ \mathbb{Z}_{2}$
Vectors	$SU(2)_L$	$U(1)_Y$	SU(2)	$_{D} \parallel \mathbb{Z}_{2}$	$\Phi_H = \begin{pmatrix} \phi^+ \\ \phi^0 \end{pmatrix}$) 2	1/2	1	+
$W_{\mu} = \begin{pmatrix} W_{\mu}^{+} \\ W_{\mu}^{3} \\ W_{\mu}^{-} \end{pmatrix}$	3	0	1	++++++	$\Phi_D = \begin{pmatrix} \varphi_{D+\frac{1}{2}}^0 \\ \varphi_{D-\frac{1}{2}}^0 \end{pmatrix}$	$\left \frac{1}{2}{\frac{1}{2}}\right $ 1	0	2	$\left\ \begin{array}{c} - \\ + \end{array} \right\ $
B_{μ}	1	0	1	+	Fermions	$SU(2)_L$	$U(1)_Y$	SU(2)	$_{D} \ \mathbb{Z}_{2}$
$V^D_{\mu} = \begin{pmatrix} V^0_{D+\mu} \\ V^0_{D0\mu} \\ V^0_{D-\mu} \end{pmatrix}$	1	0	3	- + -	$f_L^{\text{SM}} = \begin{pmatrix} f_{u,\nu}^{\text{SM}} \\ f_{d,\ell}^{\text{SM}} \\ u_R^{\text{SM}}, \nu_R^{\text{SM}} \\ d_{u,\ell}^{\text{SM}} \end{pmatrix}$	2	$\frac{\frac{1}{6}, -\frac{1}{2}}{\frac{2}{3}, 0}$	1 1 1	+++++
					$\frac{\Psi}{\Psi} = \begin{pmatrix} \psi^D \\ \psi \end{pmatrix}$	1	2 Q	2	

VL portal VDM: the summary of particle content

Minimal VL top portal VDM: VL top portal without mixing

Representative benchmarks: $\begin{cases} g_D = 0.05, 0.5 \\ m_T = 1600 \text{ GeV} \\ m_H = 1000 \text{ GeV} \end{cases}$ heavy enough to evade LHC constraints

The VL fermion is composed of top partners and there is no mixing between scalars with $m_t < m_{t_D} \leq m_T$ $\Psi =$ $\sin \theta_{\rm S} = 0$

Representative benchmarks: $\begin{cases} g_D = 0.05, 0.5 \\ m_T = 1600 \text{ GeV} \\ m_H = 1000 \text{ GeV} \end{cases}$ heavy enough to evade LHC constraints

Light DM in non-perturbative region LHC constrains m_{t_D} for $m_{t_D} - m_{V_D} \gtrsim m_t$ (bounds almost independent on g_D , m_T and m_H)

A. M. Sirunyan et al. [CMS], Search for top squarks and dark matter particles in opposite-charge dilepton final states at $\sqrt{s} = 13$ TeV, Phys. Rev. D 97 (2018) no.3, 032009, arXiv:1711.00752 [hep-ex]

The VL fermion is composed of top partners and there is no mixing between scalars $\Psi = \begin{pmatrix} t_D \\ T \end{pmatrix}$ with $m_t < m_{t_D} \le m_T$ $\sin \theta_S = 0$

Representative benchmarks: $\begin{cases} g_D = 0.05, 0.5 & \text{strong or weak cosmological constraints} \\ m_T = 1600 \text{ GeV} \\ m_H = 1000 \text{ GeV} \end{cases}$ heavy enough to evade LHC constraints

Mediator mass bounded from below and above Light DM in non-perturbative region LHC constrains m_{t_D} for $m_{t_D} - m_{V_D} \gtrsim m_t$ (bounds almost independent on g_D , m_T and m_H) Very weak direct detection constraints (mostly for $m_{t_D} \sim m_t$ or $m_{t_D} \sim m_T$ and light DM) $V_D \sim V_D \qquad V_D \sim m_T$ and light DM) $V_D \sim V_D \qquad V_D \sim M_T \propto \Omega_{DM}$

Representative benchmarks: $\begin{cases} g_D = 0.05, 0.5 \\ m_T = 1600 \text{ GeV} \\ m_H = 1000 \text{ GeV} \end{cases}$ heavy enough to evade LHC constraints

Alexander Belyaev

The VL fermion is composed of top partners and there is no mixing between scalars with $m_t < m_{t_D} \leq m_T$ $\Psi = \begin{pmatrix} t_D \\ T \end{pmatrix}$ $\sin\theta_{\rm S}=0$

Representative benchmarks: $\begin{cases} g_D = 0.05, 0.5 \\ m_T = 1600 \text{ GeV} \\ m_H = 1000 \text{ GeV} \end{cases}$ heavy enough to evade LHC constraints

Mediator mass bounded from below and above Light DM in non-perturbative region LHC constrains m_{t_D} for $m_{t_D} - m_{V_D} \gtrsim m_t$ (bounds almost independent on g_D , m_T and m_H) Very weak direct detection constraints (mostly for $m_{t_D} \sim m_t$ or $m_{t_D} \sim m_T$ and light DM) Indirect detection constrains light DM Strong constrain from relic density \rightarrow the model "lives" on the red contours $(\Omega_{\rm DM}^{\rm Planck})$

The VL fermion is composed of top partners and there is no mixing between scalars with $m_t < m_{t_D} \leq m_T$ $\Psi = \begin{pmatrix} t_D \\ T \end{pmatrix}$ $\sin\theta_{\rm S}=0$

Representative benchmarks: $\begin{cases} g_D = 0.05, 0.5 \\ m_T = 1600 \text{ GeV} \\ m_H = 1000 \text{ GeV} \end{cases}$ heavy enough to evade LHC constraints

ത്ത 2

Alexander Belyaev

Vector Dark Matter via a Fermionic Portal from a New Gauge Sector

Alexander Belyaev

Vector Dark Matter via a Fermionic Portal from a New Gauge Sector

Alexander Belyaev

The VL fermion is composed of top partners and there is no mixing between scalars $\Psi = \begin{pmatrix} t_D \\ T \end{pmatrix}$ with $m_t < m_{t_D} \leq m_T$ $\sin \theta_{\rm S} = 0$

Representative benchmarks: $\begin{cases} g_D = 0.05, 0.5 & \text{strong or weak cosmological constraints} \\ m_T = 1600 \text{ GeV} \\ m_H = 1000 \text{ GeV} \end{cases}$ heavy enough to evade LHC constraints

Mediator mass bounded from below and above Light DM in non-perturbative region LHC constrains m_{t_D} for $m_{t_D} - m_{V_D} \gtrsim m_t$ (bounds almost independent on g_D , m_T and m_H) Very weak direct detection constraints (mostly for $m_{tD} \sim m_t$ or $m_{tD} \sim m_T$ and light DM) Indirect detection constrains light DM Strong constrain from relic density \rightarrow the model "lives" on the red contours ($\Omega_{\rm DM}^{\rm Planck}$) \rightarrow overabundant region shrinks for larger g_D \rightarrow and ID constraints vanish \rightarrow effective (co-)annihilation processes \rightarrow on the H_D pole, exclusion from ID The mediator t_D can be long lived, and V' too just a simple realization of the model template

multiple features and signatures

Summary on Fermion Portal Vector Dark Matter (FPVDM)

- FPVDM is a new framework which does not require the Higgs portal
- Incorporates many possibilities with new collider and cosmological implications
- Case study in the top sector with multiple phenomenological predictions
 Great potential to explore flavour and DM phenomena!

Summary on Fermion Portal Vector Dark Matter (FPVDM)

- FPVDM is a new framework which does not require the Higgs portal
- Incorporates many possibilities with new collider and cosmological implications
- Case study in the top sector with multiple phenomenological predictions

Great potential to explore flavour and DM phenomena!

Backup slides

Gauging the global U(1)

A dark electroweak sector

Extend the dark sector with a $U(1)_{YD}$ (dark hypercharge). Same scalars Φ_H and Φ_D .

 $\mathcal{G} = \mathcal{G}_{SM} \times \mathcal{G}_D = SU(2)_L \times U(1)_Y \times SU(2)_D \times U(1)_{YD} \longrightarrow U(1)_{EM} \times U(1)_D$

Conserved charge from the unbroken $U(1)_D$ symmetry: $Q_D = T_{3D} + Y_D$

One assumption: SM fields do not carry *Q*_D charge

The only Q_D -charged state is $V_{D\pm}^0 \equiv W_D$ \longrightarrow stable \longrightarrow DM candidate

Renormalizable, gauge-invariant kinetic mixing between $U(1)_Y$ and $U(1)_{YD}$ can be generated

$$-\mathcal{L}_{\mathrm{KM}} = \frac{1}{4}B_{\mu\nu}B^{\mu\nu} + \frac{1}{4}B_{D\mu\nu}B^{\mu\nu}_{D} + \frac{\varepsilon}{2}B_{\mu\nu}B^{\mu\nu}_{D} \qquad \begin{pmatrix} B^{\mu}\\ B^{0\mu}_{D0} \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{1-\varepsilon^2}} & 0\\ -\frac{\varepsilon^2}{\sqrt{1-\varepsilon^2}} & 1 \end{pmatrix} \begin{pmatrix} \cos\theta_k & -\sin\theta_k\\ \sin\theta_k & \cos\theta_k \end{pmatrix} \begin{pmatrix} B^{\mu}_1\\ B^{\mu}_2\\ B^{\mu}_2 \end{pmatrix}$$

Mixing between all Q- and Q_D -neutral bosons

$$\begin{cases} m_{\gamma} = 0 \\ m_{\gamma D} = 0 \end{cases} \begin{cases} m_Z^2 = \frac{v^2}{4} \left[g^2 + g'^2 \left(1 + \frac{(g^2 + g'^2)v^2 - g_D^2 v_D^2}{(g^2 + g'^2)v^2 - (g_D^2 + g_D'^2)v_D^2} \varepsilon^2 \right) \right] + \mathcal{O}(\varepsilon^4) \\ m_{\gamma D}^2 = 0 \end{cases} \begin{cases} m_Z^2 = \frac{v_D^2}{4} \left[g_D^2 + g_D'^2 \left(1 + \frac{g^2 v^2 - (g_D^2 + g_D'^2)v_D^2}{(g^2 + g'^2)v^2 - (g_D^2 + g_D'^2)v_D^2} \varepsilon^2 \right) \right] + \mathcal{O}(\varepsilon^4) \end{cases}$$

2 massless and 2 massive vectors

Connections with dark-photon phenomenology

