Axion effective field theory

Jérémie Quevillon

LPSC, Grenoble

Outline of this talk

1. Let's understand axion fondamental interactions

Typical Lagrangians and phenomenological implications
2. Let's build axion EFTs

Integrating out chiral fermions from the path integral
3. Let's discus anomalies in EFTs

A different approach from to so-called Fujikawa's method

A shift of paradigm

- To solve: the hierarchy problem
concretely: why the gravitational force is so much weaker than the other fundamental interactions?
Main candidate,

Supersymmetry : -enlarges Poincaré algebra (new energy scale)
 -needs many new particles
 -can preserve SM gauge group

- To solve: the strong CP puzzle
concretely: why matter and not anti-matter in our universe?
Main candidate,
'Peccei-Quinn' theory : -enforces CP-symmetry
-needs a new global 'no symmetry'
(anomalous+spontaneously broken)
(new energy scale)
-entangled with SM gauge group :
(careful!)
$\left[S U(3)_{c} \otimes S U(2)_{L} \otimes U(1)_{Y}\right]_{\text {local }} \times\left[U(1)_{\mathcal{B}, C, P Q}\right]_{\text {global }}$ the QCD axion: «new » Goldstone bosons combination $\perp Z_{L}$

The key role of anomaly in QFT

The chiral anomaly of the SM

QFT Anomalies

Anomalies: classical symmetry broken at the quantum level

Example: «triangle anomalies » in massless QED

$$
\mathscr{L}_{Q E D}=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}+\bar{\psi} i \not D \psi
$$

Two invariances: $\xrightarrow{\text { (Noether theorem) }}$ Two classicaly conserved currents:

- $\psi \rightarrow e^{i \theta_{V}} \psi$
- $\psi \rightarrow e^{-i \theta_{A} \gamma^{5}} \psi$

$$
\begin{aligned}
& V^{\mu}=\bar{\psi} \gamma^{\mu} \psi, \quad \partial_{\mu} V^{\mu}=0 \\
& A^{\mu}=\bar{\psi} \gamma^{\mu} \gamma^{5} \psi, \quad \partial_{\mu} A^{\mu}=0
\end{aligned}
$$

$$
\Downarrow
$$

At the quantum level:

$$
V^{\mu}=\bar{\psi} \gamma^{\mu} \psi, \quad \partial_{\mu} V^{\mu}=0 \quad \text { holds }
$$

But axial symmetry is broken :

$$
\partial_{\mu} A^{\mu}=\frac{1}{8 \pi^{2}} F_{\mu \nu} \tilde{F}^{\mu \nu}
$$

- Fermionic path integral measure is not invariant: [Fujikawa]

$$
Z=\int \mathscr{D} \psi \mathscr{D} \bar{\psi} e^{i S}
$$

The Strong CP Puzzle in particle physics

$$
\mathcal{L}_{Q C D}=\underbrace{\bar{q}\left(i \gamma^{\mu} D_{\mu}-m_{q} e_{\mathrm{CPV}}^{i \theta_{E W}}\right) q-\frac{1}{4} G_{a}^{\mu \nu} G_{\mu \nu}^{a}-\theta_{Q C D} \frac{\alpha_{s}}{8 \pi} G_{a}^{\mu \nu} \tilde{G}_{\mu P V}^{a}}_{4 \text {-component Dirac field }}
$$

$U(1)_{A}$ chiral transformation: $\quad q \rightarrow e^{i \gamma^{5} \theta_{E W}} q \begin{gathered}\text { anomalous } \\ \text { symmetry }\end{gathered}$
the measure of the path integral is not invariant under this transformation axial anomaly shifts quark mass phase to QCD vacuum

Yukawa coupling to the Higgs are complex $\quad \theta_{C K M} \neq 0$

Why is this strong CP-violation term so puzzling? $\mathcal{L}_{\varnothing P}=\bar{\theta} \frac{\alpha_{s}}{8 \pi} G_{a}^{\mu \nu} \tilde{G}_{\mu \nu}^{a}$
this induces a huge electric dipole moment for the neutron:
Theory: $\begin{aligned} &\left|d_{n}\right| \sim|\bar{\theta}| 10^{-16} \text { e.cm vs Experiment: }\left|d_{n}\right| \lesssim 10^{-26} \text { e.cm } \\ & \longrightarrow \bar{\theta}<10^{-10} \quad \begin{array}{c}\text { The strong CP problem } \\ \text { =Why is } \bar{\theta} \text { so small? }\end{array}\end{aligned}$
The strong CP problem is really why the combination of QCD and EW parameters make up should be so small...

The Peccei-Quinn Axion Solution

axial anomaly: $\theta_{E W}^{\mathrm{CPV}} \longleftrightarrow \theta_{Q C D}^{\mathrm{CPV}}$
Solution to the strong CP problem of QCD: add fields such that rotate $\bar{\theta}$ to the phase of a complex SM-singlet scalar who gets a VEV and dynamically drives $\theta \rightarrow 0$

$$
\mathcal{L}_{Q C D}=\bar{q}\left(i \gamma^{\mu} D_{\mu}-m_{q} e^{i \theta_{E W}}\right) q-\frac{1}{4} G_{a}^{\mu \nu} G_{\mu \nu}^{a}-\theta_{Q C D} \frac{\alpha_{s}}{8 \pi} G_{a}^{\mu \nu} \tilde{G}_{\mu \nu}^{a}
$$

1. Introduce a new global axial $U(1)_{P Q}$ symmetry S.B. at high scale \longrightarrow the low-energy theory has a Goldstone boson (the axion field)
2. Design $\mathcal{L}_{\text {axion }}$ such that $Q\left(q_{L}\right) \neq Q\left(q_{R}\right) \longrightarrow$ this makes the $U(1)_{P Q}$ anomalous : net effect: $\quad \mathcal{L}_{\text {axion }}=\mathcal{L}_{Q C D}+\frac{a}{v} G_{\mu \nu} \tilde{G}^{\mu \nu}+\ldots \quad \partial_{\mu} J^{\mu} \sim G_{\mu \nu}^{a} \tilde{G}_{a}^{\mu \nu}$
3. Non-perturbative QCD effects induce:

$$
\begin{aligned}
\mathcal{L}_{\text {axion }}=\mathcal{L}_{C h P T}\left(\partial_{\mu} a, \pi, \eta, \eta^{\prime}, \ldots\right)+V_{e f f} & \left(\bar{\theta}+\frac{a}{v}, \pi, \eta, \ldots\right) \\
& \sim-\Lambda_{Q C D}^{4} \cos \left(\bar{\theta}+\frac{a}{v}\right)
\end{aligned}
$$

minimum of the potential: $\bar{\theta}+\frac{<a>}{v}=0 \quad$ CP-violating term cancels!

Axion or Axion-like

Some phenomenology

Axion Like Particles

- QCD axion has couplings correlated to its mass, $m_{a} \sim \Lambda_{Q C D}^{2} \frac{1}{N_{a}}$

Current bounds push the mass well below the eV
-ALP: add an explicit mass term to get a new light pseudo scalar state

$$
\mathscr{L}_{A L P}=\frac{1}{2}\left(\partial_{\mu} a \partial^{\mu} a-m_{a}^{2} a a\right)+\text { couplings to SMI particles }
$$

No longer solve the strong CP problem
May be a DM candidate
Few might arise from string theory
Mass window spans over sub-eV to few GeV

If the mass is greater than a few GeV: LHC could say something!
How to tackle ALP-SM couplings?

BSM Higgs strategy

BSM Axion strategy

Axion couplings

Energy

- At energies below f_{a} (SB):
$\mathcal{L}_{\text {axion }} \supset \frac{\partial_{\mu} a}{2 f_{a}} j_{a}^{\mu}+\# \frac{a}{f_{a}} G \tilde{G}+\# \frac{a}{f_{a}} F \tilde{F}+\# \frac{a}{f_{a}} Z \tilde{F}+\# \frac{a}{f_{a}} Z \tilde{Z}+\# \frac{a}{f_{a}}$

LHC regime

free from (complex) low energy QCD effects probe different couplings than low energy experiments

electroweak couplings recently computed do not follow the expected pattern
 J.Q. and C. Smith, arXiv:1903.12559, 2006.06778, 2010.13683;
 J.Q., C. Smith and P.N.H. Vuong, arXiv:2112.00553

At energies below $\Lambda_{Q C D}: a-\eta^{\prime}-\pi^{0}-\eta-\ldots$ mixing
axion mass: $m_{a}=m_{\pi} \frac{f_{\pi}}{f_{a}} \frac{\sqrt{m_{u} m_{d}}}{m_{u}+m_{d}} \sim \frac{\Lambda_{Q C D}^{2}}{f_{a}}$
axion couplings to electrons, nucleons, mesons, photons, ...
(EDITs)

$$
g_{a \gamma \gamma}=\frac{\alpha}{2 \pi f_{a}}\left(\frac{E}{N}-1.92\right)
$$

Axion electroweak couplings

- $a \rightarrow \gamma \gamma$:

- $a \rightarrow l l:$

- $h \rightarrow a a$:

- $e^{+} e^{-} \rightarrow a \gamma$:

- Muon anomalous magnetic moment:

Why axions « have » derivative couplings?

An axionic toy model: simple QED extension

- local $U(1)_{e m}$, new scalar field ϕ :
$\mathcal{L}=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}+\bar{\psi}_{L}(i \not D) \psi_{L}+\bar{\psi}_{R}(i \not \supset) \psi_{R}+\left(y \phi \bar{\psi}_{L} \psi_{R}+h . c.\right)+\partial_{\mu} \phi^{\dagger} \partial^{\mu} \phi-V(\phi)$
\longrightarrow Goldstone boson (axion) remnant of $U(1)_{P Q}$ S.S.B.

Linear representation

$$
\begin{gathered}
\phi(x)=v+\sigma(x)+i \sigma(x) \\
\mathcal{L}_{\text {Linear }} \supset \frac{1}{2} \partial_{\mu} a^{0} \partial^{\mu} a^{0}+\frac{m}{v} a \bar{\psi} i \gamma_{5} \psi
\end{gathered}
$$

\rightarrow The axion is a usual pseudo-scalar with no derivative couplings to fermions

Polar representation $\phi(x)=\rho e^{-i(x) / v}$

To remove « a » from the Yukawa terms $\left(y \phi \bar{\psi}_{L} \psi_{R}+h . c\right.$.)
One reparametrizes fermion fields:

$$
\psi_{L}(x) \rightarrow \exp \left(i \alpha a^{0}(x) / v\right) \psi_{L}(x), \psi_{R}(x) \rightarrow \exp \left(i(\alpha+1) a^{0}(x) / v\right) \psi_{R}(x)
$$

\rightarrow Fermion kinetic term induce derivative interactions

$$
\bar{\psi}_{L}(i \not D) \psi_{L}+\bar{\psi}_{R}(i \not D) \psi_{R}
$$

$$
\delta \mathcal{L}_{\text {Der }}=-\frac{\partial_{\mu} a^{0}}{v}\left(\alpha \bar{\psi}_{L} \gamma^{\mu} \psi_{L}+(\alpha+1) \bar{\psi}_{R} \gamma^{\mu} \psi_{R}\right)=-\frac{\partial_{\mu} a^{0}}{2 v}\left((2 \alpha+1) \bar{\psi} \gamma^{\mu} \psi+\bar{\psi} \gamma^{\mu} \gamma_{5} \psi\right)
$$

$$
\longrightarrow \mathcal{L}_{\text {Polar }} \supset \frac{1}{2} \partial_{\mu} a^{0} \partial^{\mu} a^{0}+\delta \mathcal{L}_{\text {Der }}+?
$$

Polar representation
 $$
\phi(x)=\frac{1}{\sqrt{2}}\left(v+\sigma^{0}(x)\right) e^{-i a^{0}(x) / v}
$$

- Fermionic path integral measure is not invariant under the fermion reparametrisation: [Fujikawa]
new local interaction (anomaly - Jacobian of the transformation)

$$
\begin{aligned}
& \delta \mathcal{L}_{\mathrm{Jac}}=\frac{e^{2}}{16 \pi^{2} v} a^{0}(\alpha-(\alpha+1)) F_{\mu \nu} \tilde{F}^{\mu \nu}=-\frac{e^{2}}{16 \pi^{2} v} a^{0} F_{\mu \nu} \tilde{F}^{\mu \nu} \\
& \left.\longrightarrow \mathcal{L}_{\text {Polar }} \supset \frac{1}{2} \partial_{\mu} a^{0} \partial^{\mu} a^{0}+\delta \mathcal{L}_{\mathrm{L} R}\right) \\
& \longrightarrow \delta \mathcal{L}_{\mathrm{Jac}}
\end{aligned}
$$

The 2HDM

$V_{2 H D M}=m_{1}^{2} \Phi_{1}^{\dagger}+m_{2}^{2} \Phi_{2}^{\dagger} \Phi_{2}+\frac{\lambda_{1}}{2}\left(\Phi_{1}^{\dagger} \Phi_{1}\right)^{2}+\frac{\lambda_{2}}{2}\left(\Phi_{2}^{\dagger} \Phi_{2}\right)^{2}+\lambda_{3}\left(\Phi_{1}^{\dagger} \Phi_{1}\right)\left(\Phi_{2}^{\dagger} \Phi_{2}\right)+\lambda_{4}\left(\Phi_{2}^{\dagger} \Phi_{1}\right)\left(\Phi_{1}^{\dagger} \Phi_{2}\right)$

$\mathscr{L}_{\text {Yukawa }}=-\bar{u}_{R} \mathbf{Y}_{u} q_{L} \Phi_{1}-\bar{d}_{R} \mathbf{Y}_{d} q_{L} \Phi_{2}^{\dagger}-\bar{e}_{R} \mathbf{Y}_{e} \ell_{L} \Phi_{2}^{\dagger}+h . c$.

$$
\Phi_{1}=\frac{1}{\sqrt{2}}\binom{v_{1}+H_{1}+i P_{1}}{H_{1}^{-}}, \quad \Phi_{2}=\frac{1}{\sqrt{2}}\binom{H_{2}^{+}}{v_{2}+H_{2}+i P_{2}}
$$

-neutral CP-even Higges: $\quad\binom{H}{h}=\left(\begin{array}{ll}\# & \# \\ \# & \#\end{array}\right)\binom{H_{1}}{H_{2}}$
-charged Higges: $\quad\binom{G^{ \pm}}{H^{ \pm}}=\left(\begin{array}{cc}\# & \# \\ \# & \#\end{array}\right)\binom{H_{1}^{ \pm}}{H_{2}^{ \pm}}$
-neutral CP-odd Higges: $\quad\binom{G^{0}}{A}=\left(\begin{array}{cc}\cos \beta & \sin \beta \\ -\sin \beta & \cos \beta\end{array}\right)\binom{P_{2}}{P_{1}}$

Two standard axion models

PQWW axion :
Peccei, Quinn 'ry
Weinberg "ry
Wilczek ‘「8

$$
\text { axion identified with a phase in a } 2 H D M\left(f_{a} \sim v_{e w}\right) \text { : ruled out }
$$ phenomenology calls for $f_{a} \gg v_{e w}$ ("invisible axion ")

method: mix it with a complex SMI singlet with «big » VEV

KSVZ axion :

New «heavy » electrically neutral quark, charged under $U(1)_{P Q}$

+ a new complex scalar singlet

$$
\mathscr{L}_{K S V Z}=\mathscr{L}_{S M}+\bar{\Psi}_{L, R} \emptyset \Psi_{L, R}+y \bar{\Psi}_{L} \Psi_{R} \phi+V(\phi)
$$

DFSZ axion :

2HDM, SM quarks and leptons are charged under $U(1)_{P Q}$

+ a new complex scalar singlet

DFSZ axion couplings

1. in the linear representation

$$
\begin{aligned}
& \Phi_{1}=\frac{1}{\sqrt{2}}\binom{v_{1}+H_{1}+i P_{1}}{H_{1}^{-}} \quad \Phi_{2}=\frac{1}{\sqrt{2}}\binom{H_{2}^{+}}{v_{2}+H_{2}+i P_{2}} \\
& \text { HDDM phenomenology with A }
\end{aligned}
$$

- Axion couplings to fermions: mass-dependent pseudoscalar couplings

$$
\mathscr{L}_{A f f}=-i \sum_{f=u, d, e} \frac{m_{f}}{f_{a}} \chi^{f} A\left(\bar{\psi}_{f} \gamma_{5} \Psi_{f}\right) \quad \text { with } \quad \chi^{d}=\chi^{e}=\frac{1}{\chi^{u}}=\tan \beta
$$

- Axion couplings to gauge bosons: No $A \rightarrow V V$ at tree level couplings to SM gauge bosons at one loop:

Amplitudes know for a long time J.Gunion et al., PRD 46 (1992) 2904 Finite and non anomalous (no ambiguity of any kind)

DFSZ axion couplings to SM gauge fields

1. Axion is a pseudo-scalar with no derivative couplings

$$
\mathcal{L}_{\text {axion }} \supset \# \frac{a}{f_{a}} G \tilde{G}+\# \frac{a}{f_{a}} F \tilde{F}+\# \frac{a}{f_{a}} Z \tilde{F}+\# \frac{a}{f_{a}} Z \tilde{Z}+\# \frac{a}{f_{a}}
$$

a
$\mathcal{N}_{C}=\frac{1}{2}\left(x+\frac{1}{x}\right)$
$\mathcal{N}_{e m}=N_{C}\left(\frac{4}{9} x+\frac{1}{9 x}\right)+\frac{1}{x}$
$+e^{2} \mathcal{N}_{e m} F_{\mu \nu} \tilde{F}^{\mu \nu}$
$+\frac{2 e^{2}}{c_{W} s_{W}}\left(\mathcal{N}_{0}-s_{W}^{2} \mathcal{N}_{e m}\right) Z_{\mu \nu} \tilde{F}^{\mu \nu}$
$+\frac{e^{2}}{c_{W}^{2} s_{W}^{2}}\left(\mathcal{N}_{1}-2 s_{W}^{2} \mathcal{N}_{0}+s_{W}^{4} \mathcal{N}_{e m}\right) Z_{\mu \nu} \tilde{Z}^{\mu \nu}$
$\left.+2 g^{2} \mathcal{N}_{2} W_{\mu \nu} \tilde{W}^{\mu \nu}\right)$

$$
\begin{aligned}
& \mathcal{N}_{0}=\frac{1}{4}\left(N_{C}\left(\frac{2}{3} x+\frac{1}{3 x}\right)+\frac{1}{x}\right) \\
& \mathcal{N}_{1}=\frac{1}{12}\left(N_{C}\left(x+\frac{1}{x}\right)+\frac{1}{x}\right) \\
& \mathcal{N}_{2}=\frac{1}{12}\left(N_{C}\left(x+\frac{1}{x}\right)+\frac{3}{2 x}\right)
\end{aligned}
$$

Breaks $\mathbf{F W}$ symmetry: $\mathcal{N}_{0} \neq \mathcal{N}_{1} \neq \mathcal{N}_{2}$

$$
(x \equiv \cot \beta)
$$

DFSZ axion couplings

2. in the polar representation

$$
\begin{aligned}
& \Phi_{1}=\frac{1}{\sqrt{2}} \exp \left\{i \frac{a}{v} x\right\}\binom{\sqrt{2} H_{1}^{+}}{v_{1}+H_{1}^{0}}, \Phi_{2}=\frac{1}{\sqrt{2}} \exp \left\{-i \frac{a}{v} \frac{1}{x}\right\}\binom{\sqrt{2} H_{2}^{+}}{v_{\nu}+H_{2}^{0}} \\
& \text { Fermion reparametrization: } \quad \psi \rightarrow \exp \left\{i \frac{P Q(\psi)}{v} a\right\} \psi
\end{aligned}
$$

Consequence 1 : non-invariance of the kinetic terms

- Axion derivative couplings to fermions :

$$
\mathscr{L}_{D e r}=-\frac{1}{2 f_{a}} \partial_{\mu} a \sum_{u, d, e, \nu} \chi_{V}^{f}\left(\bar{\psi}_{f} \gamma^{u} \psi_{f}\right)+\chi_{A}^{f}\left(\overline{\psi_{f}} \gamma^{u} \gamma^{5} \psi_{f}\right)
$$

Freedom/ambiguity in the PQ charge

$$
\begin{array}{|c|cccc|}
\hline & u & d & e & v \\
\hline \chi_{V} & 2 \alpha+x & 2 \alpha+\frac{1}{x} & 2 \beta+\frac{1}{x} & \beta \\
\chi_{A} & x & \frac{1}{x} & \frac{1}{x} & -\beta \\
\hline
\end{array}
$$

Consequence 2 : non-invariance of the fermionic measure

- Anomalous axion couplings to SM gauge fields at tree-level :
(cJacobian of the transformation)

$$
\begin{aligned}
\delta \mathcal{L}_{J a c} & =\frac{a}{16 \pi^{2} v} g_{s}^{2} \mathcal{N}_{C} G_{\mu \nu}^{a} \tilde{G}^{a, \mu \nu} & \mathcal{N}_{C}=\frac{1}{2}\left(x+\frac{1}{x}\right) \\
& +\frac{a}{16 \pi^{2} v} g^{2} \mathcal{N}_{L} W_{\mu \nu}^{i} \tilde{W}^{i, \mu \nu} & \mathcal{N}_{L}=-\frac{1}{2}(3 \alpha+\beta) \\
& +\frac{a}{16 \pi^{2} v} g^{\prime 2} \mathcal{N}_{Y} B_{\mu \nu} \tilde{B}^{\mu \nu} & \mathcal{N}_{Y}=\frac{1}{2}(3 \alpha+\beta)+\frac{4}{3} x+\frac{1}{3 x}+\frac{1}{x}
\end{aligned}
$$

DFSZ axion couplings to SM gauge fields

 2. Axion has derivative couplings to fermionscouplings to SM gauge bosons at one loop:

Generically :

Amplitudes need to be carefully regularized
Divergences and ambiguities due to QFT anomalies

DFSZ axion couplings to SM gauge fields

 2. Axion has derivative couplings to fermionsEffective couplings to SM gauge bosons at one loop:

DFSZ axion couplings to SM gauge fields

 2. Axion has derivative couplings to fermionsEffective couplings at one loop:

$$
a \rightarrow \gamma Z:
$$

1. Vector current is not conserved
(anomalous as Baryon-number current)
One has to consider both couplings:

$$
\left(\partial_{\mu} a\right) \bar{\psi} \gamma^{\mu} \gamma^{5} \psi \text { and }\left(\partial_{\mu} a\right) \bar{\psi} \gamma^{\mu} \psi
$$

DFSZ axion couplings to SM gauge fields

 2. Axion has derivative couplings to fermionsEffective couplings at one loop:
$a \rightarrow Z Z, W^{+} W^{-}:$

contribute

partially contribute

contribute

does not contribute

> Freedom/ambiguity in the PQ charge cancel exactly

2.

The anomalous contact int. does cancel out systematically with the anomalous part to the triangle graphs

$$
\mathcal{L}_{\text {axion-gauge }}=\delta \mathcal{L}_{\text {Der }}+\delta \mathcal{L}_{\mathrm{Jac}}
$$

«Polar = Linear»

Polar
representation:

$$
\begin{aligned}
\text { Axial current } A & =\bar{\psi} \gamma^{\mu} \gamma_{5} \psi \\
\text { Vector current } V & =\bar{\psi} \gamma^{\mu} \psi
\end{aligned}
$$

Linear

representation:

$$
\text { Pseudo-scalar current } P=\bar{\psi} \gamma_{5} \psi
$$

Vector current is not conserved
One has to consider both couplings:
$\left(\partial_{\mu} a\right) \bar{\psi} \gamma^{\mu} \gamma^{5} \psi$ and $\left(\partial_{\mu} a\right) \bar{\psi} \gamma^{\mu} \psi$
not a reliable book-keeping of
the effect of heavy fermions

- idem for ZZ and WW

DFSZ axion summary

$$
\begin{aligned}
\mathcal{L}^{\mathrm{eff}}= & \frac{a^{0}}{16 \pi^{2} v}\left(g_{s}^{2} \mathcal{N}^{g g} G_{\mu \nu}^{a} \tilde{G}^{a, \mu \nu}+e^{2} \mathcal{N}^{\gamma \gamma} F_{\mu \nu} \tilde{F}^{\mu \nu}+\frac{2 e^{2}}{c_{W} s_{W}}\left(\mathcal{N}_{1}^{\gamma Z}-s_{W}^{2} \mathcal{N}_{2}^{\gamma Z}\right) Z_{\mu \nu} \tilde{F}^{\mu \nu}\right. \\
& \left.+\frac{e^{2}}{c_{W}^{2} s_{W}^{2}}\left(\mathcal{N}_{1}^{Z Z}-2 s_{W}^{2} \mathcal{N}_{2}^{Z Z}+s_{W}^{4} \mathcal{N}_{3}^{Z Z}\right) Z_{\mu \nu} \tilde{Z}^{\mu \nu}+2 \mathcal{N}^{W W} g^{2} W_{\mu \nu}^{+} \tilde{W}^{-, \mu \nu}\right)
\end{aligned}
$$

in the limit $m_{\text {u.d.e }} \rightarrow \infty$

J.Q. and C. Smith, arXiv:1903.12559

Effective interactions are not always equal to anomalous interactions!
Remember that \mathcal{N}_{L} is ambiguous

Implication for ALPs searches

How to construct a truly axion-like basis?

$$
\mathcal{L}_{A L P}^{\mathrm{eff}}=\frac{1}{2}\left(\partial_{\mu} a^{0} \partial^{\mu} a^{0}-m_{a}^{2} a^{0} a^{0}\right)+\mathcal{L}_{\mathrm{KSVZ}}-\text { like }+\mathcal{L}_{\mathrm{DFSZ}-l i k e}
$$

KSVZ like: New, heavy, electrically neutral quark, charged under $U(1)_{\mathrm{PQ}}$

$$
\mathcal{L}_{\mathrm{KSVZ}}^{\mathrm{eff}} \mathrm{like}=\frac{a^{0}}{16 \pi^{2} f_{a}}\left(g_{s}^{2} \mathcal{N}_{C} G_{\mu \nu}^{a} \tilde{G}^{a, \mu \nu}+g^{2} \mathcal{N}_{L} W_{\mu \nu} \tilde{W}^{\mu \nu}+g^{\prime 2} \mathcal{N}_{Y} B_{\mu \nu} \tilde{B}^{\mu \nu}\right)
$$

- Typically assuming some heavy vector-like fermions
- No direct coupling to SM fermions
- Manifestly symmetric under $S U(3)_{C} \otimes S U(2)_{L} \otimes U(1)_{L}$

Implication for ALPs searches

How to construct a truly axion-like basis?

$$
\mathcal{L}_{A L P}^{\mathrm{eff}}=\frac{1}{2}\left(\partial_{\mu} a^{0} \partial^{\mu} a^{0}-m_{a}^{2} a^{0} a^{0}\right)+\mathcal{L}_{\mathrm{KSVZ}}-\text { like }+\mathcal{L}_{\mathrm{DFSZ}-l i k e}
$$

DFSZ like: 2HDIM, SM quarks and leptons are charged under $U(1)_{\mathrm{PQ}}$

$$
\begin{aligned}
\mathcal{L}_{\mathrm{DFSZ}}^{\mathrm{eff}} \mathrm{like}= & -\frac{1}{2 f_{a}} \partial_{\mu} a \sum_{f=\text { chiral fermions }} \chi_{V}^{f} \bar{\psi}_{f} \gamma^{\mu} \psi_{f}+\chi_{A}^{f} \bar{\psi}_{f} \gamma^{\mu} \gamma^{5} \psi_{f} \\
& +\frac{a}{16 \pi^{2} f_{a}}\left(g_{s}^{2} \mathcal{N}_{C} G_{\mu \nu}^{a} \tilde{G}^{a, \mu \nu}+g^{2} \mathcal{N}_{L} W_{\mu \nu} \tilde{W}^{\mu \nu}+g^{\prime 2} \mathcal{N}_{Y} B_{\mu \nu} \tilde{B}^{\mu \nu}\right)
\end{aligned}
$$

- Vector currents do contribute to physical observables
- Spurious \mathscr{B} and \mathscr{L} violation included
- Axion-like \Rightarrow need to impose anomaly cancellation!

Implication for ALPs searches

How to construct a truly axion-like basis?

$$
\mathcal{L}_{A L P}^{\mathrm{eff}}=\frac{1}{2}\left(\partial_{\mu} a^{0} \partial^{\mu} a^{0}-m_{a}^{2} a^{0} a^{0}\right)+\mathcal{L}_{\mathrm{KSVZ}} \text { like }+\mathcal{L}_{\mathrm{DFSZ}} \text { like }
$$

KSVZ like: New, heavy, electrically neutral quark, charged under $U(1)_{P Q}$
$\mathcal{L}_{\mathrm{KSVZ-like}}^{\mathrm{eff}}=\frac{a^{0}}{16 \pi^{2} f_{a}}\left(g_{s}^{2} \mathcal{N}_{C} G_{\mu \nu}^{a} \tilde{G}^{a, \mu \nu}+g^{2} \mathcal{N}_{L} W_{\mu \nu} \tilde{W}^{\mu \nu}+g^{\prime 2} \mathcal{N}_{Y} B_{\mu \nu} \tilde{B}^{\mu \nu}\right)$

- Typically assuming some heavy vector-like fermions
- No direct coupling to SMI fermions
- Manifestly symmetric under $S U(3)_{C} \otimes S U(2)_{L} \otimes U(1)_{L}$

DFSZ like: 2HDM, SM quarks and leptons are charged under $U(1)_{\mathrm{PQ}}$
$\mathcal{L}_{\mathrm{DFSZ} \text {-like }}^{\mathrm{eff}}=-\frac{i}{f_{a}} a^{0} \sum_{f=\text { chiral fermions }} m_{f} \chi_{A}^{f}\left(\bar{\psi}_{f} \gamma_{5} \psi_{f}\right) \quad$ Anomaly cancellation
Simple pseudo-scalar couplings

- One should not build EFTs with both anomalous couplings and vectorial-axial fermion couplings : because of anomaly cancellations!
- Effective interactions are not always equal to anomalous interactions!

Several interesting phenomenological aspects

Baryon \& Lepton number, Seesaw, GUTs

Axion and Baryon \& Lepton number

2HDM of type II: $\quad \mathcal{L}_{\text {Yukawa }}=-\bar{u}_{R} \mathbf{Y}_{u} q_{L} \Phi_{1}-\bar{d}_{R} \mathbf{Y}_{d} q_{L} \Phi_{2}^{\dagger}-\bar{e}_{R} \mathbf{Y}_{e} \ell_{L} \Phi_{2}^{\dagger}+$ h.c.

2 neutral Goldstone bosons: a, Z_{L}

$$
\begin{aligned}
& P Q\left(\Phi_{1}, \Phi_{2}, \phi\right)= \\
& \\
& \Longrightarrow P Q\left(x,-\frac{1}{x}, \frac{1}{2}\left(x+\frac{1}{x}\right)\right) \stackrel{a \perp Z_{L}}{\longrightarrow} P Q\left(q_{L}, u_{R}, d_{R}, \ell_{L}, e_{R}\right)=\left(\alpha, \alpha+x, \alpha+\frac{1}{x}, \beta, \beta+\frac{1}{x}\right)
\end{aligned}
$$

2 parameters ambiguity

At this stage no way to fix $\alpha \& \beta$
Ambiguity due to the invariance of the Yukawa couplings under $\mathscr{B} \& \mathscr{L}$
\Rightarrow to be used to accommodate \mathscr{B}, \mathscr{L} violation

Axion and the seesaw mechanism

Majorana mass term: $\mathcal{L}_{\nu_{R}}=-\frac{1}{2} \bar{\nu}_{R}^{C} \mathbf{M}_{R} \nu_{R}+\bar{\nu}_{R} \mathbf{Y}_{\nu} \ell_{L} \Phi_{i}+h . c .$.

$$
\Rightarrow\left\{\begin{array}{l}
\bar{\nu}_{R} \mathbf{Y}_{\nu} \ell_{L} \Phi_{1}: P Q\left(\nu_{R}\right)=\beta+x=0 \\
\bar{\nu}_{R} \mathbf{Y}_{\nu} \ell_{L} \Phi_{2}: P Q\left(\nu_{R}\right)=\beta-\frac{1}{x}=0 \\
\text { still: } P Q\left(q_{L}, u_{R}, d_{R}, \ell_{L}, e_{R}\right)=\left(\alpha, \alpha+x, \alpha+\frac{1}{x}, \beta, \beta+\frac{1}{x}\right)
\end{array}\right.
$$

- No ambiguity on β since $U(1)_{\mathscr{L}}$ has never been a symmetry: β is fixed
- Introduce operator and then set β, not the contrary!

$$
\begin{aligned}
\nu \text { DFSZ: } & \mathcal{L}_{\nu_{R}}=-\frac{1}{2} \bar{\nu}_{R}^{C} \mathbf{Y}_{R} \nu_{R} \phi+\bar{\nu}_{R} \mathbf{Y}_{\nu} \ell_{L} \Phi_{i}+\text { h.c. } \\
\Rightarrow & P Q\left(\nu_{R}\right)=-P Q(\phi) / 2 \neq 0 \\
& \Rightarrow\left\{\begin{array}{l}
\bar{\nu}_{R} \mathbf{Y}_{\nu} \ell_{L} \Phi_{1} \Rightarrow \beta=-\frac{1}{4}\left(5 x+\frac{1}{x}\right) \quad \text { Still: } \ldots . \\
\bar{\nu}_{R} \mathbf{Y}_{\nu} \ell_{L} \Phi_{2} \Rightarrow \beta=-\frac{1}{4}\left(x-\frac{3}{x}\right)
\end{array}\right.
\end{aligned}
$$

- $U(1)_{\mathscr{L}} \subset U(1)_{1} \times U(1)_{2}$ does not correspond to the usual Lepton number
- $U(1)_{\mathscr{L}}$: never occurs at low energy
- axion = majoron and still solve the strong CP-problem

Axion and GUT

- Let's embed the axion into $S U(5) \quad\left\{\begin{array}{l}\mathscr{B}-\mathscr{L} \text { conserving } \\ \mathscr{B}+\mathscr{L} \text { violating }\end{array}\right.$
\longrightarrow one of the ambiguity immediately disappears:

$$
3 \alpha+\beta=-\left(x+\frac{1}{x}\right) \equiv \frac{2 \mathcal{N}_{S U(5)}}{\text { anomaly coefficients }}
$$

$\mathrm{Rq}:$ constraint not compatible with instanton requirement: $3 \alpha+\beta=0$

$$
\mathcal{L}_{\text {inst }}^{\text {eff }} \propto \beta_{L}^{\beta} q_{L}^{Q}
$$

- In axion models, PQ charges of the 2 Higgs doublets and the fermions are the same up to the value of α and β
\rightarrow this comes from the orthogonality condition among Goldstone bosons (Yukawa couplings)
\Rightarrow the low energy phenomenology of the axion is the same in all these models since axions couplings are independent of α and β !

Conclusion

- Axion couplings to gauge bosons are not anomaly-driven
- Essential to keep the axion vector currents in ALP basis
- Axion-electroweak couplings do not always follow the expected pattern \rightarrow must be kept in mind for ALP searches
- Switching to the linear representation is safer (no ambiguity)
- The ambiguity in PQ charges to be used to accommodate \mathscr{B}, \mathscr{L} violation
- The low energy phenomenology of the DFSZ axion is the same in all models since axion couplings are independent of those ambiguities often obscured by the normalisation of the PQ charges

l. Let's understand axion fondamental interactions

Typical Lagrangians and phenomenological implications
\longrightarrow 2. Let's build axion EFT's
Integrating out chiral fermions from the path integral

Generalities with fermions in gauge theory

We start from a generic UV Lagrangian exhibiting some set of local symmetries and involving fermionic degrees of freedom :

$$
\mathscr{L}_{\mathrm{UV}}^{\text {fermion }}=\bar{\Psi}\left(i \partial_{\mu} \gamma^{\mu}+g_{V} V_{\mu} \gamma^{\mu}-g_{A} A_{\mu} \gamma^{\mu} \gamma^{5}\right) \Psi
$$

This theory is invariant under a set of gauge transformation :

$$
\begin{aligned}
V_{\mu} & \rightarrow V_{\mu}+\partial_{\mu} \theta(x) \\
A_{\mu} & \rightarrow A_{\mu}-\partial_{\mu} \theta(x) \\
\Psi & \rightarrow e^{i g_{V} \theta(x)+i g_{A} \theta(x) \gamma^{5}} \Psi
\end{aligned}
$$

Our goal is to integrate out the fermion to get the EFT
(i.e get the tower of effective interactions by performing an inverse mass expansion)

This obviously means that the fermion to be integrated out should be massive, which forces the axial gauge symmetry to be spontaneously broken

Spontaneous symmetry breaking \& fermion mass

Let's include the complex scalar field, ϕ_{A} which by acquiring a VEV, will spontaneously break the axial gauge symmetry :

$$
\mathscr{L}_{\mathrm{UV}}^{\text {fermion }}=\bar{\Psi}\left(i \partial_{\mu} \gamma^{\mu}+g_{V} V_{\mu} \gamma^{\mu}-g_{A} A_{\mu} \gamma^{\mu} \gamma^{5}-y_{\Psi} \phi_{A}\right) \Psi
$$

To focus on manifest gauge invariance, it is convenient to include the Goldstone boson, π_{A}, which explicitly enters the exponential representation of ϕ_{A} :

$$
\phi_{A}=\left(v+\sigma_{A}\right) e^{i 2 g_{A} \frac{\pi_{A}}{v} \gamma_{5}} . \begin{aligned}
& \text { is gauge invariant, so it plays no rôle! } \\
& \\
& \\
& \quad \text { one does not need to fully define the UV theory «EFT-oriented» " }
\end{aligned}
$$

Thanks to the exponential parametrization of the Goldstone boson this theory is still manifestly gauge invariant, with the shift transformation :

$$
\pi_{A} \rightarrow \pi_{A}-v \theta
$$

Linear representation

By contrast, if one insists on manifest renormalizability, it is convenient to insert the Goldstone boson linearly :

$$
\phi_{A}=v+\sigma_{A}+i \pi_{A}
$$

A $U(1)_{A}$ gauge transformation mixes these 2 components
\longrightarrow It is only by fully specifying the UV theory that one could maintain both manifest renormalizability \& manifest gauge invariance

«Polar ~ linear»

It seems legitimate to consistently account for spontaneously breaking of the axial gauge symmetry, to consider the exponential parametrization of the Goldstone boson,

$$
\begin{gathered}
\mathscr{L}_{\mathrm{UV}}^{\text {fermion }}=\bar{\Psi}(i \partial_{\mu} \gamma^{\mu}+g_{V} V_{\mu} \gamma^{\mu}-g_{A} A_{\mu} \gamma^{\mu} \gamma^{5}-M \underbrace{1+\frac{2 g_{A}}{i 2 g_{A} \frac{\pi_{A}}{v}} \gamma^{5}}) \Psi \\
\text { The } \pi_{A} \rightarrow \bar{\Psi} \Psi \text { coupling is of oxpansion pseudoscalar type } \\
\stackrel{i \pi_{A} \gamma_{5}}{v}
\end{gathered}
$$ and is the same as it would be in the linear rep. of ϕ_{A}

(whatever the breaking chain)

- To evaluate the one-loop effective action, we will truncate the expansion to that leading term, since we are interested only in operators at most linear in a given Goldstone boson.
- Issues related to the apparent non-renormalizability of the exponential parametrization will not affect our developments

Fermion reparametrization

Instead of truncating the exponential parametrization, there is an exact procedure to recover a linearized Lagrangian which allows to transfer the Goldstone dependence from the Yukawa sector to the gauge sector, perform a field-dependent reparametrization of the fermion fields:

$$
\Psi \rightarrow \underset{\longrightarrow}{\Psi}=e^{-i g_{A}^{\frac{\pi_{A}(x)}{v}} \gamma^{5}} \Psi
$$

so the mass term does not cause any trouble even for a chiral gauge symmetry
and could easily be factorized out for an EFT mass expansion
$\longrightarrow \mathscr{L}_{\mathrm{UV}}^{\text {fermion }}=\bar{\Psi}\left(i \partial_{\mu} \gamma^{\mu}-M+g_{V} V_{\mu} \gamma^{\mu}-g_{A}\left[A_{\mu}-\frac{\partial_{\mu} \pi_{A}(x)}{v}\right] \gamma^{\mu} \gamma^{5}\right) \Psi$
This quadratic operator has the virtue of being manifestly gauge invariant
(but not renormalizable)

- The Goldstone boson ensures the theory stays gauge invariant :
so one should not get rid of them by moving to the unitary gauge
- This form looks particularly well suited for an inverse mass expansion since $M \sim v$ but one should not be tempted to neglect the dim 5 operator at this stage!

Anomalies

One crucially important caveat:
the fermion field reparametrization does not leave the path integral measure invariant
(the field being chiral)

The Jacobian of the transformation sums up to additional terms in the Lagrangian of the form:

$$
\mathscr{L}_{\mathrm{UV}} \supset \mathscr{L}_{\mathrm{UV}}^{\mathrm{Jac}}=\frac{1}{16 \pi^{2}} g_{A} g_{V}^{2}\left[\frac{\pi_{A}(x)}{v} F_{V}^{\mu \nu} \tilde{F}_{V}^{\mu \nu}\right]+\frac{1}{48 \pi^{2}} g_{A}^{3}\left[\frac{\pi_{A}(x)}{v} F_{A}^{\mu \nu} \tilde{F}_{A}^{\mu \nu}\right]
$$

These terms explicitly break the gauge invariance
(they get shifted under $\pi_{A} \rightarrow \pi_{A}-v \theta$)

- For abelian gauge theories, this is not a serious problem since the change in the Lagrangian sum up to an innocuous surface term
- But since our goal is to consider SMI gauge interactions, this issue must be addressed

Two main ways to deal with Anomalies

1) If one want to hold the interactions to be gauged, a first possibility consists in tunning the chiral fermionic content such that the total contribution to the anomaly vanishes (as in SM)

Goldstones are allowed to be moved to and from the mass terms without generating a Jacobian
i.e strict equivalence between the $\bar{\Psi}\left(\partial_{\mu} \pi_{A} \gamma^{\mu} \gamma^{5}\right) \Psi$ and $\bar{\Psi}\left(M \gamma_{5} \pi_{A} / v\right) \Psi$ couplings can be viewed as the transcription of the non-anomalous Ward identity $\partial_{\mu} A^{\mu}=2 i M P \quad\left\{\begin{array}{c}A^{\mu}=\bar{\Psi} \gamma^{\mu} \gamma^{5} \Psi \\ P=\bar{\Psi} \gamma^{5} \Psi\end{array}\right.$
2) give up gauge invariance to a global symmetry

Scenario with combined situations

Generically, the theory corresponds to :

$$
\mathscr{L}_{\mathrm{UV}} \supset \mathscr{L}_{\mathrm{UV}}^{\text {fermion }}+\mathscr{L}_{\mathrm{UV}}^{\mathrm{Jac}}
$$

$$
\text { Would be Goldstones } \supset \bar{\Psi}\left[i \partial_{\mu} \gamma^{\mu}-M+\left(\mathrm{V}_{\mu}-\frac{\partial_{\mu} \pi_{V}}{v_{V}}\right) \gamma^{\mu}-\left(\mathrm{A}_{\mu}-\frac{\partial_{\mu} \pi_{A}}{v_{A}}\right) \gamma^{\mu} \gamma^{5}\right.
$$

So, let us proceed and integrate out the fermion field involving local partial derivative in its quadratic operator

Evaluation: Feynman diagrams vs path integral

- If one decides to use Feynman diagrams to integrate out fermions, one will have to deal with common divergent triangle amplitudes that one will have to carefully regularise

Even if this is a standard manipulation in QFT, the potential spread of the anomaly due to group mixing have to be considered with high care
J.Q. and C. Smith, arXiv:1903.12559

- In the functional approach, the fact that the axial couplings are anomalous manifests itself by the presence of ambiguities in the functional trace
(the ambiguity is localised in the Dirac matrix traces if one choose to use dimensional regularisation)
J.Q., C. Smith, Pham Ngoc Hoa Vuong, arXiv: 2112.00553

Functional matching at one loop

The functional approach is powerful because it exists an elegant method to compute this determinant based on:

- method of regions : one just needs hard region no IR details
- CDE : one works with $D_{\mu}, \phi \Rightarrow$ directly gauge invariant operators, no momentum-space Feynman rules

Integrating-out heavy fermions

Generic UV Lagrangian involving fermions:

$$
\mathcal{L}_{\mathrm{UV}}[\phi, \Psi]=\mathcal{L}_{0}[\phi]+\bar{\Psi}(\not P-M-X[\phi]) \Psi
$$

Generic couplings with background fields:

$$
\begin{gathered}
X[\phi]=\underset{\text { Scalar }}{W_{0}[\phi]}+i W_{1}[\phi] \gamma^{5}+V_{\mu}[\phi] \gamma^{\mu}+A_{\mu}[\phi] \gamma^{\mu} \gamma^{5} \\
S_{\text {eff }}^{1 \text {-loop }}=-i \operatorname{Tr} \ln (\not P-M-X[\phi])
\end{gathered}
$$

After integrating out heavy fermions:

$$
\mathcal{L}_{\text {eff }}^{1-\mathrm{loop}}=i \operatorname{tr} \sum_{n=1}^{\infty} \frac{1}{n} \int \frac{d^{d} q}{(2 \pi)^{d}}\left[\frac{-1}{q+M}\left(-\not P+W_{0}[\phi]+i W_{1}[\phi] \gamma^{5}+V_{\mu}[\phi] \gamma^{\mu}+A_{\mu}[\phi] \gamma^{\mu} \gamma^{5}\right)\right]^{n}
$$

-Expand order by order (ex: up to n=6)
-Integrate over momentum q (careful to γ^{5} in D-dimension)
-Evaluate the Dirac traces

Covariant Derivative Expansion and Dim. Reg.

$$
\mathcal{L}_{\mathrm{eff}}^{1 \text {-loop }}=i \operatorname{tr} \sum_{n=1}^{\infty} \frac{1}{n} \int \frac{d^{d} q}{(2 \pi)^{d}}\left[\frac{-1}{\not q+M}\left(-\not P+W_{0}[\phi]+i W_{1}[\phi] \sqrt{\gamma^{5}}\right]+V_{\mu}[\phi] \gamma^{\mu}+A_{\mu}[\phi] \gamma^{\mu}\left(\gamma^{5}\right)\right]^{n}
$$

'subtlety": How to have enough freedom in dim. reg. to choose which currents are conserved or not?

- In $d>4$ dimension: $\left\{\gamma^{\mu}, \gamma^{5}\right\}=0$ \& trace cyclicity can not hold simultaneously
- The usual ambiguity (choice of integration variables) \longrightarrow ambiguity on the location of γ^{5}
- One can uses this ambiguity \rightarrow free parameters \rightarrow decide if a symmetry is broken or not (in Slavnov-Taylor identity)

$$
\begin{aligned}
& +\left.\theta_{1} \operatorname{tr}\left(\gamma_{a} \boldsymbol{Y}^{i} \gamma_{b} \boldsymbol{Y}^{j} \gamma_{c} \boldsymbol{P}^{5} \gamma_{d} \boldsymbol{A}^{k}\right)\right|_{d=4-\epsilon}+\left.\eta_{l} \operatorname{tr}\left(\gamma_{a} \boldsymbol{V}^{i} \gamma_{b} \boldsymbol{Y}^{j} \gamma_{c} \boldsymbol{\phi}_{\gamma_{d}} \boldsymbol{A}^{k} \gamma^{5}\right)\right|_{d=4-\epsilon}
\end{aligned}
$$

Scenario with combined situations

Generically, the theory corresponds to :

$$
\left\{\begin{aligned}
\mathscr{L}_{\mathrm{UV}} & \supset \mathscr{L}_{\mathrm{UV}}^{\text {fermion }}+\mathscr{L}_{\mathrm{UV}}^{\mathrm{Jac}} \\
\text { would be Goldstones } & \supset \bar{\Psi}\left[i \partial_{\mu} \gamma^{\mu}-M+\left(\mathrm{V}_{\mu}-\frac{\partial_{\mu} \pi_{V}}{v_{V}}\right) \gamma^{\mu}-\left(\mathrm{A}_{\mu}-\frac{\partial_{\mu} \pi_{A}}{v_{A}}\right) \gamma^{\mu} \gamma^{5}\right. \\
\text { Goldstones } & \left\{\begin{array}{c}
\left.-\left(0-\frac{\partial_{\mu} \pi_{S}}{v_{S}}\right) \gamma^{\mu}-\left(0-\frac{\partial_{\mu} \pi_{P}}{v_{P}}\right) \gamma^{\mu} \gamma^{5}\right] \Psi \\
\\
+\frac{1}{16 \pi^{2}} \frac{\pi_{P}}{v_{P}}\left(F_{V}^{\mu \nu} \tilde{F}_{V}^{\mu \nu}+\frac{1}{3} F_{A}^{\mu \nu} \tilde{F}_{A}^{\mu \nu}\right)+\frac{1}{16 \pi^{2}} \frac{\pi_{S}}{v_{S}} F_{A}^{\mu \nu} \tilde{F}_{V}^{\mu \nu}
\end{array}\right.
\end{aligned}\right.
$$

$\longrightarrow \mathscr{L}_{\mathrm{EFT}}^{1 \text { loop }} \supset \underline{\omega_{A V V}} \frac{\partial_{\mu} \pi_{P}}{v_{P}} \mathrm{~V}_{\nu} \tilde{F}_{V}^{\mu \nu}+\underline{\omega_{A A A}} \frac{\partial_{\mu} \pi_{P}}{v_{P}}\left(\mathrm{~A}_{\nu}-\frac{\partial_{\nu} \pi_{A}}{v_{A}}\right) \tilde{F}_{A}^{\mu \nu}$
$\begin{gathered}\text { (free parameters) }\end{gathered}+\underline{\omega_{V V A}} \frac{\partial_{\mu} \pi_{S}}{v_{S}} \mathrm{~V}_{\nu} \tilde{F}_{A}^{\mu \nu}+\underline{\omega_{V A V}} \frac{\partial_{\mu} \pi_{S}}{v_{S}}\left(\mathrm{~A}_{\nu}-\frac{\partial_{\nu} \pi_{A}}{v_{A}}\right) \tilde{F}_{V}^{\mu \nu}$

- To fix these ambiguities, we would like to impose the vector and axial gauge invariance (since this should be equivalent to impose the Ward identities)

However, all these operators are gauge invariant!

Scenario with combined situations

Generically, the theory corresponds to :
$\begin{aligned} \mathscr{L}_{\mathrm{UV}} & \supset \mathscr{L}_{\mathrm{UV}}^{\text {fermion }}+\mathscr{L}_{\mathrm{UV}}^{\mathrm{Jac}} \\ \text { Would be Goldstones } & \supset \bar{\Psi}\left[i \partial_{\mu} \gamma^{\mu}-M+\left(\mathrm{V}_{\mu}-\frac{\partial_{\mu} \pi_{V}}{v_{V}}\right) \gamma^{\mu}-\left(\mathrm{A}_{\mu}-\frac{\partial_{\mu} \pi_{A}}{v_{A}}\right) \gamma^{\mu} \gamma^{5}\right.\end{aligned}$

$$
\text { Goldstones }\left\{\begin{array}{l}
\left.-\left(0-\frac{\partial_{\mu} \pi_{S}}{v_{S}}\right) \gamma^{\mu}-\left(0-\frac{\partial_{\mu} \pi_{P}}{v_{P}}\right) \gamma^{\mu} \gamma^{5}\right] \Psi \\
\\
+\frac{1}{16 \pi^{2}} \frac{\pi_{P}}{v_{P}}\left(F_{V}^{\mu \nu} \tilde{F}_{V}^{\mu \nu}+\frac{1}{3} F_{A}^{\mu \nu} \tilde{F}_{A}^{\mu \nu}\right)+\frac{1}{16 \pi^{2}} \frac{\pi_{S}}{v_{S}} F_{A}^{\mu \nu} \tilde{F}_{V}^{\mu \nu}
\end{array}\right.
$$

- The would be Golstones (π_{V} and π_{A}) and the Goldstones (π_{S} and π_{P}) are both writing with local derivative acting on them

However, to minimise the number of integrals to regulazise, one might move back to the mass term the would be Golstones

- But more importantly, this would allow to obtain gauge-variant operators from which we hope to leverage ambiguities on several Wilson coefficients...

Gauge variation \&e surface term

$$
\mathscr{L}_{\mathrm{UV}} \supset \mathscr{L}_{\mathrm{UV}}^{\mathrm{Jac}}+\bar{\Psi}\left[i \partial_{\mu} \gamma^{\mu}-M\left(1+\frac{\pi_{V}}{v_{V}}+\frac{\pi_{A}}{v_{A}} \gamma^{5}\right)+\mathrm{V}_{\mu}-\mathrm{A}_{\mu}+\frac{\partial_{\mu} \pi_{S}}{v_{S}} \gamma^{\mu}+\frac{\partial_{\mu} \pi_{P}}{v_{P}} \gamma^{\mu} \gamma^{5}\right] \Psi
$$

$\longrightarrow \mathscr{L}_{\mathrm{EFT}} \supset \mathscr{L}_{\mathrm{UV}}^{\mathrm{Jac}}+\omega_{A V V} \frac{\partial_{\mu} \pi_{P}}{v_{P}} \mathrm{~V}_{\nu} \tilde{F}_{V}^{\mu \nu}+\omega_{V V A} \frac{\partial_{\mu} \pi_{S}}{v_{S}} \mathrm{~V}_{\nu} \tilde{F}_{A}^{\mu \nu} \quad$ gauge invariant

$$
+\omega_{V A V} \frac{\partial_{\mu} \pi_{S}}{v_{S}} \mathrm{~A}_{\nu} \tilde{F}_{V}^{\mu \nu}+\omega_{A A A} \frac{\partial_{\mu} \pi_{P}}{v_{P}} \mathrm{~A}_{\nu} \tilde{F}_{A}^{\mu \nu}
$$

Since the theory is axial gauge invariant by construction:

$$
\delta_{A}\left(\omega_{V A V} \ldots\right)=\partial_{\mu}(\ldots) \quad \delta_{A}\left(\omega_{A A A} \ldots\right)=\partial_{\mu}(\ldots)
$$

- So gauge invariance constraint does not remove any ambiguity
- One should move the gauge variation of π_{S} and π_{P} being originally surface term to the bulk of the theory one needs at least two operators which violate each axial gauge invariance

The trick

One way to realise this is to gauge the global symmetry
i.e introduce fictious gauge fields associated to the π_{P} and π_{S} Goldstone bosons :

$$
\begin{aligned}
& \mathscr{L}_{\mathrm{UV}}^{\text {fermion }} \supset \bar{\Psi}\left[i \partial_{\mu} \gamma^{\mu}-M\left(1+\frac{\pi_{V}}{v_{V}}+\frac{\pi_{A}}{v_{A}} \gamma^{5}\right)+\mathrm{V}_{\mu}-\mathrm{A}_{\mu}\right. \\
&\left.+\left(\sqrt{S_{\mu}}-\frac{\partial_{\mu} \pi_{S}}{v_{S}}\right) \gamma^{\mu}+\left(P_{\mu}-\frac{\partial_{\mu} \pi_{P}}{v_{P}}\right) \gamma^{\mu} \gamma^{5}\right] \Psi
\end{aligned}
$$

$\longrightarrow \mathscr{L}_{\mathrm{EFT}}^{\text {1loop }} \supset \omega_{V V A}\left(\mathrm{~S}_{\mu}-\frac{\partial_{\mu} \pi_{S}}{v_{C}}\right) \mathrm{V}_{\nu} \tilde{F}_{A}^{\mu \nu}+\omega_{A V V}\left(\mathrm{P}_{\mu}-\frac{\partial_{\mu} \pi_{P}}{v_{C}}\right) \mathrm{V}_{\nu} \tilde{F}_{V}^{\mu \nu}$

$$
\begin{aligned}
& +\omega_{V A V}\left(\mathrm{~S}_{\mu}-\frac{\partial_{\mu} \pi_{S}}{v_{C}}\right) \underline{\mathrm{A}_{\nu}} \tilde{F}_{V}^{\mu \nu}+\eta_{A S V} \underline{\pi_{A}} F_{S} \tilde{F}_{V} \\
& +\omega_{A A A}\left(\mathrm{P}_{\mu}-\frac{\partial_{\mu} \pi_{P}}{v_{C}}\right) \underline{\mathrm{A}_{\nu}} \tilde{F}_{A}^{\mu \nu}+\eta_{A P A} \underline{\pi_{A}} F_{P} \tilde{F}_{A}
\end{aligned}
$$

Now it exists several axial gauge variant operators

Then gauge invariance imposes a non trivial constrain on Wilson coefficients

Gauge invariance to remove ambiguities

Now, gauge invariance is no longer automatic:

$$
\begin{aligned}
\mathscr{L}_{\mathrm{EFT}}^{1 \text { loop }} \supset & \omega_{V V A}\left(\mathrm{~S}_{\mu}-\frac{\partial_{\mu} \pi_{S}}{v_{C}}\right) \mathrm{V}_{\nu} \tilde{F}_{A}^{\mu \nu}+\omega_{A V V}\left(\mathrm{P}_{\mu}-\frac{\partial_{\mu} \pi_{P}}{v_{C}}\right) \mathrm{V}_{\nu} \tilde{F}_{V}^{\mu \nu} \\
& +\omega_{V A V}\left(\mathrm{~S}_{\mu}-\frac{\partial_{\mu} \pi_{S}}{v_{C}}\right) \underline{\mathrm{A}_{\nu}} \tilde{F}_{V}^{\mu \nu}+\eta_{A S V} \pi_{A} F_{S} \tilde{F}_{V} \\
& +\omega_{A A A}\left(\mathrm{P}_{\mu}-\frac{\partial_{\mu} \pi_{P}}{v_{C}}\right) \underline{\mathrm{A}_{\nu}} \tilde{F}_{A}^{\mu \nu}+\eta_{A P A} \underline{\pi_{A}} F_{P} \tilde{F}_{A}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Vector gauge invariance: } \\
& \Rightarrow \omega_{V V A}=\omega_{A V V}=0
\end{aligned}
$$

Axial gauge invariance:
$\Rightarrow \omega_{V A V}=\eta_{A V S}$
$\Rightarrow \quad \omega_{A A A}=\eta_{A P A}$

- $\eta_{A V S}$ and $\eta_{A P A}$ are fully calculable, unambiguous coefficients

Though in the physical case, none of these interactions exist

 since they require the presence of the fictious P_{μ} and S_{μ} gauge fields- The determination of $\omega_{V A V}$ and $\omega_{A A A}$ is now transparent to concretely derive EFTS

$$
\mathscr{L}_{\mathrm{EFT}}^{\text {lloop }} \supset \frac{1}{4 \pi^{2}} \frac{\partial^{\mu} \pi_{S}}{v_{S}} A^{\nu} \tilde{F}_{V}^{\mu \nu}+\frac{1}{12 \pi^{2}} \frac{\partial^{\mu} \pi_{P}}{v_{P}} A^{\nu} \tilde{F}_{A}^{\mu \nu}
$$

Application to axion phenomenology

axion couplings to massive SMI gauge fields

$$
\begin{aligned}
\mathscr{L}_{\mathrm{EFT}}^{\text {1loop }} \supset & \sum_{f} \frac{1}{4 \pi^{2}}\left[(g _ { v } ^ { P Q } g _ { A } ^ { Z } g _ { v } ^ { Z }) ^ { f } \left(a{\left.\left.F_{\mu \nu}^{A^{Z}} \tilde{F}_{\mu \nu}^{V^{Z}}\right)+\frac{1}{3}\left(g_{A}^{P Q} g_{A}^{Z} g_{A}^{Z}\right)^{f}\left(a F_{\mu \nu}^{A^{Z}} \tilde{F}_{\mu \nu}^{A^{Z}}\right)\right]}+\frac{1}{4 \pi^{2}}\left[(g _ { v } ^ { P Q } g _ { A } ^ { W } g _ { v } ^ { W }) ^ { f } \left(a{\left.\left.F_{\mu \nu}^{A^{W}} \tilde{F}_{\mu \nu}^{V^{W}}\right)+\frac{1}{3}\left(g_{A}^{P Q} g_{A}^{W} g_{A}^{W}\right)^{f}\left(a F_{\mu \nu}^{A^{W}} \tilde{F}_{\mu \nu}^{A^{W}}\right)\right]}+\frac{1}{4 \pi^{2}}\left[\left(g_{v}^{P Q} g_{A}^{Z} g_{v}^{\gamma}\right)^{f}\left(a F_{\mu \nu}^{A^{Z}} \tilde{F}_{\mu \nu}^{V^{\gamma}}\right)\right]\right.\right.\right.\right.
\end{aligned}
$$

Summary

$$
\begin{aligned}
& \mathcal{L}^{\mathrm{eff}}=\frac{a^{0}}{16 \pi^{2} v}\left(g_{s}^{2} \mathcal{N}^{g g} G_{\mu \nu}^{a} \tilde{G}^{a, \mu \nu}+e^{2} \mathcal{N}^{\gamma \gamma} F_{\mu \nu} \tilde{F}^{\mu \nu}+\frac{2 e^{2}}{c_{W} s_{W}}\left(\mathcal{N}_{1}^{\gamma Z}-s_{W}^{2} \mathcal{N}_{2}^{\gamma Z}\right) Z_{\mu \nu} \tilde{F}^{\mu \nu}\right. \\
&\left.+\frac{e^{2}}{c_{W}^{2} s_{W}^{2}}\left(\mathcal{N}_{1}^{Z Z}-2 s_{W}^{2} \mathcal{N}_{2}^{Z Z}+s_{W}^{4} \mathcal{N}_{3}^{Z Z}\right) Z_{\mu \nu} \tilde{Z}^{\mu \nu}+2 \mathcal{N}^{W W} g^{2} W_{\mu \nu}^{+} \tilde{W}^{-, \mu \nu}\right)
\end{aligned}
$$

in the limit $m_{u, d, e} \rightarrow \infty$

Linear	Polar				
$a^{0} \bar{\psi} \gamma_{5} \psi$	Anomalous interactions		${ }_{A V V}^{\partial_{t}}$	$A A A$	$\begin{gathered} \partial_{\mu} a^{0} \bar{\psi} \gamma^{\mu} \psi \\ V A V \end{gathered}$
$\mathcal{N}^{g g}=\frac{1}{2}\left(x+\frac{1}{x}\right)$	$\mathcal{N}^{g g}$		0	-	-
$\mathcal{N}^{\gamma \gamma}=\frac{4}{3}\left(x+\frac{1}{x}\right)$	$\mathcal{N}^{\gamma \gamma}$		0	-	-
$\mathcal{N}_{1}^{\gamma Z}=\frac{1}{2}\left(x+\frac{1}{x}\right)$	\mathcal{N}_{L}		0		$\mathcal{N}_{1}^{\gamma Z}-\mathcal{N}_{L}$
$\mathcal{N}_{2}^{\gamma Z}=\mathcal{N}^{\gamma \gamma}$	$\mathcal{N}^{\gamma \gamma}$		0	-	0
$\begin{aligned} & \mathcal{N}_{1}^{Z Z}=\frac{1}{4} x+\frac{1}{3 x} \\ & \mathcal{N}_{2}^{Z Z}=\mathcal{N}_{1}^{\gamma Z} \end{aligned}$	$\begin{aligned} & \mathcal{N}_{L} \\ & \mathcal{N}_{L} \end{aligned}$	$\begin{aligned} & \hline \text { neutrino } \\ & \text { takken } \\ & \text { massless } \end{aligned}$	$\frac{\beta}{16}$ 0	$\begin{gathered} -\frac{1}{2} \mathcal{N}_{1}^{Z Z}+\frac{\beta}{16} \\ 0 \end{gathered}$	$\begin{gathered} \frac{3}{2} \mathcal{N}_{1}^{Z Z}-\mathcal{N}_{L}-\frac{\beta}{8} \\ \mathcal{N}_{2}^{Z Z}-\mathcal{N}_{L} \end{gathered}$
$\mathcal{N}_{3}^{Z Z}=\mathcal{N}^{\gamma \gamma}$			0	0	0
$\mathcal{N}^{W W W}=\frac{x}{4}+\frac{3}{8 x}$	\mathcal{N}_{L}	$\frac{3}{2} \mathcal{N}^{W W}$	$-\frac{3}{2} \mathcal{N}_{1}^{\gamma}$	$-\frac{1}{2} \mathcal{N}^{W W}+\frac{\beta}{16}$	$\frac{3}{2} \mathcal{N}_{1}^{\gamma Z}-\mathcal{N}_{L}-\frac{\beta}{8}$

Conclusion

- We have build EFTs dealing with gauge and anomalous symmetries
- The functional method is a natural framework to use
- Careful treatment of Dirac traces involving γ_{5} in Dimensional Regularisation

1. Let's understand axion fondamental interactions

Typical Lagrangians and phenomenological implications
2. Let's build axion EFTs

Integrating out chiral fermions from the path integral
$\longrightarrow \quad$ 3. Let's discus anomalies in EFTs
A different approach from to so-called Fujikawa's method

Anomalies from the path integral

- path-integral measure for gauge theories with fermions is not invariant under the chiral transformation
"Path integral for gauge theories with fermions". K. Fujikawa, Phys.Rev. D21 (1980) 2848
gives rise the the Adler-Bell-Jackiw anomaly and the anomalous Ward-Takahashi identities
- Anomaly of ungauged axial $\mathrm{U}(1)$ current : $j_{\mu}^{5}=\bar{\Psi} \gamma^{\mu} \gamma_{5} \Psi$ understood as a non-invariance of the path integral measure under local transformations on fermion fields :

$$
\begin{aligned}
\Psi^{\prime} & =e^{i \gamma_{5} \alpha(x)} \Psi \\
\bar{\Psi}^{\prime} & =\bar{\Psi} e^{i \gamma_{5} \alpha(x)}
\end{aligned}
$$

- local matrix transformation $\Psi(x) \rightarrow U(x) \Psi(x) \longrightarrow[d \Psi][d \bar{\Psi}] \rightarrow(\operatorname{Det} \mathcal{U} \operatorname{Det} \overline{\mathcal{U}})^{-1}[d \Psi][d \bar{\Psi}]$

$$
\left.\begin{array}{rlrl}
U(x) & =e^{i \alpha(x)} & \overline{\mathcal{U}} \mathcal{U} & =1 \\
& {[d \Psi][d \bar{\Psi}] \rightarrow[d \Psi][d \bar{\Psi}]} \\
U(x) & =e^{i \gamma_{5} \alpha(x)} & \overline{\mathcal{U}} & =\mathcal{U}
\end{array} r d \Psi\right][d \bar{\Psi}] \rightarrow(\operatorname{Det} \mathcal{U})^{-2}[d \Psi][d \bar{\Psi}] .
$$

$[d \Psi][d \bar{\Psi}] \rightarrow \exp \left[-2 i \int d^{4} x \alpha(x) \mathcal{A}(x)\right][d \Psi][d \bar{\Psi}]$

anomaly function: $\mathcal{A}(x)=\operatorname{Tr}\left[\gamma_{5}\right] \delta^{4}(x-x)$
at first sight no definite result : $\quad \infty \quad \infty$ need to introduce a regulator

$$
\mathcal{A}(x)=-\frac{1}{16 \pi^{2}} F_{\mu \nu} \tilde{F}^{\mu \nu}
$$

Anomalies from the path integral à la Fujikawa

Path integral in Euclidean space: $\quad Z=\int \mathcal{D} \Psi \mathcal{D} \bar{\Psi} \exp \left(-\int \mathrm{d}^{4} x \bar{\Psi} \mathrm{i} \not D \Psi\right) \quad$ (Dirac fermion in a vector gauge theory)
$i \not D$: hermitian
$\mathrm{i} \not D \Psi_{n}=\lambda_{\text {real }} \Psi_{n}$
$\left[\gamma_{5}, \not \supset\right] \neq 0$: both operators can not be simultaneously diagonalized
In quantum theory, the primary importance is attached to the Lorentz-covariant «energy » operator \emptyset, over γ_{5} (" chirality asymmetry " operator)
So one starts with the Dirac basis: $\Psi(x)=\sum_{n} a_{n} \varphi_{n}(x), \quad \bar{\Psi}(x)=\sum_{n} \varphi_{n}^{\dagger}(x) \bar{b}_{n} \quad$ with $\int \mathrm{d}^{4} x \varphi_{n}^{\dagger}(x) \varphi_{m}(x)=\delta_{m n}$

$$
\begin{aligned}
& A(x) \equiv \sum_{n} \varphi_{n}(x)^{\dagger} \gamma_{5} \varphi_{n}(x) \\
& A(x)=\lim _{M \rightarrow \infty}\left(\sum_{n} \varphi_{n}(x)^{\dagger} \gamma_{5} e^{-\left(\lambda_{n} / M\right)^{2}} \varphi_{n}(x)\right) \\
& \text { primary def. of the anomaly } \\
& \text { ill-defined because conditionally convergent quantity } \\
& \text { (what is your prescription to sum: }+1-1+1-1+\ldots \text { ?) } \\
& =\lim _{M \rightarrow \infty}\left(\sum_{n} \varphi_{n}(x)^{\dagger} \gamma_{5} e^{-(D D / M)^{2}} \varphi_{n}(x)\right) \\
& =\lim _{M \rightarrow \infty} \operatorname{Tr} \int \frac{d^{4} k}{(2 \pi)^{4}} \gamma_{5} e^{-i k x} e^{-(p / M)^{2}} e^{i k x} \\
& \text { changing the basis vectors to "plane waves " } \\
& \text { "extraction of the gauge field dependence of } A(x) \text { by using the plane } \\
& \text { waves which have no gauge field dependence by themselves." } \\
& =\lim _{M \rightarrow \infty} \operatorname{Tr} \int \frac{d^{4} k}{(2 \pi)^{4}} \gamma_{5} \exp \left(\frac{-1}{2 M^{2}}\left\{2\left[i k_{\mu}+D_{\mu}(x)\right]^{2}+\left[\gamma^{\mu}, \gamma^{\nu}\right] F_{\mu \nu}(x)\right\}\right) \\
& =\lim _{M \rightarrow \infty} \operatorname{Tr} \gamma_{5}\left\{\left[\gamma^{\mu}, \gamma^{\nu}\right] F_{\mu \nu}\right\}^{2}\left(\frac{1}{2 M^{2}}\right)^{2} \frac{1}{2!} \int \frac{d^{4} k}{(2 \pi)^{4}} e^{-k_{k} \mu_{k} / M^{2}} \\
& =\frac{1}{2}\left(\frac{-1}{8 \pi^{2}}\right) \operatorname{Tr}^{*} F^{\mu_{\nu}} F_{\mu_{\nu}}(x) . \quad \text { K. Fujikawa, Phys.Rev. D21 (1980) } 2848 \\
& j_{\mu}^{5}=\bar{\Psi} \gamma^{\mu} \gamma_{5} \Psi \\
& \partial^{\mu} j_{\mu}^{5}(x)=\frac{i}{8 \pi^{2}} \operatorname{Tr}\left[F_{\mu \nu} \tilde{F}^{\mu \nu}\right]
\end{aligned}
$$

Anomalies from the path integral revisited

- Fujikawa does the "direct " evaluation of the measure :

$$
\mathscr{D} \psi \mathscr{D} \bar{\psi} \rightarrow \text { "A" } \mathscr{D} \psi \mathscr{D} \bar{\psi}
$$

What about an «indirect» (as a ratio) evaluation :

\neq less straightforward

$$
\begin{aligned}
& Z=\int \mathscr{D} \psi \mathscr{D} \bar{\psi} e^{i S[\psi, \bar{\psi}]} \quad=\quad Z^{\prime}=\int \mathscr{D} \psi^{\prime} \mathscr{D} \bar{\psi}^{\prime} e^{i S\left[\psi^{\prime}, \bar{\psi}^{\prime}\right]} \quad \text { with } \psi^{\prime}=e^{i \psi_{5} \theta(x)} \psi \\
& " A "=\frac{\#_{1}}{\#_{2}}=\frac{\int \mathscr{D} \psi \mathscr{D} \bar{\psi} e^{i S[\psi, \bar{\psi}]}}{\int \mathscr{D} \psi \mathscr{D} \bar{\psi} e^{i S[\psi, \bar{\psi}]-\int d x \bar{\psi}\left[2 i m \theta \gamma_{5}+\left(\gamma^{\mu} \partial_{\mu} \theta\right) \gamma_{5}\right] \psi}} \\
& \text { "A" }=\frac{\operatorname{det}(i \not \square D-m)}{\operatorname{det}\left(i \not \supset D-m-2 i m \theta \gamma_{5}-(\not D \theta) \gamma_{5}\right)}
\end{aligned}
$$

It exists very efficient EFT methods to evaluate those "two " functional determinants
" indirect » evaluation of the anomaly through Covariant Derivative Expansion
(CDE) of functional determinants
B. Filoche, R. Larue, J.Q., P.N.H. Vuong, arXiv:2̌05.02248

Covariant Derivative Expansion in short

Usual context in EFTs : integrating out a fermion of mass m,

$$
\operatorname{Tr} \log (i \nmid D-m)
$$

1) Fourier transforms $(x \rightarrow q)$: use plane wave basis (rq: from the start unlike Fujikawa)
2) Taylor expansion of the log:

$$
\begin{aligned}
& =\int d^{4} x d^{4} q e^{i q \cdot x} \operatorname{tr} \log (i \not D-m) e^{-i q \cdot x} \\
& \stackrel{(\text { BCHH }}{=} \int d^{4} x d^{4} q \operatorname{tr} \log (i \not D-\not D-m) \\
& =-\int d^{4} x d^{4} q \sum_{n=1}^{\infty} \frac{1}{n} \operatorname{tr}\left[\frac{1}{q+m} i \not \square\right]^{n} \\
& \substack{\text { Interesting factorisation between wilson } \\
\text { coefficients and operators: }} \\
& \left(\int d q C(q)\right) \times O p
\end{aligned}
$$

Concrete example with the ABJ anomaly

path integral:

$$
Z \equiv \int \mathcal{D} \psi \mathcal{D} \bar{\psi} \exp \left(i \int \mathrm{~d}^{4} x \bar{\psi}(i \not \partial-\gamma-m) \psi\right)=\int \mathcal{D} \psi \mathcal{D} \bar{\psi} e^{i S}
$$

Axial tranformation:

Jacobian : $\mathcal{D} \psi \mathcal{D} \bar{\psi} \rightarrow J[\theta] \mathcal{D} \psi \mathcal{D} \bar{\psi}, \quad J[\theta]=\frac{\operatorname{det}(i \not \bar{\phi}-m)}{\operatorname{det}\left(i \not \bar{\phi}-m-2 i m \theta_{\gamma_{5}}-(\not D \theta) \gamma_{5}\right)} \equiv \exp \left[\int \mathrm{d}^{4} x \mathcal{A}(x)\right]$

$$
\mathcal{A}=\mathcal{A}^{m \gamma_{5}}+\mathcal{A}^{\not \gamma_{5}}=\mathcal{A}_{n=5}^{m \gamma_{5}}=-\frac{i}{8 \pi^{2}} \theta \operatorname{tr}\left(F_{\mu \nu} \tilde{F}^{\mu \nu}\right)
$$

Covariant Anomaly in chiral gauge field theory

path integral:

$$
Z \equiv \int \mathcal{D} \psi \mathcal{D} \bar{\psi} \exp \left(i \int \mathrm{~d}^{4} x \bar{\psi}\left(i \not \partial d-V-X \gamma_{5}-m\right) \psi\right)=\int \mathcal{D} \psi \mathcal{D} \bar{\psi} e^{i S} .
$$

Axial tranformation:

Or we could do :
NEW
Vector tranformation:
$\psi \rightarrow e^{i \theta(x) \gamma_{5}} \psi, \quad \bar{\psi} \rightarrow \bar{\psi} e^{i \theta(x) \gamma_{5}}$.
In which current do we want « to put » the anomaly?

$$
\psi \rightarrow e^{i \theta(x)} \psi, \quad \bar{\psi} \rightarrow \bar{\psi} e^{-i \theta(x)}
$$

Jacobian : $\mathcal{D} \psi \mathcal{D} \bar{\psi} \rightarrow J[\theta] \mathcal{D} \psi \mathcal{D} \bar{\psi}, \quad J[\theta]=\frac{\operatorname{det}(i \not \bar{\phi}-m)}{\operatorname{det}\left(i \not \bar{\phi}-m-2 i m \theta_{\gamma_{5}}-(\not D \theta) \gamma_{5}\right)} \equiv \exp \left[\int \mathrm{d}^{4} x \mathcal{A}(x)\right]$

$$
\mathcal{A}^{m \gamma}=\frac{-i}{16 \pi^{2}} \epsilon^{\mu \nu \rho \sigma} \operatorname{tr} \theta\left(F_{\mu \nu}^{V} F_{\rho \sigma}^{V}+\frac{1}{3} F_{\mu \nu}^{A} F_{\rho \sigma}^{A}\right)
$$

$$
\mathcal{A}=\left.\int \frac{\mathrm{d}^{4} q}{(2 \pi)^{4}} \sum_{n=1}^{\infty} \frac{1}{n} \operatorname{tr}\left[\frac{-1}{d+m}\left(-i \not D+2 i m \theta \gamma_{5}+(\partial \theta) \gamma_{5}\right)\right]^{n}\right|_{\text {carrying } \theta \text { dependence }} \quad \mathcal{A}^{d \gamma_{\sigma}}=\alpha \operatorname{tr}\left[\theta \epsilon^{\mu \nu \rho \sigma} \frac{1}{2} F_{\mu \nu}^{V} F_{\rho \sigma}^{V}\right]+\beta \operatorname{tr}\left[\theta \epsilon^{\mu \nu \rho \sigma} \frac{1}{2} F_{\mu \nu}^{A} F_{\rho \sigma}^{A}\right]
$$

Imposing axial and vector gauge invariance : Fix the free parameters: $\quad \alpha=0, \quad \beta=-i / 12 \pi^{2}$.

$$
\mathcal{A}^{\partial \gamma \gamma_{5}}=\frac{-i}{16 \pi^{2}} \epsilon^{\mu \nu \rho \sigma} \operatorname{tr} \theta\left(\frac{2}{3} F_{\mu \nu}^{A} F_{\rho \sigma}^{A}\right)
$$

This is the so-called covariant anomaly
i.e the breaking of an axial global symmetry in a vector and axial gauge field theory

More anomalies

- Straightforward to recover Bardeen's result (1969) regarding the consistent anomaly (fermion reparametrisation associated to a gauge transformation)
- Also straightforward to extend in curved space-time, $\quad J[f]^{2}=\frac{\operatorname{det}\left(\sqrt{-g}{ }^{2}\left(\not \mathbb{D}^{2}+m^{2}\right)\right)}{\operatorname{det}\left(\sqrt{-g^{2}}\left(\not D^{2}+m^{2}+4 i m^{2} \theta \gamma_{5}\right)\right)}$
to recover the so-called axial gravitational anomaly :

$$
\mathcal{A}^{\operatorname{grav}}=\frac{-i}{384 \pi^{2} e^{\mu \nu \rho o} R^{a \beta}{ }_{\mu \nu} R_{\alpha \beta \beta_{\beta O}}}
$$

-Alternative way to derive the scale anomaly (but without the need to introduce space-time curvature)

The scale transformation $x_{\mu} \rightarrow x_{\mu}^{\prime}=e^{\sigma} x_{\mu}$ induces:

$$
\begin{array}{lr}
\frac{\partial}{\partial x^{\mu}} \rightarrow \frac{\partial}{\partial x^{\prime \mu}}=e^{-\sigma} \frac{\partial}{\partial x^{\mu}}, & \bar{\psi}(x) \rightarrow \psi^{\prime}\left(x^{\prime}\right)=e^{-(d-1) \pi / 2} \psi(x), \\
\mathrm{d}^{d} x \rightarrow \mathrm{~d}^{4} x^{\prime}=e^{d \sigma} \mathrm{e}^{d} x, & A_{\mu}(x) \rightarrow \bar{\psi}^{\prime}\left(x^{\prime}\right)=e^{-(d) 1(1) \sigma / 2} \overline{A_{\mu}^{\prime}}(x), \\
A_{\mu}^{\prime}\left(x^{\prime}\right)=A_{\mu}\left(x^{\prime}\right)=e^{-\sigma} A_{\mu}(x)
\end{array}
$$

$$
\begin{aligned}
J[\sigma] & =\frac{\operatorname{det}(i \not D \bar{D}-m)}{\operatorname{det}\left(i \not D D-m+\sigma m-i \frac{d-1}{2}(\not \partial \sigma)\right)} \\
\mathcal{A}_{\text {scale }} & =\frac{\sigma}{24 \pi^{2}} \operatorname{tr}\left(F_{\mu \nu}\right)^{2}
\end{aligned}
$$

Peculiarities and interest of the method

-One first regularizes an ill-defined quantity (Jacobian) inserting as much freedom as needed and secondly call for coherence (covariance, integrability) of the obtained theory to fixe those ambiguities
"Usually » it works the opposite way, as one firstly calls for a well defined theory (free of any ambiguity) and secondly perform the regularization. Side effect: each theory calls for a specific regularization.
-Systematically use dimensional regularization (no hand-made regulator)
Freedom/ambiguity is then in the definition of γ_{5} in d-dimensions

The anomalous interactions for various setup originate from a single general computation involving parameters fixed by physical arguments
-Evaluate the covariant and consistent anomaly from the path integral having then the possibility to choose in which current the anomaly has to stand

Convenient for model building (think about axion models)
-Several public codes available to build EFTs. BSM models involving QFT anomalies are so far out of reach, but not for long!

Indeed, this method allows to compute anomalous interactions in a self-consistent manner in the path integral formalism.

Conclusion

- Axion-electroweak couplings do not always follow the 'expected pattern' \rightarrow must be kept in mind for ALP searches
- We have build EFTs dealing with gauge and anomalous symmetries
- The functional method is a natural framework to use
- We have discussed how to properly deal with several kind of ambiguities in these EFT computations
- We have presented a new way to evaluate anomalies from the path integral

Spare slides

Consistent regularisation of divergent triangle diagrams

$$
a^{0} \rightarrow \gamma Z
$$

$a^{0} \rightarrow Z Z, W^{+} W^{-}$

Chiral Point of view:
$\left\{\begin{array}{l}\text { Vector current are conserved or not } \\ \text { Axial current are conserved or not }\end{array}\right.$
\Rightarrow one needs to have enough freedom in the regularisation to choose which currents are conserved or not

Weinberg:
keep track of the ambiguities in the loop momentum routine
\longrightarrow lead to 2 free parameters to
 tune Ward identities

Careful: Pauli-Villars or dim. reg. enforces automatically this parametric choice and there is no reason for this to hold in general for EW gauge bosons.

What are the axion couplings to all SM gauge bosons?

- It is generally believed that: $\underset{\text { Georgi, Kaplan, Randall (1986) }}{\mathcal{L}} \underset{\mathrm{PQ}}{\mathrm{eff}}=\frac{a^{0}}{16 \pi^{2} f_{a}}(\underbrace{\left.g_{s}^{2} \mathcal{N}_{C} G_{\mu \nu}^{a} \tilde{G}^{a, \mu \nu}+g^{2} \mathcal{N}_{L} W_{\mu \nu} \tilde{W}^{\mu \nu}+g^{\prime 2} \mathcal{N}_{Y} B_{\mu \nu} \tilde{B}^{\mu \nu}\right) ~}_{\text {function only of } \mathrm{PQ} \text { charges }}$

Rotation from the weak eigenstate basis to the mass eigenstate basis:

$$
\begin{aligned}
\mathcal{L}_{\mathrm{PQ}}^{\mathrm{eff,P}}=\frac{a^{0}}{16 \pi^{2} f_{a}} & \left(g_{s}^{2} \mathcal{N}_{C} G_{\mu \nu}^{a} \tilde{G}^{a, \mu \nu}\right. \\
& +e^{2} \mathcal{N}_{e m} F_{\mu \nu} \tilde{F}^{\mu \nu} \\
& +\frac{2 e^{2}}{c_{W} s_{W}}\left(\mathcal{N}_{L}-s_{W}^{2} \mathcal{N}_{e m}\right) Z_{\mu \nu} \tilde{F}^{\mu \nu} \\
& +\frac{e^{2}}{c_{W}^{2} s_{W}^{2}}\left(\left(1-2 s_{W}^{2}\right) \mathcal{N}_{L}+s_{W}^{4} \mathcal{N}_{e m}\right) Z_{\mu \nu} \tilde{Z}^{\mu \nu} \\
& \left.+2 g^{2} \mathcal{N}_{L} W_{\mu \nu}^{+} \tilde{W}_{-}^{\mu \nu}\right)
\end{aligned}
$$

Manifestly $S U(2)_{L} \otimes U(1)_{Y}$ invariant
Why no electroweak symmetry breaking effect? (massive chiral fermions)

Ambiguity in the fermion PQ charges

- It is generally believed that: $\mathcal{L}_{\text {Georgi, Kaplan, Randall (1986) }}^{\mathrm{eff}}=\frac{a^{0}}{16 \pi^{2} f_{a}}\left(g_{s}^{2} \mathcal{N}_{C} G_{\mu \nu}^{a} \tilde{G}^{a, \mu \nu}+g^{2} \mathcal{N}_{L} W_{\mu \nu} \tilde{W}^{\mu \nu}+g^{\prime 2} \mathcal{N}_{Y} B_{\mu \nu} \tilde{B}^{\mu \nu}\right)$
- When SM fermions are charge under $U(1)_{\mathrm{PQ}}$:

There are actually four entangled $U(1)_{\mathrm{Y}} \otimes U(1)_{\mathrm{PQ}} \otimes U(1)_{\mathcal{B}} \otimes U(1)_{\mathcal{L}}$: Charges are ambiguous!
$U(1)_{P Q}$ charges when $a^{0} \rightarrow a^{0}+v \theta:$

$$
\begin{gathered}
\Phi_{1} \rightarrow \exp (i \theta x) \Phi_{1}, \quad \Phi_{2} \rightarrow \exp (-i \theta / x) \Phi_{2}, \psi \rightarrow \exp \left(i \chi_{\psi} \theta\right) \psi, \quad x=v_{2} / v_{1}=1 / \tan \beta \\
\chi_{q_{L}}= \\
\underbrace{\alpha}, \chi_{u_{R}}=\alpha+x, \chi_{d_{R}}=\alpha+\frac{1}{x}, \chi_{\ell_{L}}=\beta, \chi_{e_{R}}=\beta+\frac{1}{x},
\end{gathered}
$$

$$
\longrightarrow \mathcal{N}_{C}=\frac{1}{2}\left(x+\frac{1}{x}\right) \quad \mathcal{N}_{L}=-\frac{1}{2}(3 \alpha+\beta) \quad \mathcal{N}_{e m}=\frac{4}{3}\left(x+\frac{1}{x}\right)
$$

$$
\delta \mathcal{L}_{\mathrm{Jac}}=\frac{a^{0}}{16 \pi^{2} v}\left(g_{s}^{2} \mathcal{N}_{C} G_{\mu \nu}^{a} \tilde{G}^{a, \mu \nu}+e^{2} \mathcal{N}_{e m} F_{\mu \nu} \tilde{F}^{\mu \nu}+\frac{2 e^{2}}{c_{W} s_{W}}\left(\mathcal{N}_{L}-s_{W}^{2} \mathcal{N}_{e m}\right) Z_{\mu \nu} \tilde{F}^{\mu \nu}\right.
$$

$$
+\frac{e^{2}}{c_{W}^{2} s_{W}^{2}}(\left(1-2 s_{W}^{2}\right) \underbrace{\mathcal{N}_{L}}_{\downarrow}+s_{W}^{4} \mathcal{N}_{e m}) Z_{\mu \nu} \tilde{Z}^{\mu \nu}+2 \mathcal{N}_{L} g^{2} W_{\mu \nu}^{+} \tilde{W}^{-, \mu \nu})
$$

$3 \alpha+\beta$ reflects anomaly in the $\mathscr{B}+\mathscr{L}$ current \Rightarrow spurious interactions

Landscape

Axions should be very light and feebly interacting

Axion DM constraints from laboratory experiments, from stars and cosmos observations

