Phenomenology of unusual top partners in composite Higgs models

Manuel Kunkel

Particle physics seminar at TP2

February 10, 2022

1

arXiv:2112.00019v1 [hep-ph] 30 Nov 2021

Phenomenology of unusual top partners in composite Higgs models

G. Cacciapaglia*

Univ Lyon, Université Lyon 1, CNRS/IN2P3, IPNL, F-69622, Villeurbanne, France

T. Flacke[†]

Center for AI and Natural Sciences, KIAS, Seoul 02455, Korea

M. Kunkel[‡] and W. Porod[§]

Institut für Theoretische Physik und Astrophysik,

Uni Würzburg, D-97074 Würzburg, Germany

Motivation

- Composite Higgs models with fermionic UV completions
- The model M5
- Phenomenology and bounds
- Conclusion and future work

SM does not explain neutrino masses or dark matter \Rightarrow should be viewed as effective theory that is valid up to Λ_{SM}

SM does not explain neutrino masses or dark matter \Rightarrow should be viewed as effective theory that is valid up to Λ_{SM}

Naturalness problem:

$$m_h^2 = \delta_{\rm SM} m_h^2 + \delta_{\rm BSM} m_h^2$$

We know SM contribution:

$$\frac{\delta_{\rm SM} m_h^2}{m_h^2} \simeq \left(\frac{\Lambda_{\rm SM}}{450 \ {\rm GeV}}\right)^2$$

Need unnatural fine tuning $\delta_{\rm SM} m_h^2 \simeq - \delta_{\rm BSM} m_h^2$

SM does not explain neutrino masses or dark matter \Rightarrow should be viewed as effective theory that is valid up to Λ_{SM}

Naturalness problem:

$$m_h^2 = \delta_{\rm SM} m_h^2 + \delta_{\rm BSM} m_h^2$$

We know SM contribution:

$$rac{\delta_{\mathrm{SM}} m_h^2}{m_h^2} \simeq \left(rac{\Lambda_{\mathrm{SM}}}{450 \; \mathrm{GeV}}
ight)^2$$

Need unnatural fine tuning $\delta_{\rm SM} m_h^2 \simeq - \delta_{\rm BSM} m_h^2$

Possible solution: If Higgs is composite particle, then corrections to m_h^2 are naturally cut off around the compositeness scale

Two-flavor QCD with $m_u = m_d = 0$:

Nambu-Goldstone bosons (NGBs): pions $\pi^{\pm}, \pi^{0} \in \mathcal{G}/\mathcal{H}$ Pion decay constant $f_{\pi} = 93$ MeV, $4\pi f_{\pi} \sim 1$ GeV $\sim m_{p}$

Composite Higgs Models

Kaplan, Georgi (1984); Kaplan, Georgi, Dimopoulos (1984); Dugan, Georgi, Kaplan (1985)

Composite Higgs Models

 Λ_{UV}

 $\begin{array}{c} \text{Composite sector} \\ \psi_{\text{HC}}, \mathcal{A}_{\text{HC},\mu} \\ \text{Global symmetry } \mathcal{G} \end{array}$

Gauge group: G_{HC}

$$\left\langle \psi^{i}_{\mathsf{HC}} \psi^{j}_{\mathsf{HC}} \right
angle \sim \Lambda^{3}_{\mathsf{HC}} \Sigma^{ij}_{0} \quad \Rightarrow \quad \text{breaks global symmetry } \mathcal{G}
ightarrow \mathcal{H} \supset \mathcal{G}_{\mathsf{SM}}$$

Composite states: NGBs $\phi \sim \psi_{HC}\psi_{HC}$, with decay constant $f \approx \Lambda_{HC}/(4\pi)$

Composite states: NGBs $\phi \sim \psi_{HC}\psi_{HC}$, hyper-baryons $\mathcal{B} \sim \psi_{HC}\psi_{HC}\psi_{HC}$

$$\frac{v}{f} = \sin\theta \ll 1$$

Elementary-composite interactions: gauging G_{SM} , mixing of t with \mathcal{B} \Rightarrow explicitly breaks \mathcal{H} \Rightarrow generates scalar potential: EWSB

$$\mathcal{L}_{\mathsf{mass}} = -M\left(ar{Q}Q + ar{T}T
ight) - \left(\lambda_Lar{q}_LQ + \lambda_Rar{t}_RT + \mathsf{h.c.}
ight)$$

$$\mathcal{L}_{\mathsf{mass}} = -M\left(ar{Q}Q + ar{T}T
ight) - \left(\lambda_Lar{q}_LQ + \lambda_Rar{t}_RT + \mathsf{h.c.}
ight)$$

Diagonalize mass matrix:

$$\begin{pmatrix} t_R \\ T \end{pmatrix} \rightarrow \begin{pmatrix} \hat{T}_1 \\ \hat{T}_2 \end{pmatrix} = \begin{pmatrix} \cos \varphi_R & \sin \varphi_R \\ -\sin \varphi_R & \cos \varphi_R \end{pmatrix} \begin{pmatrix} t_R \\ T \end{pmatrix}, \qquad \sin \varphi_R = \frac{\lambda_R}{\sqrt{M^2 + \lambda_R^2}},$$

$$\mathcal{L}_{\mathsf{mass}} = -M\left(ar{Q}Q + ar{T}T
ight) - \left(\lambda_Lar{q}_LQ + \lambda_Rar{t}_RT + \mathsf{h.c.}
ight)$$

Diagonalize mass matrix:

$$\begin{pmatrix} t_R \\ T \end{pmatrix} \rightarrow \begin{pmatrix} \hat{T}_1 \\ \hat{T}_2 \end{pmatrix} = \begin{pmatrix} \cos \varphi_R & \sin \varphi_R \\ -\sin \varphi_R & \cos \varphi_R \end{pmatrix} \begin{pmatrix} t_R \\ T \end{pmatrix}, \qquad \sin \varphi_R = \frac{\lambda_R}{\sqrt{M^2 + \lambda_R^2}},$$

Top Yukawa:

$$\begin{aligned} \mathcal{L}_{\text{comp}} \supset -g_* \bar{Q} T \tilde{H} + \text{h.c.} \supset -g_* \sin \varphi_L \bar{\hat{Q}}_1 \sin \varphi_R \hat{T}_1 \tilde{H} + \text{h.c.} \\ \Rightarrow y_t = g_* \sin \varphi_L \sin \varphi_R \end{aligned}$$

Assumptions and requirements [Ferretti et al, 1312.5330, 1604.06467, 1610.06591]:

- > Two species of hyperquarks in distinct irreps of G_{HC} : ψ (EW) and χ (color)
- ► Consider only simple *G*_{HC}
- Consider only lowest-dimensional irrep for each reality
- ▶ Require $SU(3)_c \times SU(2)_L \times SU(2)_R \times U(1)_X \subset \mathcal{H}$ where $Y = T_R^3 + X$, presence of top partners and custodial Higgs bidoublet
- Consider only lowest possible number of flavors: minimal cosets
 - EW: SU(5)/SO(5), SU(4)/Sp(4), SU(4) × SU(4)/SU(4)
 - ► Color: SU(6)/SO(6), SU(6)/Sp(6), SU(3) × SU(3)/SU(3)

- ▶ Real irrep: SU(n)/SO(n)
- Pseudoreal irrep: SU(2n)/Sp(2n)
- Complex irrep: $SU(n) \times SU(n)/SU(n)$

Name	G _{HC}	ψ	χ	Coset	Top Partners
M1	SO(7)	$5 imes \mathbf{F}$	$6 imes {f Spin}$	(R, R)	$\chi\psi\chi$
M2	SO(9)	$5 imes \mathbf{F}$	$6 imes { m Spin}$	(R, R)	$\chi\psi\chi$
M3	SO(7)	$5 imes { m Spin}$	$6 imes \mathbf{F}$	(R, R)	$\psi\chi\psi$
M4	SO(9)	$5 imes { m Spin}$	$6 imes \mathbf{F}$	(R, R)	$\psi\chi\psi$
M5	Sp(4)	$5 imes {f A}_2$	$6 imes \mathbf{F}$	(R, PR)	$\chi\psi\chi$
÷	÷	:	÷	÷	:
M12	SU(5)	$4\times ({\bm{F}}, {\bm{\bar{F}}})$	$3\times (\boldsymbol{A}_2, \boldsymbol{\bar{A}}_2)$	(C, C)	$\psi\chi\psi$

Ferretti et al, 1312.5330, 1604.06467, 1610.06591

The model M5

Name	G _{HC}	ψ	χ	Coset	Top Partners
:	:	:	:	:	:
M5	Sp(4)	$5 imes {f A}_2$	$6 imes \mathbf{F}$	(R, PR)	$\chi\psi\chi$
÷	÷	÷	÷	÷	÷

Name	G _{HC}	ψ	χ	Coset	Top Partners
:	:	:	:	:	:
M5	Sp(4)	$5 imes {f A}_2$	$6 imes \mathbf{F}$	(R, PR)	$\chi\psi\chi$
÷	:	÷	:	÷	÷

 $SU(5) \rightarrow SO(5)$

Name	G _{HC}	ψ	χ	Coset	Top Partners
:	:	:	:	:	:
M5	Sp(4)	$5 imes {f A}_2$	$6 imes \mathbf{F}$	(R, PR)	$\chi\psi\chi$
÷	÷	÷	÷	÷	÷

 $SU(5) \times SU(6) \longrightarrow SO(5) \times Sp(6)$

Name	G _{HC}	ψ	χ	Coset	Top Partners
:	:	:	:	:	:
M5	Sp(4)	$5 imes {f A}_2$	$6 imes \mathbf{F}$	(R, PR)	$\chi\psi\chi$
÷	÷	÷	÷	÷	:

 $\mathsf{SU}(5) imes \mathsf{SU}(6) imes \mathsf{U}(1) o \mathsf{SO}(5) imes \mathsf{Sp}(6)$

Name	G _{HC}	ψ	χ	Coset	Top Partners
:	:	:	:	:	:
M5	Sp(4)	$5 imes {f A}_2$	$6 imes \mathbf{F}$	(R, PR)	$\chi\psi\chi$
÷	÷	÷	÷	÷	÷

$$\mathsf{SU}(5)\times\mathsf{SU}(6)\times\mathsf{U}(1)\to\mathsf{SO}(5)\times\mathsf{Sp}(6)$$

Embedding:

$$\mathrm{SU}(2)_L imes \mathrm{SU}(2)_R \subset \mathrm{SO}(5), \quad \mathrm{SU}(3)_c imes \mathrm{U}(1)_X \subset \mathrm{Sp}(6)$$

Scalars

$$SU(6)/Sp(6)$$
: $35-21 = 14$ pNGBs in the $14_{Sp(6)}$

Decompose Sp(6) \rightarrow SU(3)_c \times U(1)_{em}:

$$\mathbf{14}_{\mathsf{Sp}(6)} o \mathbf{8}_0 + \mathbf{3}_{2/3} + \mathbf{\bar{3}}_{-2/3} \equiv \pi_8 + \pi_3 + \pi_3^*$$

Scalars

$$SU(6)/Sp(6):$$
 35 – 21 = 14 pNGBs in the $\mathbf{14}_{Sp(6)}$

Decompose Sp(6) \rightarrow SU(3)_c \times U(1)_{em}:

$$\mathbf{14}_{\mathsf{Sp}(6)} \to \mathbf{8}_0 + \mathbf{3}_{2/3} + \mathbf{\bar{3}}_{-2/3} \equiv \pi_8 + \pi_3 + \pi_3^*$$

Top partners

$$\begin{split} \psi \chi \chi \in ({\bf 5}, {\bf 6} \times {\bf 6}) &= ({\bf 5}, {\bf 15}) + ({\bf 5}, {\bf 21}) & \text{of } {\rm SU}(5) \times {\rm SU}(6) \\ & \rightarrow ({\bf 5}, {\bf 14}) + ({\bf 5}, {\bf 1}) + ({\bf 5}, {\bf 21}) & \text{of } {\rm SO}(5) \times {\rm Sp}(6) \end{split}$$

Scalars

$$SU(6)/Sp(6):$$
 35 – 21 = 14 pNGBs in the $14_{Sp(6)}$

Decompose Sp(6) \rightarrow SU(3)_c \times U(1)_{em}:

$$\mathbf{14}_{\mathsf{Sp}(6)} \to \mathbf{8}_0 + \mathbf{3}_{2/3} + \mathbf{\bar{3}}_{-2/3} \equiv \pi_8 + \pi_3 + \pi_3^*$$

Top partners

$$\begin{split} \psi \chi \chi \in (\mathbf{5}, \mathbf{6} \times \mathbf{6}) &= (\mathbf{5}, \mathbf{15}) + (\mathbf{5}, \mathbf{21}) & \text{of } \mathsf{SU}(5) \times \mathsf{SU}(6) \\ &\to (\mathbf{5}, \mathbf{14}) + (\mathbf{5}, \mathbf{1}) + (\mathbf{5}, \mathbf{21}) & \text{of } \mathsf{SO}(5) \times \mathsf{Sp}(6) \end{split}$$

BSM particle content of M5

Spectrum

Spectrum

$ilde{G}^+ o \pi_8 ilde{h}^+, \, \pi_3 ar{b}, \qquad ilde{G}^0 o \pi_8 ilde{h}^0, \, \pi_3 ar{t}, \qquad ilde{g} o \pi_8 ilde{B}, \, \pi_3 ar{t}, \, \pi_3^* t$

$$\tilde{G}^+ \to \pi_8 \tilde{h}^+, \, \pi_3 \bar{b}, \qquad \tilde{G}^0 \to \pi_8 \tilde{h}^0, \, \pi_3 \bar{t}, \qquad \tilde{g} \to \pi_8 \tilde{B}, \, \, \pi_3 \bar{t}, \, \pi_3^* t$$

$$\pi_8 \rightarrow t\bar{t}; gg, g\gamma, gZ$$

$$ilde{G}^+ o \pi_8 ilde{h}^+, \, \pi_3 ar{b}, \qquad ilde{G}^0 o \pi_8 ilde{h}^0, \, \pi_3 ar{t}, \qquad ilde{g} o \pi_8 ilde{B}, \, \pi_3 ar{t}, \, \pi_3^* t$$
 $\pi_8 o t ar{t}; \, gg, \, g\gamma, \, gZ$
If $m_{\pi_3} > m_{ ilde{B}}$:

$$\pi_3
ightarrow b ilde{h}^+, \ t ilde{h}^0, \ t ilde{B} \ ilde{h}^{+,0}
ightarrow ilde{B} + ext{soft}$$

- Simplified models implemented in FeynRules
- Generate 10,000 events with MadGraph5
- PDF set NNPDF 3.0
- Showering with Pythia8
- Rescaling cross section to NNLO_{approx}+NNLL from calculations for gluinos
- ► Calculate CL_s exclusions for recasted searches in MadAnalysis5 and CheckMATE

 $m_{\widetilde{g}}-m_{\pi_3}=200~{
m GeV}$

[CMS-PAS-SUS-19-006]

 $m_{Q_8} - m_{\pi_3} = 200 \,\, {
m GeV}$

 $m_{\pi_3} = 1.4 \text{ TeV}$

 $m_{\pi_8}=1.1~{
m TeV}$

Summary

- Realistic composite Higgs models are complicated
- Model M5, based on SU(5) × SU(6) × U(1)/SO(5) × Sp(6), has especially rich phenomenology
- Color octet top partners excluded up to 2.7 TeV
- ▶ Bounds from pair production of vector-like quarks are negligible since $m_{Q_3} \approx m_{Q_3}$

Summary

- Realistic composite Higgs models are complicated
- Model M5, based on SU(5) × SU(6) × U(1)/SO(5) × Sp(6), has especially rich phenomenology
- Color octet top partners excluded up to 2.7 TeV
- Bounds from pair production of vector-like quarks are negligible since $m_{Q_8} \approx m_{Q_3}$ Future work
 - Electroweak pNGBs in SU(5)/SO(5)
 - ▶ Different mass hierarchy: $m_{\pi_3} < m_{\tilde{B}}$: lepton-number violating decays $\pi_3 \rightarrow b\tau^+, t\bar{\nu}_{\tau}$, neutrino masses via \tilde{B}
 - ▶ Different top partner embedding: color sextet fermions, $Q_6 \rightarrow 5t + \mathsf{MET}$

Backup

To
(A)

	$Sp(2N_c)$	SU(3) _c	$SU(2)_L$	$U(1)_Y$	SU(5)	SU(6)	U(1)
$\psi_{1,2}$		1	2	1/2			
$\psi_{3,4}$		1	2	-1/2	5	1	$-rac{3q_{\chi}}{5(N_c-1)}$
ψ_{5}		1	1	0			
χ1							
χ2		3	1	-x			
χз					1	6	a
χ4		_			-	Ū	\mathbf{q}_{χ}
χ_5		3	1	X			
χ_6							

SSB pattern: $SU(5) \times SU(6) \times U(1)/SO(5) \times Sp(6)$

We embed $SU(2)_L \times SU(2)_R \subset SO(5)$, $SU(3)_c \times U(1)_X \subset Sp(6)$ and $Y = X + T_R^3$

▶ EW pNGBs: under SO(5) \rightarrow SU(2)_L × SU(2)_R \rightarrow SU(2)_D,

$$egin{aligned} \mathbf{14}_{\mathsf{SO}(5)} & o (\mathbf{3},\mathbf{3}) + (\mathbf{2},\mathbf{2}) + (\mathbf{1},\mathbf{1}) \ & o (\mathbf{5}+\mathbf{3}+\mathbf{1}) + (\mathbf{3}+\mathbf{1}) + \mathbf{1} \ &\equiv \eta_5 + \eta_3 + \eta_1 + \phi + h + \eta \end{aligned}$$

▶ Colored pNGBs: under $Sp(6) \rightarrow SU(3)_c \times U(1)_{em}$,

$$\mathbf{14}_{\mathsf{Sp}(6)} \to \mathbf{8}_0 + \mathbf{3}_{2x} + \mathbf{\bar{3}}_{-2x} \equiv \pi_8 + \pi_3 + \pi_3^*$$

Top partners must have same SM QN as $t_L \in (\mathbf{3}, \mathbf{2})_{1/6}$ and $t_R^c \in (\mathbf{\bar{3}}, \mathbf{2})_{-2/3}$

Hyperbaryons $\psi \chi \chi \in ({f 5},{f 6} imes{f 6})=({f 5},{f 15})+({f 5},{f 21}) o ({f 5},{f 14})+({f 5},{f 1})+({f 5},{f 21})$

Under Sp(6) \rightarrow SU(3)_c \times U(1)_X: 14 \rightarrow 8₀ + 3_{2x} + $\overline{\mathbf{3}}_{-2x}$, 21 \rightarrow 8₀ + 6_{-2x} + $\overline{\mathbf{6}}_{2x}$ + 1₀

 \Rightarrow top partners in $\mathbf{14}_{\mathsf{Sp}(6)}$ for x = 1/3

EW sector: Under SO(5) \rightarrow SU(2) $_L \times$ SU(2) $_R$, 5 \rightarrow (2,2) + (1,1)

.

Let's look at the hyperbaryons in the antisymmetric $(\mathbf{5}, \mathbf{15})_G$ under $SU(2)_L \times SU(2)_R \times SU(3)_c \times U(1)_X$:

$$\begin{aligned} &(\mathbf{5},\mathbf{14})_H \to \left((\mathbf{2},\mathbf{2}) + (\mathbf{1},\mathbf{1}), (\mathbf{8}_0 + \mathbf{3}_{2/3} + \bar{\mathbf{3}}_{-2/3}) \right) \\ &= (\mathbf{2},\mathbf{2};\mathbf{8}_0) + (\mathbf{2},\mathbf{2};\mathbf{3}_{2/3}) + (\mathbf{2},\mathbf{2};\bar{\mathbf{3}}_{-2/3}) + (\mathbf{1},\mathbf{1};\mathbf{8}_0) + (\mathbf{1},\mathbf{1};\mathbf{3}_{2/3}) + (\mathbf{1},\mathbf{1};\bar{\mathbf{3}}_{-2/3}) \\ &\equiv \tilde{G}_2 + Q_L + Q_L^c + \tilde{g} + T_R + T_R^c \end{aligned}$$

$$(\mathbf{5},\mathbf{1})_H o (\mathbf{2},\mathbf{2};\mathbf{1}_0) + (\mathbf{1},\mathbf{1};\mathbf{1}_0) \equiv \tilde{h} + \tilde{B}$$

Top partners: $Q_L = \left(\begin{pmatrix} X_{5/3} \\ X_{2/3} \end{pmatrix}, \begin{pmatrix} T \\ B \end{pmatrix} \right)$ and T_R^c

BSM particle content

$$r=\frac{2\Delta m^{\rm em}}{m_p+m_n}$$

$$\frac{2(m_{\tilde{g}}-m_{X_{5/3}})}{m_{\tilde{g}}+m_{X_{5/3}}}=\frac{\alpha_{\mathcal{S}}(\mathsf{TeV})}{\alpha_{\mathsf{em}}(\mathsf{GeV})}\left(3-\frac{4}{3}\right)r\sim1.4\%$$

 $m_{ ilde{G}^+}-m_{\pi_3}=200\,\,{
m GeV}$

Phenomenology: Mixed decays

