DE LA RECHERCHE À L'INDUSTRIE

Other fundings

CEA/DEN, P2IO

www.cea.fr

Développement du spectromètre FALSTAFF

D. Doré¹, E. Berthoumieux¹, A. Letourneau¹, T. Materna¹, L. Thulliez¹ J-E. Ducret², X. Ledoux², J. Pancin², D. Ramos²

> 1) Irfu, CEA, Université Paris-Saclay, France 2) GANIL, Caen, France

Motivations

FALSTAFF was developed to

- Improve our fission process knowledge
 - o configurations at scission
 - o excitation energy sharing
 - o shell effects disappearance
 - 0 ...

- Provide data for models and/or applications
 - o FIFRELIN (de-excitation model)
 - Waste management
 - Production of exotic nuclei
 - 0.

With FALSTAFF we will study:

- fragments produced in fast neutron-induced domain (direct kinematics)
- the excitation energy sharing between fission fragments (neutron multiplicity)
- the fragment deformation (kinetic energy)
- > the evolution of fragment masses and kinetic energies with the excitation energy over a large range

Available data

- mainly for thermal neutrons,
- ²³⁵U,
- specific fragment isotopes and not for the whole fragment mass domain

Very few data for fast neutrons: - ²³⁵U, ²³⁷Np, ...

Methods and detectors

Experimental goals are to:

- detect both fragments in coincidence
- measure their kinetic energy
- identify their mass pre & post evaporation
- provide information on their nuclear charge ?

Fragment energy losses in materials entail:

- Track reconstruction (positions required)
- Good energy loss calculation

2V Method

→ Pre-evaporation fragment masses ($\sigma(A) < 1$ uma) → ToF : 2 SED-MWPC detectors → $\sigma(t) = 120 \text{ ps } \& \sigma(xy) = 2 \text{ mm}$

EV Method

→ Post-evaporation fragment mass ($\sigma(A) < 2$ uma) → ToF + axial ionisation chamber → $\sigma(E)/E \sim 1\%$ + energy loss profile

Effects due to assumption about constant velocity before and after evaporation Correction determined (K. Janssen, thesis)

Fission fragment energy loss measurement @ Lohengrin (ILL) T. Materna et al., NIMB 505 (2021)1-16

Scaled DPASS Mylar values included in GEANT4 and used for experimental data event reconstruction

A. Schinner & P. Sigmund, NIM B 460 (2019) 19-26

1st arm of FALSTAFF : Results with a ²⁵²Cf source

Nuclear charge identification ?

Energy loss profile in the axial ionization chamber

→ Need of identified fragment to « settle » the neural network
→ FALSTAFF@VAMOS experiment

FALSTAFF @ VAMOS

FALSTAFF @ VAMOS (test experiment, March 2022, PI D. Ramos)

238 U + C \rightarrow fusion-fission main channel

- one fragment fully (Z,A,E) identified in VAMOS
- one fragment slowed down (small IC close to the target)

and detected in FALSTAFF

VAMOS SPECTROMETER

FALSTAFF @ VAMOS

FALSTAFF @ VAMOS (test experiment, March 2022, PI D. Ramos)

²³⁸U + C \rightarrow fusion-fission main channel

- one fragment fully (Z,A,E) identified in VAMOS
- one fragment slowed down (small IC close to the target)

and detected in FALSTAFF

VAMOS SPECTROMETER

E (FALSTAFF IC) vs Velocity

²³⁵U Fission fragment study with FALSTAFF at NFS

E814 experiment D. Doré¹, E. Berthoumieux¹, A. Letourneau¹, T. Materna¹, L. Thulliez¹, M. Vandebrouck¹, J-E. Ducret², X. Ledoux², J. Pancin², D. Ramos², S. Oberstedt³, A. Cheboubbi⁴, O. Litaize⁴, O. Serot⁴

1) Irfu, CEA, Université Paris-Saclay, France
 2) GANIL, Caen, France
 3) European Commission, DG Joint Reserach Centre
 4) CEA, DEN, DER, SPRC, Cadarache

Experiment with the 1st arm: M_{post} and E_k vs E_n

- 5 m from converter
 - \rightarrow Neutron flux ~1.E+06 n/cm²/s at 5 MeV for 1 MeV bin

Neutron beam MWPC-SED

²³⁵U target

- ²³⁵U target to be provided by Geel (~195 µg/cm2, φ = 3 cm)
 → Purity 99.94 % : few pollution from other isotopes
- Background from thermal neutrons is negligible
 → 0.5 % of fission with T > 1 us

 $+ \varepsilon \sim 0.5 \%$ \rightarrow 10 fiss. det./s

n TOF EAR1-f (1/2.4 Hz)

n_TOF EAR2-f (1/2.4 Hz) NFS 30 m (150 kHz)

1 10 10 10 10 10 10 10 10 10

Energy Detector

(Axial ionisation chamber

neutron energy (eV)

NFS 20 m (220 kHz) NES 5 m (880 kHz)

-1Ω¹

Stop Detector

(MWPC-SED)

E*n/cm²/s

10

²³⁵U Fission fragment study with FALSTAFF at NFS

E814 experiment

D. Doré¹, E. Berthoumieux¹, A. Letourneau¹, T. Materna¹, L. Thulliez¹, M. Vandebrouck¹, J-E. Ducret², X. Ledoux², J. Pancin², D. Ramos²,

S. Oberstedt³, A. Cheboubbi⁴, O. Litaize⁴, O. Serot⁴

1) Irfu, CEA, Université Paris-Saclay, France 2) GANIL, Caen, France 3) European Commission, DG Joint Reserach Centre 4) CEA, DEN, DER, SPRC, Cadarache

Experiment with the 1st arm: M_{post} and E_k vs E_n

- ◆ ²³⁵U target to be provided by Geel (~195 µg/cm2)
 → Purity 99.94 % : few pollution from other isotopes
- ♦ Background from thermal neutrons is negligible
 → 0.5 % of fission with T > 1 us

2009 1st LOI SAC Ganil

2010-2014 : no manpower, detector resolution determination, 1st axial chamber design & building

2015: FALSTAFF is a Irfu project (manpower allocated), change of IC design

2016: design of the full setup, final axial ionization delivered, tests of detectors, Postdoc C. Golabek

2017: reaction chamber delivered, **test of IC at IPNO**, new simulations code, L. Thulliez Ph.D. defense, Postdoc A. Chietera 2018: **test of the full setup at Orphée**, Postdoc Q. Deshayes

2019: test of a new SED-MWPC detector, FALSTAFF-FIPPS experiment proposed in SANDA framework, manip ΔE at ILL 2020: Ganil PAC proposal accepted

2021: Collaboration enlarged, Falstaff moved to GANIL

2022: VAMOS-FALSTAFF test experiment, NFS experiment

FALSTAFF	Financement NACRE (k€)		
Labo	2020	2021	2022
DPhN/Irfu	10	11	5
GANIL/Irfu	5	6	6

Objectifs atteints

- \rightarrow développement expérimental OK
- \rightarrow taille de collaboration plus raisonnable
- \rightarrow expérience acceptée

Objectifs non atteints

- \rightarrow décision pour un second bras
- \rightarrow pas encore de données ...

Forces

- \rightarrow Fort soutien à Ganil
- \rightarrow Pas de retard p/r autres spectros
- \rightarrow

Faiblesses

- → thésards et postdocs difficiles à trouver
- ightarrow pas d'embauches prévues

Fission fragment studies with FALSTAFF at NFS

D. Doré¹, E. Berthoumieux¹, A. Letourneau¹, T. Materna¹, L. Thulliez¹, M. Vandebrouck¹, J-E. Ducret², X. Ledoux², J. Pancin², D. Ramos², S. Oberstedt³, A. Cheboubbi⁴, O. Litaize⁴, O. Serot⁴

1) Irfu, CEA, Université Paris-Saclay, France
 2) GANIL, Caen, France
 3) European Commission, DG Joint Reserach Centre
 4) CEA, DEN, DER, SPRC, Cadarache

- Construction du second bras (même techno?)(2023-24)
- Continuer à travailler sur la détermination de la charge Z (résultats préliminaires encourageants)
- ²³⁸U, ²³²Th, ²³⁹Pu, ²³⁷Np, ²³³U à NFS
 - Besoin de trouver des fournisseurs de cibles
- Ajout de détecteurs ancillaires (neutrons, gammas)
- Renforcer le lien avec les modélisateurs
- Rétablir le lien avec les théoriciens