

Isotopic fission yields experiments

at GSI (and GANIL...?)

> *L. Audouin SOFIA collaboration*

Preliminary SOFIA data analysis : P. Morfouace

Fission fragment yields : applied physics

- Nuclear reactors: core dynamics
 - Delayed neutrons
 - Neutronic poisons
 - Increased influence with larger burn-ups
- Nuclear fuel: inventory
 - > Used fuel handling and reprocessing
 - > Residual (decay) heat

r-process

82

- Nuclear astrophysics: material cycling
 - Fission is the termination of the r-process
 - Nucleosynthesis calculations depend on fission barriers

Fission fragment yields : basic science

- Slow process (at nuclear scale...)
 - > Actually... we don't know how long it takes!!
- Elongation...
- ... break-up ...
- ... cross-repulsion of fragments ...
- ... cooling of fragments
- Modelling fission is an enduring challenge!
 - Elongated nuclei
 - > Dynamic process
 - Most intermediate states are unknown

Fission modes

- Asymmetric fission in actinides due to shell effects.
- Transition toward symmetric fission in Th isotopes
- ✓ New fission mode : symmetric compact in n-deficient Th

A. N. Andreyev et al. Rep. Prog. Phys. 81, 016301 (2018)

A. Chatillon *et al*. Phys. Rev. Lett. **124**, 202502 (2020) A. Chatillon *et al*. Phys. Rev. C **99**, 054628 (2019)

Fission modes

- Asymmetric fission in actinides due to shell effects.
- Transition toward symmetric fission in Th isotopes
- ✓ New fission mode : symmetric compact in n-deficient Th
- \checkmark New fission mode : asymmetric in very light Hg

A. N. Andreyev et al. Rep. Prog. Phys. 81, 016301 (2018)

A. N. Andreyev *et al*. Phys. Rev. Lett. **105**, 252502 (2010)

P. Moller et al. Phys. Rev. C 91, 044316 (2015)

Inverse Kinematics

- Heavy partner (fissioning system) as projectile
- In-flight fission

- ✓ Access to very short-lived nuclei
 ✓ Direct, precise Z measurement
- Identification of the fragments: recoil spectrometer
- Pioneer experiment : Schmidt et al. (1996) : Z of both FFs
- 2010s : SOFIA@GSI, transfer@GANIL, RIKEN

The SOFIA program

- Direct identification of <u>both</u> fission fragments : <u>A & Z</u>
 - > Data on Z are scarce
 - + Kinetic energy (fragments shapes)
 - + Total prompt neutron multiplicity (fragments excitation)
- Wide range of fissioning systems
 - > U region for applications
 - > Th and even lighter systems for structure study
- High-precision measurement (~ % on isotopic yields)
- Low E*
 - > Maximum sensitivity to nuclear structure effects
 - Somehow close to excitation in reactors

2021 : "SOFIA 3" experiment

Fission modes in the neutron-deficient region around Lead

- Primary beam of ²³⁸U at 1 GeV/u
- Production and identification of the secondary beam trough the FRS
- Fission in cave C and identification of both fission fragments.
- 12 FRS settings from ¹⁷⁵Pt up to ²²¹Pa

Coulomb-induced fission

- Large cross section (~ b)
- Small E* : excitation of the GDR (<E>~14 MeV)
 - > ²³⁶U (γ,f) ~ ²³⁵U (n,f) @ 8.2 MeV
 - > 75% of first chance fission (23% 2nd chance)
- Significant dispersion of E*: no info event-by-event
- Need to subtract nuclear contribution

Identification of nuclei : principles

- Z obtained directly from energy lost in a detector : $dE/dx \propto Z^2$
- Magnetic rigidity deduced from positions
- Mass deduced from mag. rig. and Z : Bp = p/q \propto A/q . $\beta\gamma$
- Hundreds of MeV per nucleon : nuclei mostly stripped
- Many detectors combined + extreme precision
 - Ionization chambers: Z (and position)
 - dE/E ~ 1% FWHM
 - Plastic detectors: time signals (velocities) + rough position
 - dt ~ 40 ps FWHM
 - > MWPC: positions
 - dx ~ 200 mu FWHM
 - > One huge magnet.
 - The new one is gorgeous but troublesome

Secondary beam: selection & identification

Studied fissioning systems

- Summary of most of the FRS settings from ¹⁷⁵Pt to ²¹⁶Th
- Coulomb-induced fission of about 60 isotopes.

The whole setup

- Plastic at S2 & cave C for time and position measurement.
- Triple-MUSIC for charge identification of the secondary beam.
- Active target with three cathodes (2 Lead + 1 Carbon).
- MWPC: (x,y) measurement of the beam and the fission fragments.
- Twim-MUSIC: charge identification of the fission fragments.
- Tof Wall: time of flight of fission fragments

Rejection of the nuclear contribution

- Selection of events $Z_1 + Z_2 = Z_{beam}$
- Limiting fragmentation regime :
 - > The reaction mechanism does not depend on the target
 - Subtraction of yields obtained on C target

Preliminary results on Pb

"Short-term" perspective ?

- On-going participation to R3B experiments (no link with nuclear data)
- Complementary experiment in 2024 : fission close to the proton drip-line ?

Mid-term perspectives: the FAIR facility

- Increased primary beam : up to 5.10¹¹ U
- Super-FRS : better selection/transmission
- More exotic settings (neutron-rich beams)
- Exclusive experiments (neutron tagging)

The FAIR facility: yes, it's happening

²⁴²Pu beam

- Direct access to key systems (esp. ²⁴⁰Pu*)
- New neutron-rich systems
 - Fission modelling
 - > Also interesting for nuclear astrophysics
- Dedicated ion source
- Full decontamination of the injector
- GSI expresses interest
- Opportunity not just for « fissionists »
 - Nuclear structure
 - Possibly atomic physics
 - ≻ (not SH)

H. Alvarez-Pol et al., PRC 82, 041602(R) (2010)

(p,2p) fission : energy-dependant yields

- Complete kinematics : event-by-event excitation energy
- Liquid H₂ target + Califa calorimeter
- Aim : 2 MeV FWHM on E*
- Low cross section (/100 w.r. GDR)

GANIL activities: fission@VAMOS

- Transfer-induced fission experiments
- Full identification of one fragment only
 - Kinematics reconstruction allows to bypass this
- Estimation of excitation energy (event-by-event)
- Previous campaigns : ²³⁸U primary beam, SPIDER Si array, VAMOS
 - Successful measurements, plenty of papers
 - Limited resolution in energy, limited statistics

D. Ramos *et al.*Phys. Rev. C **97**054612 (2018)

GANIL activities: fission@VAMOS

- New PISTA Si array
 - > Improved segmentation and resolution
 - Expected E* resolution : 750 keV (FWHM)
- Latest improvements of VAMOS
- ²³²Th beam
- Measurement of the dampening of shell effects
 - Long-pending theory question
 - Improvement of yields prediction in fast systems
 - ➢ High-quality data on ²³⁶U* and ²⁴⁰Pu*
- Measurement of the Th region
 - > High-quality data on 234 U*
 - Rapidly-changing fragment split

120

MASS NUMBER

25 30 35 40 45 50 55 60

7

Outlook and status : NACRE in general / the 2.1.2 action

- + NACRE is very useful for scientific animation
- + Helps the activity to be "readable" at the IN2P3 level
- Doesn't provide political traction (nTOF...)
- Good money, but not enough

Concerning the action, future is a bit blurry at the moment !

- No activity related to NACRE at GSI in 2023
- Possible experiment in 2024
- GSI/FAIR transition : SFRS / Pu beam experiments in 2026+ ...?
- Accepted proposals at GANIL
- Change of the action perimeter, new NACRE action...?