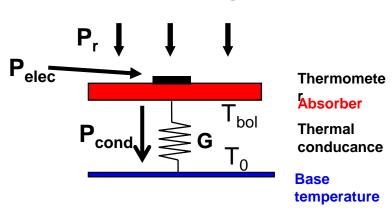


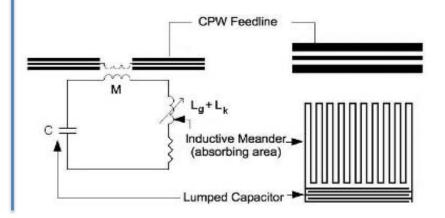
Séminaire projets APC 2022

NGCryo

- 1. Contexte de la R&T
- 2. Principaux enjeux techniques
- 3. Implication technique de l'APC et principaux défis
- 4. Perspectives d'applications
- 5. Conclusion


Contexte de la R&T

Les meilleurs détecteurs pour la détection à large bande passante dans la gamme de longueurs d'onde sub-mm/mm Très haute sensibilité


⇒ Besoin de réfrigération à basses températures < 300mK

QUBIC

Transition Edge Sensors

Kinetic Inductance Detectors

Objectifs et principaux défis de la R&T

- Système de réfrigération T<300mK
 - Compact et autonome
 - Simple à mettre en œuvre
 - > Fiable

- Faible puissance dissipée
- Bas bruit
- Simplicité de mise en œuvre
- Thermométrie des basses températures
 - Précision
 - Sensibilité
- Caractérisation de matériaux aux basses températures

Thème 1: réfrigération subKelvin

Thème 2: microélectronique cryogénique

Thème 3: cryostat et insert d'étalonnage

Thème 4: Propriétés thermiques sub-Kelvin

Objectifs et principaux défis de la R&T

Projet transverse IN2P3 : 4 ans (2020 – 2023)

4 Laboratoires impliqués

4 thèmes et une démarche prospective :

- Réfrigération subKelvin
- Microélectronique cryogénique
- Cryostat et insert d'étalonnage
- Propriétés thermiques

Prospectives : besoins en cryogénie

⇒ Sondage envoyé par l'IN2P3 vers les DT/RT et responsables de plateforme dans les prochaines semaines

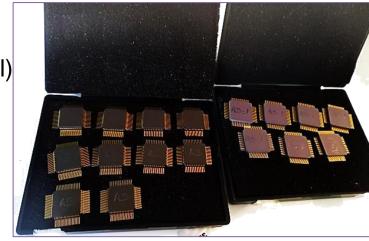
Principaux enjeux techniques

Thème 1 : réfrigération subKelvin

- ⇒ Intégration et thermalisation du charbon actif de la cryopompe
- ⇒ Développer et caractériser des interrupteurs thermiques
- ⇒ Concevoir un coupe film He superfluide (4He)
- ⇒ Concevoir un réfrigérateur à adsorption à cycle continu

Thème 2 : microélectronique cryogénique

- ⇒ ASIC cryogénique qui réalise l'ensemble des fonctions nécessaires à la mesure des thermomètres
- \Rightarrow Obtenir de bonnes performances métrologiques dans une grande gamme de mesure de résistance (Ω au $M\Omega$)

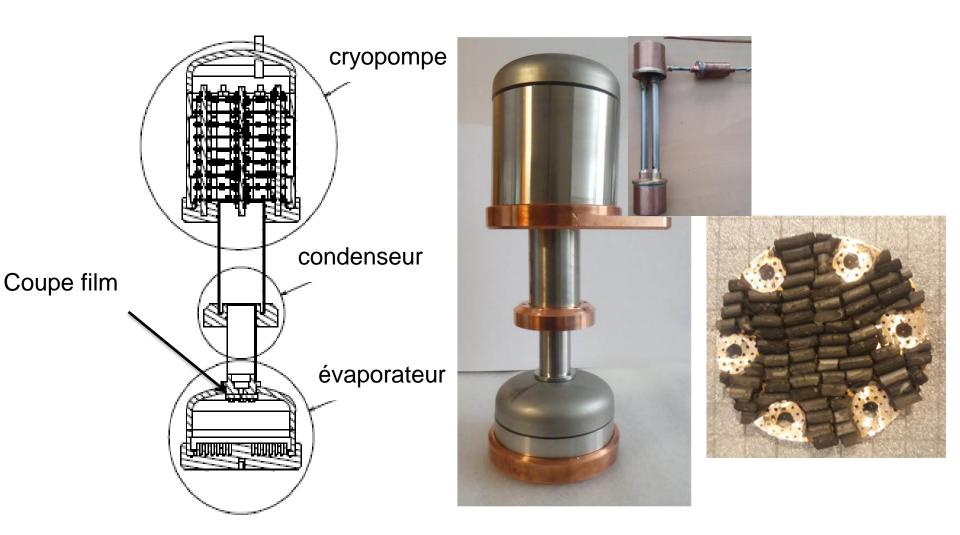

Implication technique de l'APC

Réfrigération subKelvin (C. Chapron, S Dheilly, M. Karakac, M. Piat, JP

Thermeau).

NG-Cryoll

Gestion: Vincent Guiffo, Viki Domazet, Béatrice Silva, Cindy Pires


Infrastructure/Hall: Sahbi Selmane et Olivier Lelong

Réfrigérateur 1K

Principaux faits marquants et perspectives

Réfrigération subKelvin

- Réfrigérateur à adsorption 1K ⁴He : réfrigérateur prêt pour les essais
- Interrupteurs thermiques: 2 conductifs et 2 convectifs
- Etude en cours pour nouvelle version réfrigérateur 1K et 0.3K

Microélectronique

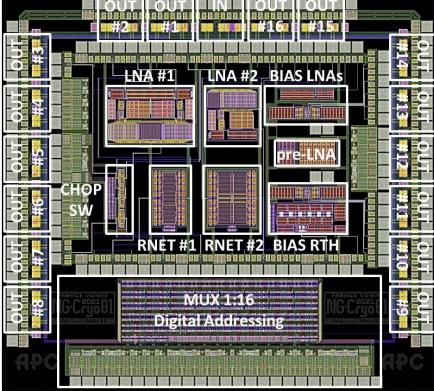
- ASIC technologie AMS 350nm : livrée fin 2021, cartes de tests pour l'ASIC v1 sont en cours de préparation

Cryostat et cryogénérateur Sumitomo 1.5W à 4K : installés dans le hall APC

CONCLUSIONS

L'avancement du projet R&T NGCryo dépend des ressources humaines disponibles (des ressources en 2020, peu en 2021).

Les thématiques de NGCryo se renforcent avec deux nouvelles contributions :


- ⇒ Thèse Julien Paris (janvier 2022) : Réfrigération à dilution avec pompes à adsorption.
 - Collaboration avec MyCryoFirm
- ⇒ DRIM Origines : Plateforme Cryomat de caractérisation de matériaux aux températures subKelvin.
 - Collaboration avec LNE-CNAM, ...

