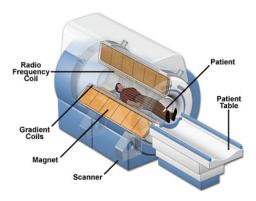


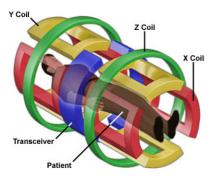
Séminaire projets APC 2022

Valorisation IRM bas-champ Chipiron*

1. Contexte de la R&T

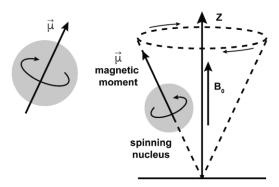
- 2. Principaux enjeux techniques
- 3. Implication technique de l'APC et principaux défis
 - 4. Perspectives d'applications
 - 5. Conclusion

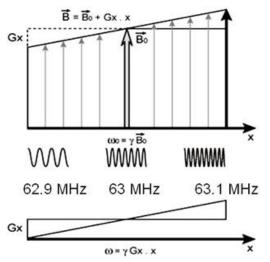

Imagerie médicale par résonance magnétique


Résonance magnétique nucléaire (RMN)

- *Protons soumis à B_0 constant*
- \Rightarrow précession fréquence de Larmor $\omega_0 = \gamma B_0$
- \Rightarrow aimantation résultante M // B_0
- + pulse B_1 RF $(\omega_1 \approx \omega_0) \perp B_0$
- 1) B_1 "on" \Rightarrow basculement M plan $\perp B_0$
- 2) B_1 "off" \Rightarrow retour équilibre émission onde EM
 - ⇒ détection par antenne inductive

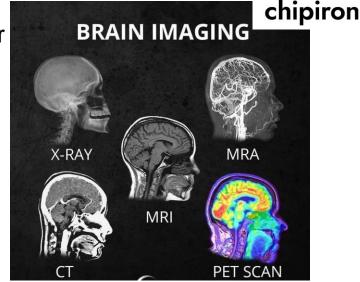
Imagerie par résonance magnétique (IRM)


- Codage spatial en fréquence
- \Rightarrow bobines gradient X, Y, Z



¹H (²/₃ atomes organisme)

Gradient $Gx \Rightarrow$ encodage plan de coupe dans la direction x



Objectifs et principaux défis de la R&T

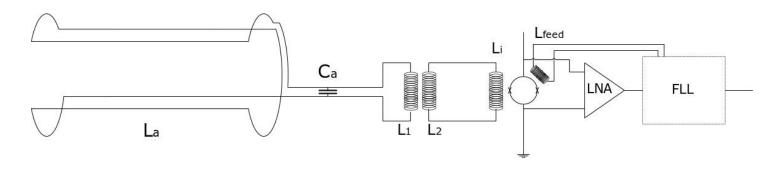
Intérêts de l'IRM

- Adaptée tissus "mous" avec contraste >> scanner
- Inadaptée tissus "durs" (pauvres hydrogène)
- Technique polyvalente, non-invasive, très haute résolution
- ⇒ Requiert gros aimants supraconducteurs refroidis pour générer champs magnétiques intenses (1,5T ou 3T)
- Coût élevé : 800k€ 1,3M€ + hélium (4K)
- Technologie complexe : blindage magnétique, sélection patients
- ⇒ Nombre machines disponibles limité
- 15 machines / M hab. France
- Temps d'attente élevé (34 J France) / utilisation technologies alternatives non adaptées

Refroidissement 4K (LHe) aimants supraconducteurs

Objectifs et principaux défis de la R&T

chipiron

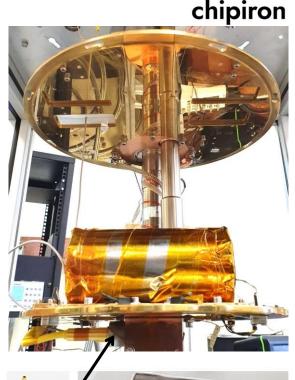

Objectif Chipiron :

Commercialisation appareils IRM portables légers / coûts réduits (<300k€)

- ⇒ Utilisation aimants plus petits et résistifs
- $\Rightarrow B_0 \approx 1 \text{mT}$
- Défis :

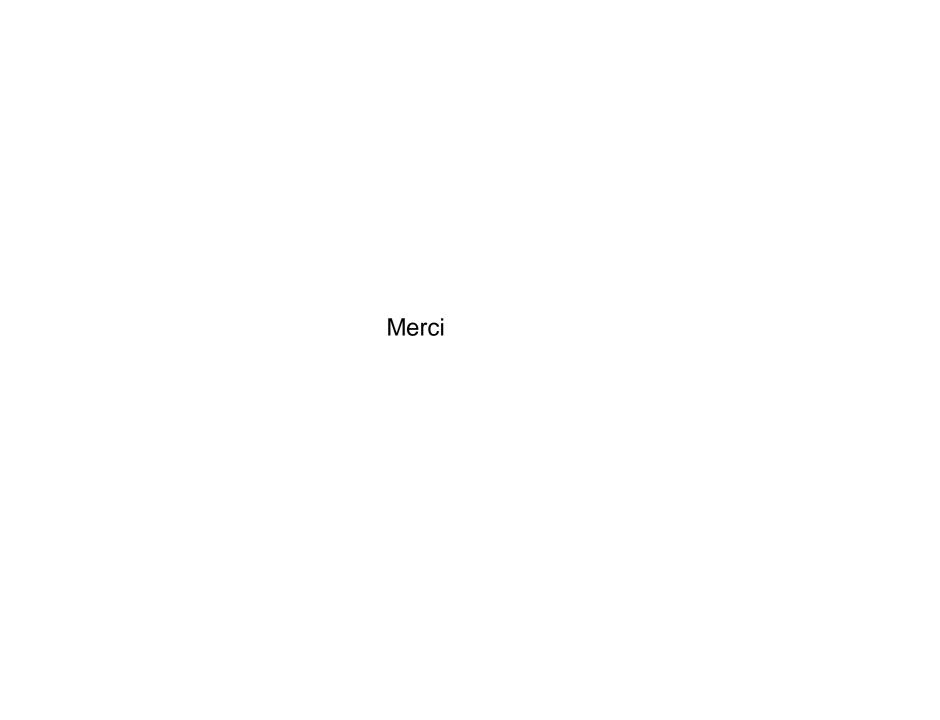
Signal RMN plus faible à bas B_o

- ⇒ Mise en œuvre chaîne de détection RF cryogénique ultra-sensible à base de SQUID Low Tc (< 4K)</p>
 - + antenne de détection refroidie pour réduction du bruit



cors | Implication technique de l'APC

- Premiers contacts Chipiron / APC : été 2020
- ⇒ Contrat collaboration recherche signé été 2021
- **Expertise sollicitée :** chaîne de détection cryogénique à SQUID et électronique bas-bruit
- **Objectif:** réalisation démonstrateur pour validation brevetabilité concepts novateurs
- Implication technique: 1×IR microélectronique
- ✓ Intégration / mise en œuvre / caractérisation chaîne de détection refroidie commerciale (StarCryoelectronics) dans cryostat à dilution (Mycryofirm) installé à l'ESPCI (Ecole Supérieure de Physique et de Chimie Industrielles)
- ✓ Couplage antenne détection / électronique de lecture à SQUID
- Optimisation CEM / filtrage
- Etude cryostat refroidissement antenne détection


Perspectives d'applications

- Valorisation expertise chaînes de lectures cryogéniques pour instrumentation astrophysique et cosmologie au profit du médical
- Retour d'expérience chaîne de lecture à SQUID commerciale
- Implications techniques en cours et futurs :
- ⇒ mise en œuvre démonstrateur RMN / IRM
- ⇒ développement électronique de lecture spécifiquement dédiée (ASIC ?)

CONCLUSION

- Collaboration APC / Chipiron s'inscrit pleinement dans cadre des missions du CNRS valorisation des résultats / partage connaissances / formation
- ⇒ transfert expertise technique spécifique au service d'une initiative ayant des retombées pour le grand public

