
PCIe40:
new PCIe fw/sw
interface
PAOLO DURANTE

08/06/2022 UPGRADE READOUT SYSTEM MEETING 1

Building blocks
▪ The main building block of the PCIe module is the DMA stream

▪ Streams are unidirectional (FPGA→HOST, “DAQ” direction)
▪ An implementation of the opposite direction exists but it is not tested in production

▪ A stream can be used as a black box
▪ Input: arbitrary bytes + datavalid signal, Output: circular buffer in host memory

▪ Multichannel DMA, data scheduling, memory management are hidden by firmware and software

▪ All the streams on a given PCIe interface are instantiated in a DMA controller

08/06/2022 UPGRADE READOUT SYSTEM MEETING 2

HOST

write offset

read offset

FPGA

ready
valid

data [255:0]
sop/eop/evid…

(optional)
DMA controller Driver

DMA stream

Current firmware “flavors”
▪ MINIDAQ flavor
▪ 4 DMA streams
▪ 2x “MAIN” data stream (FPGA:32 KiB buffer → HOST:4 GiB buffer, 56 Gbps max)

▪ 2x “ODIN” data stream (FPGA:4 KiB buffer → HOST:1 GiB buffer, 10 Gbps max)

▪ 2x “META” data stream (“special” stream type, see slides on metadata mechanism)

▪ TELL40 flavor
▪ 2 DMA streams
▪ 2x “MAIN” data stream (32 KiB → 4 GiB buffer, 56 Gbps max)

▪ 2x “META” data stream

▪ ODIN flavor
▪ 10 DMA streams
▪ 2x “ODIN0...ODIN4” data streams (4 KiB → 1 GiB buffer each, 10 Gbps max)

▪ 2x “META” data stream

▪ NONE flavor
▪ No streams (used for SOL40 firmware that does not use DMA)

▪ BAR0/BAR2 for control system (ECS) and low-level interface (LLI)

▪ Optional RBAR (“reverse bar”) for ECS offload of specific functions

08/06/2022 UPGRADE READOUT SYSTEM MEETING 3

Stream operating modes
▪ Byte mode (also “raw mode”)
▪ Completely data format agnostic

▪ FPGA side: avalon streaming input → HOST side: circular memory buffer

▪ Packet mode (also “fragment mode”)
▪ Same as above, plus:

▪ Avalon streaming data is delimited by SOP/EOP signals (Start/End of Packet)

▪ Each packet must have
▪ 64-bit EVID

▪ 8-bit TYPE

▪ 16-bit SIZE (in bytes)

▪ Supports truncation compensation and throttle compensation

▪ Block mode (also “MFP mode”)
▪ Same as above, plus:

▪ Supports fragment realignment and metadata packing

08/06/2022 UPGRADE READOUT SYSTEM MEETING 4

Extra features
▪ Truncation compensation
▪ Used in PACKET MODE only

▪ If backpressure causes a packet to be cut “in the middle”, automatically adjusts fragment to
prevent parsing errors in data stream consumer

▪ Throttle compensation
▪ Used in PACKET MODE and BLOCK MODE

▪ If backpressure causes packets to be lost, inserts empty packets in the sequence to ensure
EVID counter remains strictly monotonic without holes

▪ Fragment realignment
▪ Used in BLOCK MODE only

▪ Optimizes bandwidth by realigning packets at a smaller boundary than the default
▪ default alignment is 256 bits (32 Bytes)

▪ Metadata packing
▪ Used in BLOCK MODE only

▪ Optimizes bandwidth by compressing EVID counter (saves 64b per packet)

▪ Optimizes memory accesses by packing multiple TYPE and SIZE fields together and by
precomputing total block size in FPGA

08/06/2022 UPGRADE READOUT SYSTEM MEETING 5

Effective PCIe throughput

ρ =
𝐿𝑎𝑛𝑒 𝑟𝑎𝑡𝑒 × 𝐿𝑎𝑛𝑒 𝑤𝑖𝑑𝑡ℎ

𝐸𝑛𝑐𝑜𝑑𝑖𝑛𝑔
×

𝑀𝑃𝑆

𝑀𝑃𝑆+𝐻𝑒𝑎𝑑𝑒𝑟𝑠

Example: Gen2 x8, 128 Bytes MPS

◦ ρ = 40 × 0.8 ×
128

128+24
= 32 x 0.84 = 26.9 Gb/s

Example: Gen3 x8, 128 Bytes MPS

◦ ρ = 64 × 0.98 ×
128

128+24
= 62.7 x 0.84 = 52.6 Gb/s

Example: Gen3 x8, 256 Bytes MPS

◦ ρ = 64 × 0.98 ×
256

256+24
= 62.7 x 0.91 = 57 Gb/s

08/06/2022 UPGRADE READOUT SYSTEM MEETING 6

Link

Application
Layer

PCI Express
Logic Interface

Transaction
Layer

Data Link
Layer

Physical Layer

PCI Express Device A

Application
Layer

PCI Express
Logic Interface

Transaction
Layer

Data Link
Layer

Physical Layer

PCI Express Device B

T
X

T
X

R
X

R
X

Theoretical
bandwidth

Packet
efficiency

PCIe data throughput
▪ PCIe transfer parameters already
optimized to minimize on-chip memory
and maximize throughput.
▪ 256 Bytes TLP payload

▪ 32 KiB fpga buffer

▪ 8 KiB per descriptor

▪ 4 GiB host buffer

▪ ~56 Gbit per second per x8 link

▪ ~112 Gbit per second per PCIe40

These figures measure how much data
can be transferred overall, it’s up to us to

use all these bits efficiently

08/06/2022 UPGRADE READOUT SYSTEM MEETING 7

PCIe metadata throughput
▪ Some information in the data is
redundant (EVIDt+1 = EVIDt + 1)
▪ 64 bit EVID x 40 MHz = 2.56 Gbps

▪ 4.5% of max bandwidth

➢ Group fragments in blocks and store only
first EVID

▪ Some information in the data is expensive
(slow) to look up
▪ Locating a specific fragment in memory

requires linear scanning of the entire stream

➢ Store fragment types and sizes in dedicated
lookup tables

▪ Metadata Packing Factor = number of
fragments described by one metadata
block

▪ Metadata throughput < 1% of data

08/06/2022 UPGRADE READOUT SYSTEM MEETING 8

TELL40 throughput example

Data processing example (TDET)

For each accepted bunch crossing:

1. Align all fibers to the same BXID

2. Remove the BXID

3. Concatenate all fibers

4. Pad to 32 bytes

5. Add EVID

6. Truncate (if necessary)

7. Send to output

08/06/2022 UPGRADE READOUT SYSTEM MEETING 9

Stream of fragments

Example (1 MHz no MFP):

12 widebus links @ 1 MHz + 4 GiB buffer
▪ 100 bits x 12 fibers = 1200 bits

▪ 1200 bits + 32 bits header = 1232 bits = 154 bytes

▪ 154 bytes + 8 bytes EVID = 162 bytes

▪ 162 bytes + 30 bytes padding = 192 bytes

▪ 192 bytes x 1 MHz = 192 MBps = ~1.5 Gbps

▪ 4 GiB / 1.5 Gbps = ~23 seconds

▪ 4 GiB / 192 bytes = ~22.3 Mevents

08/06/2022 UPGRADE READOUT SYSTEM MEETING 10

Example (40 MHz no MFP):

12 widebus links @ 40 MHz + 4 GiB buffer
▪ 100 bits x 12 fibers = 1200 bits

▪ 1200 bits + 32 bits header = 1232 bits = 154 bytes

▪ 154 bytes + 8 bytes EVID = 162 bytes

▪ 162 bytes + 30 bytes padding = 192 bytes

▪ 192 bytes x 35 MHz = 7.68 GBps = ~61 Gbps

▪ 4 GiB / 61 Gbps = ~0.5 seconds

▪ 4 GiB / 192 bytes = ~22.3 Mevents

08/06/2022 UPGRADE READOUT SYSTEM MEETING 11

Optimizing throughput

PREVIOUS OUTPUT FORMAT

▪EVID repeated in each fragment

▪Fragments aligned to 32 bytes

▪Fragment types and sizes
scattered in memory
(header of each fragment)

CURRENT OUTPUT FORMAT

▪One EVID per block (MFP)

▪Thousands of events per block

▪Fragments realigned to 16 bytes
(half padding overhead)

▪Fragment types and sizes can be
found in constant time
(lookup tables in MFP header)

08/06/2022 UPGRADE READOUT SYSTEM MEETING 12

Metadata format (“MFP”)

08/06/2022 UPGRADE READOUT SYSTEM MEETING 13

Metadata implementation
▪ dma_stream_daq.vhd implements a DMA stream in the DAQ direction

▪ dma_stream_mfp.vhd implements the MFP data format

▪ MFP format can be enabled at runtime by writing a register, in this mode both daq
and mfp streams write in parallel to the same circular buffer
▪ Metadata stream does not own any host memory

▪ Requires careful synchronization between streams and between clock domains to avoid
data corruption

08/06/2022 UPGRADE READOUT SYSTEM MEETING 14

MAGIC NFRAGS

PSIZE

EVID

SRCID ALIGN VERSION

FTYPE 1 FTYPE 2 FTYPE 3 FTYPE 4

…

FTYPE N pad to 32bits

FSIZE 1 FSIZE 2

…

FSIZE N pad to 2^ALIGN

FRAGMENT 1

FRAGMENT 1 FRAGMENT 2

FRAGMENT 2

Each color represents a “DMA descriptor group”.
Descriptor groups write data in parallel.

← “meta_0” DMA descriptor group

← “meta_1” DMA descriptor group

← realigned by “META” stream, but written by
“MAIN” or “ODIN” descriptor group

Example (1 MHz MFP):

12 widebus links @ 1 MHz + 4 GiB buffer
▪ 100 bits x 12 fibers = 1200 bits

▪ 1200 bits + 32 bits header = 1232 bits = 154 bytes

▪ 154 bytes + 8 bytes EVID = 154 bytes

▪ 154 bytes + 6 bytes padding = 160 bytes (-17% wrt no MFP)

▪ 160 bytes x 1 MHz = 160 MBps = ~1.28 Gbps (-15% wrt no MFP)

▪ 4 GiB / 1.28 Gbps = ~27 seconds

▪ 4 GiB / 160 bytes = ~26.8 Mevents

08/06/2022 UPGRADE READOUT SYSTEM MEETING 15

Example (40 MHz MFP):

12 widebus links @ 40 MHz + 4 GiB buffer
▪ 100 bits x 12 fibers = 1200 bits

▪ 1200 bits + 32 bits header = 1232 bits = 154 bytes

▪ 154 bytes + 8 bytes EVID = 154 bytes

▪ 154 bytes + 6 bytes padding = 160 bytes (-17% wrt no MFP)

▪ 160 bytes x 40 MHz = 6.4 GBps = 51.2 Gbps (-17% wrt no MFP)

▪ 4 GiB / 51.2 Gbps = ~0.7 seconds

▪ 4 GiB / 160 bytes = ~26.8 Mevents

08/06/2022 UPGRADE READOUT SYSTEM MEETING 16

Current status

▪ MFP support is included in latest firmware and software releases

▪ Fully integrated in EventBuilder software

▪ Firmware and software support BOTH MFP and non-MFP data format
▪ MFP -> buffer_type=2 in WinCC RunInfo

▪ Non-MFP -> buffer_type=3 in WinCC RunInfo

▪ Global partition always uses MFP format
▪ Local partitions used non-MFP by default, until this week

▪ Work ongoing in mfp_commissioning branches to improve stability, timing, logic
and memory utilization

▪ RDMA support for Infiniband memory sharing

▪ Tested up to 20MHz in TDET, up to 10MHz in global

▪ Next full-scale and full-bandwith test at Point 8 this week

08/06/2022 UPGRADE READOUT SYSTEM MEETING 17

Driver architecture
The driver is split in three “sub-drivers”:

◦ ID subdriver (/dev/pcie40_N_id)
◦ Basic device identification

◦ ECS subdriver (/dev/pcie40_N_bar0, /dev/pcie40_N_bar2)
◦ Control system interface (access to BAR0/BAR2/virtual RBAR)

◦ DAQ subdriver (/dev/pcie40_N_ctrl)
◦ Access to DAQ streams

The first two are always available (API is frozen) to ensure the board can always be
configured and monitored.

DAQ subdriver will only be loaded if firmware (DMA controller) and software
(driver) versions are compatible (driver is backwards compatible and supports
older firmwares)

◦ FW = 6.0 + KD = 6.1: OK

◦ FW = 6.1 + KD = 6.0: NO

◦ FW = 6.1 + KD = 6.1: OK

08/06/2022 UPGRADE READOUT SYSTEM MEETING 18

DMA memory management
▪ DMA memory is allocated in physically contiguous blocks (pci_alloc_consistent)
▪ Max block size supported by kernel is 4 MiB

▪ We need to buffer a lot more data than what one block can contain

▪ Solution: implement “virtual memory map” in FPGA
▪ Memory blocks are chained in a linear list, independent from their physical address

▪ DMA stream in FPGA dynamically jumps between memory blocks when needed

▪ Driver remaps memory so that user software sees the same linear address space as the FPGA

▪ Circular buffer in user memory is double mapped to simplify wrap-around logic

08/06/2022 UPGRADE READOUT SYSTEM MEETING 19

Circular buffer
(write direction →)

Double mapping

B1 B7 B3… B1 B7 B3…
Physical
memory blocks

Linearized DMA
addresses

0x0 0xFFFFFFFF 0x1FFFFFFF

Driver RDMA support

▪ RDMA (Remote DMA) support allows InfiniBand HCAs to read PCIe40 DMA buffers
directly without copying data

▪ Very important optimization for LHCb, but can be useful anywhere

▪ Available since 6.1

▪ #define RDMA_SUPPORT in driver to enable (enabled by default)

▪ Implementation details outside the scope of this presentation, but ask me if
necessary

08/06/2022 UPGRADE READOUT SYSTEM MEETING 20

