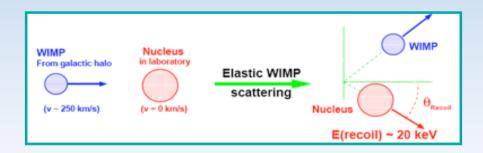
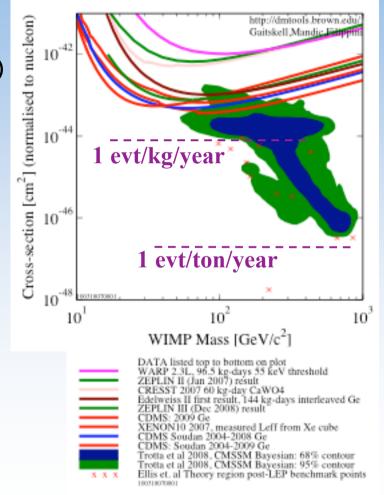
First results of EDELWEISS II using Ge detectors with interleaved electrodes

A. S. Torrentó - CEA/IRFU



WIMP detection

- Hypothesis: galactic halo filled with WIMPs
 - Direct: nuclear recoil from WIMP-nucleus scattering,


 $E_r \sim 1-100 \text{ keV}$

– Indirect: WIMP annihilation products (γ -rays, X-rays, ν , charged particles).

WIMP direct detection

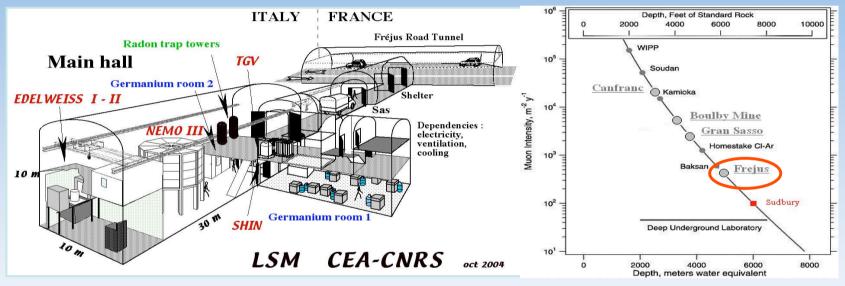
- Measured quantity: interaction rate R
 - \rightarrow limit in the parameter space (m_y, σ_{SI})
 - m_{χ} ~ 10 GeV 10 TeV
 - $\sigma_{\rm SI}$ ~ 10^-6 10^-12 pb poorly constrained R very low, 1-10^-3 evt/kg_detector/year
- Detector specifications to increase sensitivity to very small R:
 - Massive (kg tons)
 - Low energy threshold ($E_r \sim few \text{ keV}$)
 - Efficient rejection of all backgrounds (γ , β radioactivity, CR-induced signals μ , neutrons)

WIMP signatures

- Nuclear recoils (not electronic)
- Unique interactions (not multiple)
- Signals uniformly distributed in the detector volume (not surfaces)
- Exponential E_r spectrum (no peaks/other features)
- Directionality & annual modulation (relative movement Sun-WIMP galactic halo & Earth-Sun).
- $R \propto A^2$ of target nucleus (SI interactions)

WIMP-signal detection & discrimination

- Different experimental approaches
 - Bolometric detectors:
 - Energy yield from WIMP-nucleus interaction measured as an increase in T of the absorber.
 - Discriminating measurement nuclear/electronic recoils
 - Ionisation signal: i.e. Ge, Si absorbers in EDELWEISS, CDMS
 - Scintillation yield: i.e. CaWO₄ absorbers in CRESST.
 - Noble liquid detectors (Xe, Ar):
 - Scintillation yield, timing to both detect & discriminate nuclear recoils (XENON, ZEPLIN, WARP).


EDELWEISS

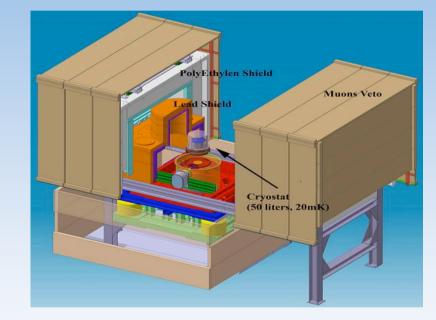
Direct search of WIMPs with Germanium bolometers
→ heat + ionisation signals, spin-independent coupling

- CEA Saclay (IRFU and IRAMIS)
- CSNSM Orsay (CNRS/IN2P3 + Univ. Paris Sud)
- IPNLyon (CNRS/IN2P3 + Univ. Lyon 1)
- Néel Grenoble (CNRS/INP)
- Karlsruhe Institute of Technology
- JINR Dubna
- Oxford University (joined in 2009)

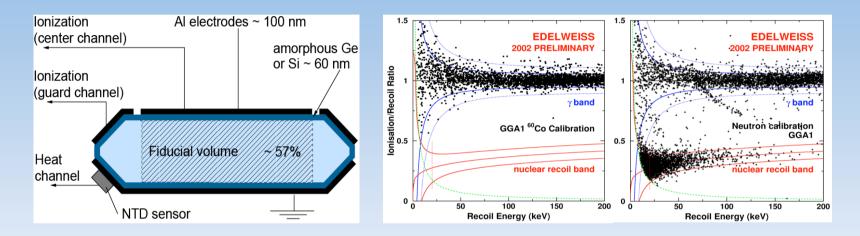
EDELWEISS @ LSM

- Unique experimental site: Laboratoire Souterrain de Modane (LSM) in Fréjus Tunnel
- 4800 mwe depth: 4 muon/day/m²
- 10^{-6} neutrons (>1 MeV)/cm²/s
- Deradonized air supply to reduce $\boldsymbol{\beta}$ radioactivity

EDELWEISS II - Setup


- Goal: 10^{-8} pb, < 0.002 evts/kg/d
- Currently 5 kg Ge, can host up to 40 kg
- Operation @ 18 mK with a dilution refrigerator controlled remotely.
- Strict control of material selection / Cleaning procedure / Environment
 → ×4 reduction of γ background (wrt EDW-I)

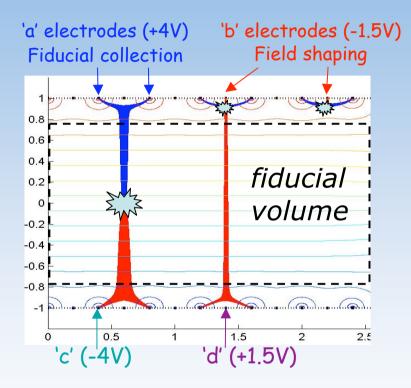
EDELWEISS II - Shieldings


- Clean room & deradonised air (β)
- Active muon veto (μ, n)

> 98% coverage

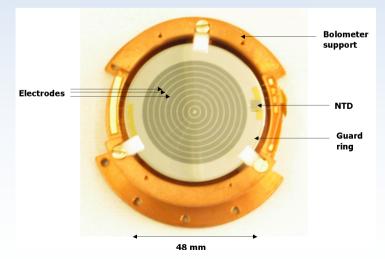
- 50-cm polyethylene shield (thermalise fast neutrons)
- 20-cm lead shield (γ)
- Moreover...
 - Radon detector
 - ³He-neutron detector (thermal neutron monitoring)
 - Liquid scintillator neutron counter (studies of µ-induced neutrons)
 - Remotely controlled $^{60}\text{Co},\,^{133}\text{Ba}$ sources for detector regeneration & γ calibrations
 - AmBe source for neutron calibrations

EDW I - Detectors

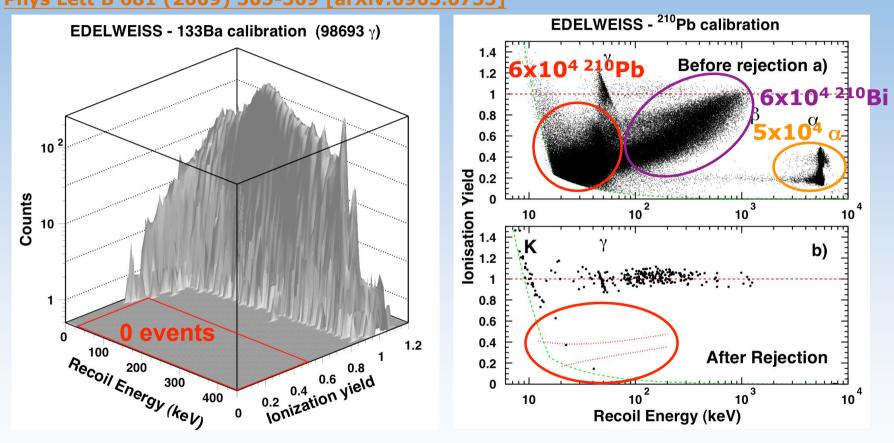


- NTD sensor: Heat measurement @ 20 mK
- Al electrodes on surfaces: Ionization measurement @ few V/cm
- Discriminating variable electronic/nuclear recoils : \mathbf{Q} ~ ionization/heat

$$Ge \rightarrow Q_{electronic} \sim 3 Q_{nuclear}$$


- Limitation: inefficient charge collection in surface interactions mimics nuclear recoils $\rightarrow Q_{surface} \sim Q_{nuclear}$
- EDELWEISS I best limit: $\sigma_{si} \sim 10^{-6}$ pb

EDW II - ID Detectors

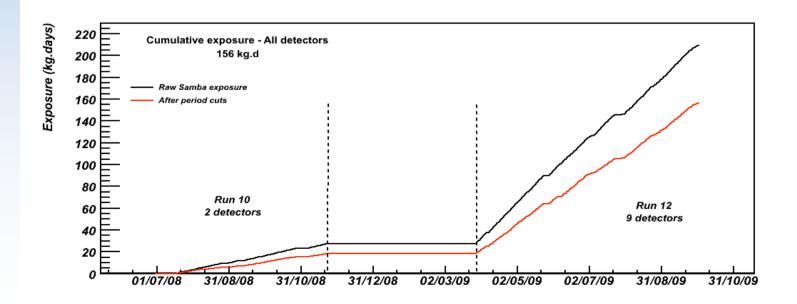


- First 200g detector built 2007
- 1x200g + 3x400g tested in 2008
- 10x400g running since beginning 2009

- Keep the EDW-I NTD thermal detector
- Modify the E-field near the surfaces with interleaved electrodes
- Use 'b' and 'd' signals as vetos against surface events
- Redundancy provides high rejection efficiency

ID Detectors - overall backgs rejection

Phys Lett B 681 (2009) 305-309 [arXiv:0905.0753]

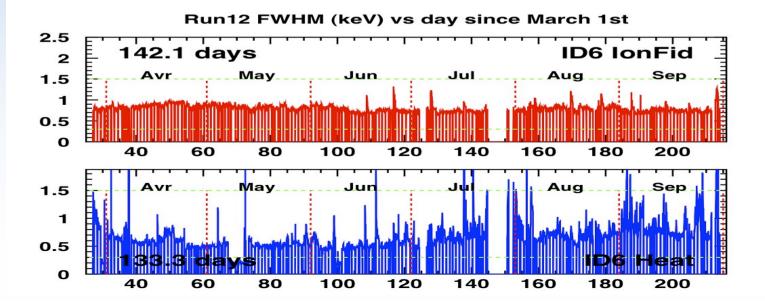

ID 400g \rightarrow 10⁻⁵ γ rejection

ID 200g \rightarrow 10⁻⁵ β rejection

Meet specifications needed for a 10^{-8} pb dark matter search

WIMP search data set

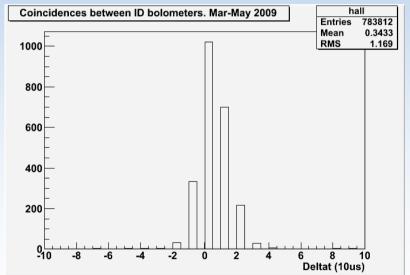
- Jul-Nov 2008: validation runs ID detectors (2×200g), 20 kg.d
- Apr-Sept 2009: physics run (10×400g) ID detectors, 144 kg.d
 → 166 kg.d of data presented
- Oct 2009 Spring 2010: physics run continues



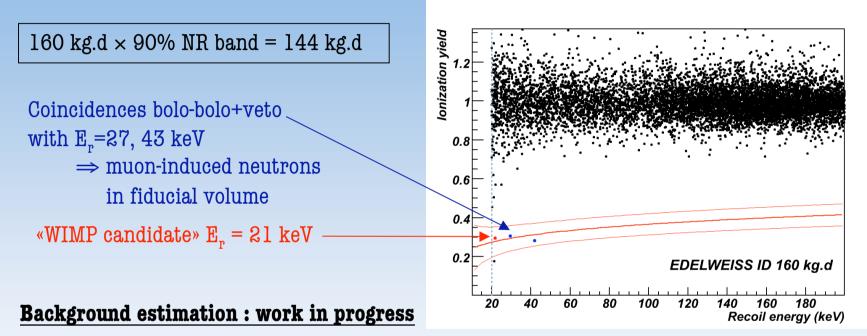
WIMP search DAQ efficiency

- DAQ running 80% of time (maintenance operations)
- 6% of running time: γ , n calibrations
- Working detectors: heat + both fiducial electrodes + 3 veto & guard / 4

(due to redundancy, background rejection is not affected)


- 9/10 detectors
- 10th detector (1 veto + 1 guard not working) OK a posteriori but not included in present analysis
- \rightarrow proves reliability of IDs in real conditions of WIMP search
- Average resolutions: $\sigma \sim 400$ eV ionization, 500 eV heat

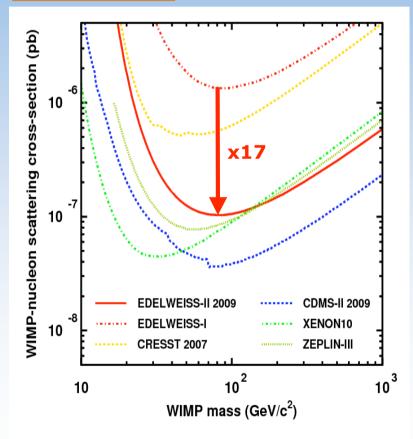
WIMP search analysis


- 2 independent processing chains
- Heat/Ionisation pulse fit with optimal filtering using instantaneous noise spectra
- Selection cuts:
 - Period selection based on baseline noises: ϵ = 80%
 - Pulse reconstruction quality (χ^2) : $\varepsilon = 97\%$
 - Fiducial cuts based on ionization signals (160g)
 - Nuclear recoil: $\varepsilon = 90\%$
 - Gamma rejection: $\varepsilon = 99.99\%$
 - Bolo-bolo & bolo-veto coincidence: $\varepsilon > 99\%$
- WIMP search threshold fixed <u>a priori</u>

 $E_{recoil} > 20 \text{ keV}$

WIMP search results

arXiv:0912.0805


First estimation from previous calibrations/simulations:

- gamma < 0.01 evt (99.99% rejection)
- beta ~ 0.06 evt (from ID201 calibration+obs. surf. evts)
- neutrons from 238 U in lead < 0.1 evt
- neutrons from 238 U + (α ,n) in rock ~ 0.03 evt
- neutrons from muons < 0.04 evt

- < 0.23 events

WIMP cross-section limit

arXiv:0912.0805

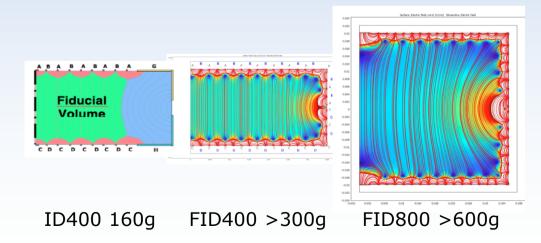


- Limit: $\sigma_{\rm SI} \sim 1.0 \times 10^{-7}$ pb m_{\chi} = 80 GeV/c² 90%CL
- ×17 improvement wrt EDW I thanks to active surface-event rejection with ID detectors
- Further improvement in sensitivity expected.

EDW II - Summary

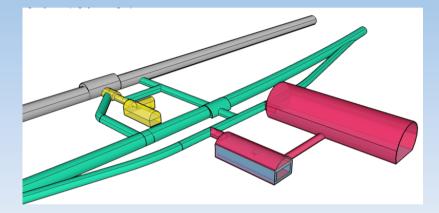
- Results of 160 kg.d of EDELWEISS II in the direct detection of galactic WIMPs
- New ID detectors
 - $-\,$ Background rejection required for σ_{SI} ~ 10^{-8} pb
 - Proven to be reliable in real WIMP-search conditions
- WIMP candidate at $E_r=21$ keV, better background estimation in progress
- Limit: $\sigma_{\rm SI} \sim 1.0 \times 10^{-7} \mbox{ pb for } m_{\chi}^{}= 80 \mbox{ GeV/c}^2$ To be improved...

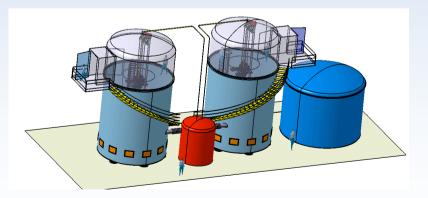
EDW III - FID detectors


ID401 to 405: Φ 70mm, H 20mm, 410g

ID2 to ID5: Φ 70mm, H 20mm, 410g

FID401 and FID402: Ф 70mm, Н 20mm, 410g




- Next phase: improve both total mass and fiducial volume/each detector
 - $-400g \rightarrow 800g$
- ID \rightarrow Full ID (FID)
 - the coverage of ring electrodes extends to the sides
- FID β rejection @ LSM 4/68000 for $E_r > 25 \text{keV}$ (~similar to ID)

European Underground Rare Event Calorimeter Array

- EURECA: beyond 10⁻⁹ pb
 - >>100 kg cryogenic experiment, multi-target
 - Major efforts in background control and detector development
- Joint effort: EDELWEISS, CRESST, ROSEBUD + others...
- Part of ILIAS/ASPERA European Roadmap
- Preferred site: 60000 m³ extension of present LSM, to be dug in 2011-2012

