The XENON100 detector: Status and Results

Antonio Jesus Melgarejo Fernandez on behalf of the Xenon100 Collaboration

XENON Collaboration

USA, Switzerland, Portugal, Italy, Germany, France, China, Netherlands

Why using Xe for dark matter searches

- Large Mass number A (~131): high rate for SI if energy threshold for NR is low
- 50% of odd isotopes (¹²⁹Xe, ¹³¹Xe): sensitive to SD interactions
- High stopping power (Z=54, ρ=3g·cm⁻³): self-shielding capability
- Efficient scintillation (~80% of Nal) and ionization
- Intrinsically pure: No long lived isotopes and Kr/Xe reduction to ppt levels
- NR discrimination by simultaneous measurement of light and charge signals
- Scalability: relatively inexpensive for very large detectors

WIMP detection with a Xenon TPC

- Interactions in the detector produce scintillation and ionization
- Scintillation signal is recorded by two arrays of PMTs in the bottom and top of the detector
- Free electrons are drifted with an Electric Field and produce proportional scintillation in the gas gap below the anode, which is detected by the photosensors
- Different ionization/scintillation ratio allows for discrimination of nuclear recoils against electron recoils

WIMP detection with a Xenon TPC

- The time difference between the primary and proportional scintillation allows for reconstruction of the depth of the interaction
- The PMT pattern of the proportional scintillation gives information about the XY position of the interaction

Saclay, 30th March 2010

Antonio J. Melgarejo - XENON

The XENON100 detector

- Goal: Build a detector with x10 more mass and x100 less background than XENON10
- 170 kg of LXe divided in:
- 65kg fiducial region: 30cm heightx30cm diameter cylinder seen by two PMT arrays (178 PMTs total)
- 105 kg active veto covering top, sides and bottom seen by 64 PMTs
- Multiple strategies for background reduction:
- Passive shield: 5 cm Cu+20cm Poly+20 cm Pb +20 cm Water
- Careful selection and screening of materials
- Placement of all cryogenics outside the shield
- Distillation column to reduce the Kr/Xe content

Saclay, 30th March 2010

Antonio J. Melgarejo - XENON

Cryogenics and purification

- The Xenon is continuously recirculated and purified through a hot getter (SAES)
- Cooling power is provided by a Pulse Tube Refrigerator (160W)
- Vaccum cryostat extends outside the shield to surround the cooling tower

Backgrounds: gammas from detector components

Material	Unit	238U	²³² Th	⁶⁰ Co	40 K	²¹⁰ Pb
		[mBq/unit]	[mBq/unit]	[mBq/unit]	[mBq/unit]	[Bq/unit]
Stainless steel	kg	< 1.7	< 1.9	5.5±0.6	< 9.0	
PTFE	kg	< 0.31	< 0.16	< 0.11	< 2.25	
PMTs	piece	0.15 ± 0.02	0.17±0.04	0.6±0.1	11±2	
PMT bases	piece	0.16±0.02	0.07 ± 0.02	< 0.01	< 0.16	
Support bars (steel)	kg	< 1.3	2.9±0.7	1.4±0.3	< 7.1	
Copper (inside)	kg	< 0.22	< 0.16	0.20 ± 0.08	< 1.34	
Resistor chain	piece	0.027±0.004	0.014±0.003	< 0.003	0.19 ± 0.03	
Cathode support ring	kg	3.6±0.8	1.8±0.5	7.3±1.3	< 4.92	
Top grids support rings	kg	< 2.7	< 1.5	13±1	< 12	
PMT signal cables	kg	< 1.6	3.7±1.8	< 0.69	35±13	
Polyethylene shield	kg	0.23±0.05	< 0.094	< 0.89	0.7±0.4	
Copper shield	kg	< 0.07	< 0.03	< 0.0045	< 0.06	
Lead shield (outer)	kg	< 0.92	< 0.72	< 0.12	14±3	530±70
Lead shield (inner)	kg	< 0.66	< 0.55	< 0.11	< 1.46	26±6

- Careful selection and screening of the detector materials
- Use of a dedicated Low Background facility with a Germanium detector (GATOR) at LNGS to know the radiactivity of all components. essential information for realistic MC studies

Backgrounds: ⁸⁵Kr

- Solution Kr is present in commercial Xe
- Measured concentration with delayed coincidence method ~10ppb (⁸⁵Kr/Kr~10⁻¹¹). Xenon goal requires ~100ppt
- A cryogenic distillation column has been installed underground to process the Xenon. After processing delayed coincidence analysis gives ~150ppt (big errors due to small statistics)
- Comparison of the measured rate with MC simulations suggest ~100 ppt of Kr

Backgrounds: Neutrons

- Detailed MC has been performed including detector materials, rock radiactivity and muon-induced neutrons
- The short mean free path of the neutrons in liquid Xenon allows for multiple scatter discrimination
- Simulation results:
- 1.5 neutrons/year in a 50kg fiducial volume
- 0.5 neutrons/year in a 30kg fiducial volume

We expect to perform a background free dark matter search!!

Current status of the XENON100 detector

- The detector is installed in the LNGS (L'Aquila) since summer 2008
- Succesful calibration of the detector has been achieved during 2009
- Dark matter data taking started at the beginning of 2010. More than 4 tons day have been already acquired

Calibration of the XENON100 detector: positioning

- 3 different position reconstruction algorithms have been developed
- A dedicated setup has been used to test them: a ⁵⁷Co source is placed in a lead collimator and data are taken at different radii
- Agreement between the results and the MC yield a resolution ≤ 3 mm

Saclay, 30th March 2010

Calibration of the XENON100 detector: S1 response

- Light yield from different positions in the detector changes due to solid angle, absorption length and teflon reflectivity
- Several sources distributed in the active volume have been used to measure the collection efficiency of the detector
- The results from these sources (40 keV inelastic, ^{131m}Xe, and ¹³⁷Cs) agree within each other

Average light yield with electric field 2.2 pe/keV @ 122 keV

Calibration of the XENON100 detector: S2 response

- Drifting electrons can be captured by electronegative impurities
- Electron lifetime is monitored periodically and the signal can be corrected using the measured drift time: Q₀=Q·e^{dt/τ}
- Differences in the signal due to the different solid angles in different XY positions are also corrected. No inhomogeneity is observed

Antonio J. Melgarejo - XENON

Position dependence: raw signals

Position dependence: S1 corrected

Position dependence: S2 drift time corrected

Position dependence: S1 and S2 corrected

Energy resolution

- Multiple lines available for the calibration of the detector: ¹³⁷Cs, ⁶⁰Co, ^{129m}Xe, ^{131m}Xe, inelastic neutron scattering)
- Energy resolution of 2.2% @ 662keV, similar to the XENON10 result

Calibration: Future improvements

- ⁸³Kr is an ideal candidate for homogeneous calibration of the detector:
- Not electronegative: no effect for electron attachment
- Fast decay time ~2h
- Provides 2 lines at low energies (32keV and 9keV) with a 147ns delay
- Principle demonstrated in two small setups at Zurich and Columbia
- Extensive R&D going on

Saclay, 30th March 2010

Antonio J. Melgarejo - XENON

Gamma Band

- Multiple calibrations with ⁶⁰Co to study the response of the detector to low energy electron recoils
- Statistics achieved are more than 10 times the expected background
- Results in good agreement with XENON10

Neutron band

- Calibration of the detector using an AmBe source has been performed during December 2009
- In addition to multiple gamma lines above 40keV, the detector response to low energy nuclear recoils has been studied
- Results are in good agreement with XENON10

Saclay, ថ្លិស្ត៍ th March ក្តីស្ថិទ្តិស្

Rejection power

- It is possible to distinguish between nuclear recoils and electron recoils due to their different charge/light ratio
- The rejection efficiency is between 99.5%-99% in the range from 4 to 20 pe

Energy scale for low energy NR

- We use a global fit of the available data to compute the quenching factor for nuclear recoils
- Ongoing efforts to measure this quantity with a better precision
- In XENON100 [4-20] pe ~ [7-27]keVr

Background analysis

- 11.2 days of non blinded data were taken in the period Oct-Nov 2009
- Applied cuts are only optimized in calibration data
- Only very basic cuts are used:
- Single scatterers
- Reasonable signal to noise ratio
- Width and drift time of the event compatible(remove gas events)
- Veto anticoincidence

Antonio J. Melgarejo - XENON

Background results: fiducialization and energy range

Selection of a 40kg cylindrical fiducial volume

Energy range selection <28 keVr

Background rate

Saclay, 30th March 2010

Antonio J. Melgarejo - XENON

Background results after discrimination

XENON10 PRL 100, 021303 (2008)

136 kg-days Exposure = 58.6 live days x 5.4 kg x 0.86 (ϵ) x 0.50 (50% NR) (data collected between Oct.2006 and Feb.2007)

XENON100 PRL in preparation

190 kg-days Exposure = 11.2 live days x 40 kg x 0.85 (ϵ) x 0.50 (50% NR) (data collected between Oct.2009 and Nov.2009)

0 backgrounds with a bigger exposure than XENON10!!

Saclay, 30th March 2010

The case for XENON1T

- The Xenon100 detector has been succesfully calibrated and is already taking science data, with a performance as good as expected
- Within this year, it will either see a signal or constrain significantly the models for WIMP SI or SD interactions
- In both cases, larger experiments with reduced backgrounds are needed
- Critical technologies developed within the XENON10/100 programs can be directly applied to the next scale. Risks and the costs are fully understood.
- A strong international collaboration, with valuable expertise and resources, is in place.
- A technical design proposal for a XENON1T is in preparation. With 50 50 share of resources between US and other groups, we plan to realize the experiment before 2015.

XENON1T: Detector overview

- Baseline design similar to XENON100 with improvements in different areas
- lower radioactivity cryostat (Ti and Cu)
- lower radioactivity PMTs (QUPIDs)
- high efficiency heat exchanger: >98% achieved with Columbia setup
- filling & recovery in liquid phase
- Design has been validated with detailed MC studies of internal/external background sources
- Capital cost ~ 8M\$ shared equally between US and foreign groups

XENON1T: Scientific reach

- The detector will have a fiducial mass of ~1 ton of LXe
- QUPID sensors will measure the light from the interactions
- Simulations of the radiactivity from the material components show a back-ground of less than 1 event/ton-year
- Extensive simulations in the proposed sites and with the proposed shield configurations are being carried out to show a similar level from external components
- After one year of background free measurement, the sensitivity will be ~5.10⁻⁴⁷cm², covering most of the CMSSM predictied region for SI interactions

Location for Xenon 1T

Collaboration is studying two options for site and shield

- LNGS with a water tank acting as shield and muon veto
- LSM with a Polyethylene-Lead shield and plastic scintillators for muon veto

XENON1T at LNGS

5 m-thick water shield

XENON1T at LSM

Solid shield (55 cm Poly, 20 cm Pb, 15 cm Poly, 2 cm ancient Pb) plus >99 % muon veto

The End