

Measuring Grand Unification

Project : Sfitter team + Jean-Loic Kneur, Claire Adam.

Builds up on an earlier paper : « Measuring Supersymmetry » Eur.Phys. J. C 54, 617-644 (2008), arXiv:0709.3985 [hep-ph]

29/03/10

C. Adam, GDR Terascale

1

Reminder (1) : SFitter ?

"If supersymmetry is discovered in the next generation of collider experiments, it will be crucial to determine its fundamental high-scale parameters from weak scale measurements."

SFitter is a complex tool, used to determine the underlying fundamental parameters :

- 1. It uses as inputs sets of measurements (masses, mass differences, edges or thresholds) expected at LHC, ILC, or LHC+ILC.
- 2. For a given model (here MSSM), the spectrum at the electroweak scale is calculated by, in particular, Suspect ("A Fortran code for the Supersymmetric and Higgs Particle Spectrum in the MSSM", hep-ph/0211331, *Abdelhak Djouadi, Jean-Loic Kneur and Gilbert Moultaka*)

SFitter uses both to fit the parameters, using combination of Markov chains and Minuit.

Previous SFitter publication (arXiv:0709.3985 [hep-ph].):

"For a "typical" point (SPS1a), and in two physics models (MSUGRA and MSSM), it was shown that a likelihood map could be built, maxima identified, and that the parameters could be extracted with some errors, properly including experimental and theory errors."

Reminder (2) : SPS1a ?

 $m_0 = 100 \text{GeV} \quad m_{1/2} = 250 \text{GeV} \quad A_0 = -100 \text{GeV} \quad \tan\beta = 10$ $sign(\mu) = +$ favorable for LHC and ILC (Complementarity) 800 m [GeV] Moderately heavy gluinos and squarks 700600 "Physics Interplay of the LHC and ILC" \tilde{u}_L, c 500Editor G. Weiglein hep-ph/0410364 H^{\pm} 400 H^0, A^0 Heavy and light gauginos 300 200100 $\tilde{\chi}_1^0$ _____ **Further motivation :** The result of the EW fit (including b-physics observables, the anomalous moment of the muon and the relic density) yields a best-fit point... Higgs at the limit light sleptons not too far from SPS1a ! of LEP reach

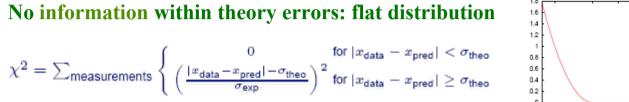
Reminder (3) : experimental inputs

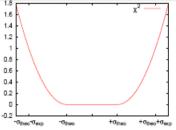
	type of	nominal	stat.	LES	JES	theo.
	value	error				
m_h		108.99	0.01	0.25		2.0
m_t		171.40	0.01		1.0	
$m_{ ilde{l}_L} - m_{\chi^0_1}$		102.45	2.3	0.1		2.2
$m_{\tilde{g}} - m_{\chi_1^0}$		511.57	2.3		6.0	18.3
$m_{ ilde{q}_R} - m_{\chi_1^0}$		446.62	10.0		4.3	16.3
$m_{\tilde{g}} - m_{\tilde{b}_1}$		88.94	1.5		1.0	24.0
$m_{ ilde{g}}-m_{ ilde{b}_2}$		62.96	2.5		0.7	24.5
m_{ll}^{\max} :	three-particle $\text{edge}(\chi_2^0, \tilde{l}_R, \chi_1^0)$	80.94	0.042	0.08		2.4
m_{llg}^{\max} :	three-particle $\text{edge}(\tilde{q}_L, \chi_2^0, \chi_1^0)$	449.32	1.4		4.3	15.2
m_{lq}^{low} :	three-particle $\text{edge}(\tilde{q}_L, \chi^0_2, \tilde{l}_R)$	326.72	1.3		3.0	13.2
$m_{ll}^{\max}(\chi_4^0)$:	three-particle $\text{edge}(\chi_4^0, \tilde{l}_R, \chi_1^0)$	254.29	3.3	0.3		4.1
$m_{ au au}^{\max}$:	three-particle $\operatorname{edge}(\chi_2^0, \tilde{\tau}_1, \chi_1^0)$	83.27	5.0		0.8	2.1
m_{lq}^{high} :	four-particle edge $(\tilde{q}_L, \chi_2^0, \tilde{l}_R, \chi_1^0)$	390.28	1.4		3.8	13.9
m_{llq}^{thres} :	$ ext{threshold}(ilde{q}_L, \chi^0_2, ilde{l}_R, \chi^0_1)$	216.22	2.3		2.0	8.7
m_{llb}^{thres} :	$ ext{threshold}(ilde{b}_1, \chi^0_2, ilde{l}_R, \chi^0_1)$	198.63	5.1		1.8	8.0

TABLE II: LHC measurements in SPS1a, taken from [19]. Shown are the nominal values (from SuSpect) and statistical errors, systematic errors from the lepton (LES) and jet energy scale (JES) and theoretical errors. All values are given in GeV.

• LHC measures kinematical endpoints and mass difference, and covers better the strongly interacting sparticle sector,

• ILC has an impressive accuracy for particles which are light enough to be produced in pairs, and a somewhat better precision in the gaugino sector.


	$m_{ m SPS1a}$	LHC	ILC	LHC+ILC		$m_{ m SPS1a}$	LHC	ILC	LHC+ILC
h	108.99	0.25	0.05	0.05	H	393.69		1.5	1.5
\boldsymbol{A}	393.26		1.5	1.5	H+	401.88		1.5	1.5
χ_1^0	97.21	4.8	0.05	0.05	χ^0_2	180.50	4.7	1.2	0.08
χ^0_3	356.01		4.0	4.0	χ_4^0	375.59	5.1	4.0	2.3
$\chi^0_3 \ \chi^\pm_1$	179.85		0.55	0.55	χ_2^{\pm}	375.72		3.0	3.0
\tilde{g}	607.81	8.0		6.5					
\tilde{t}_1	399.10		2.0	2.0					
$ ilde{b}_1$	518.87	7.5		5.7	$ ilde{b}_2$	544.85	7.9		6.2
$ ilde q_L$	562.98	8.7		4.9	$ ilde q_R$	543.82	9.5		8.0
\tilde{e}_L	199.66	5.0	0.2	0.2	$ ilde{e}_R$	142.65	4.8	0.05	0.05
$ ilde{\mu}_L$	199.66	5.0	0.5	0.5	$ ilde{\mu}_R$	142.65	4.8	0.2	0.2
$ ilde{ au}_1$	133.35	6.5	0.3	0.3	$ ilde{ au}_2$	203.69		1.1	1.1
$\tilde{\nu}_e$	183.79		1.2	1.2					


TABLE I: Errors for the mass determination in SPS1a, taken from [19]. Shown are the nominal parameter values (from SuSpect), the error for the LHC alone, from the LC alone, and from a combined LHC+LC analysis. Empty boxes indicate that the particle cannot, to current knowledge, be observed or is too heavy to be produced. All values are given in GeV.

C. Adam, GDR Terascale

Errors are split between :

- Statistical \Rightarrow Gaussian or Poisson, uncorrelated
- Experimental systematics (e.g luminosity, efficiency) \Rightarrow Gaussian, correlated
- Theoretical ⇒ follow the "Rfit Scheme"

Theoretical errors used for the MSSM fit :

0.5% for the masses of colorless particles (neutralinos, charginos, sleptons)1% for the masses of gluinos and squarks

In the previous study :

- Full likelihood map fit, identify and classify primary/secondary minima (Markov chains)
- · Minuit is used to refine the identified minima

For us : Start from the identified minima Toys are used to obtain a reliable error estimate (data smearing + Minuit ⇒ distributions)

With LHC only : "4+4" solutions

"a	almost True" solution		$\begin{array}{c c} mirrors: \\ \mu < 0 \\ \mu > 0 \end{array}$ "true solution " M1< M2 < μ						
	Point 1	Point 2	Point 3	Point 4	Point 5	Point 6	Point 7	Point 8	
$ an ar{}$	$\beta = 12.3 \pm 5.5$	12.3 ± 4.9	$14.6 {\pm} 9.6$	$9.2{\pm}5.8$	14.7 ± 7.6	12.0 ± 7.2	18.7 ± 14.5	24.0 ± 15	
M_1	$102.8 {\pm} 7.0$	$189.3 {\pm} 6.1$	106.2 ± 9.3	$382.6 {\pm} 9.0$	$105.1 {\pm} 6.2$	$191.5 {\pm} 6.2$	$115.9 {\pm} 7.0$	$380.5 {\pm} 10.3$	
M_2	$185.5 {\pm} 6.9$	96.6 ± 6.2	$356.9 {\pm} 12.7$	$114.5 {\pm} 10.2$	194.6 ± 6.4	$105.4 {\pm} 6.9$	$353.6 {\pm} 8.7$	$135.9 {\pm} 10.2$	
μ	-362.3 ± 7.7	-364.3 ± 6.5	-184.4 ± 9.1	-166.3 ± 9.4	353.6 ± 7.2	357.2 ± 8.1	187.7 ± 7.6	172.2 ± 9.3	
$\Delta \chi_1^2$	LC 73	22000	1700	25000	0.4	22000	2000	24000	
ILC		χ_1^{\pm}	χ^0_3	χ_1^{\pm}	$ ilde{ au}_1$	χ_1^{\pm}	χ^0_3	χ_1^{\pm}	
$arOmega h^2$	0.17 ± 0.07	$(4\pm2) \cdot 10^{-4}$	0.14 ± 0.08	$(8 \pm 4) \cdot 10^{-4}$	0.16 ± 0.07	$(4 \pm 3) \cdot 10^{-4}$	0.11 ± 0.06	$(9 \pm 4) \cdot 10^{-4}$	

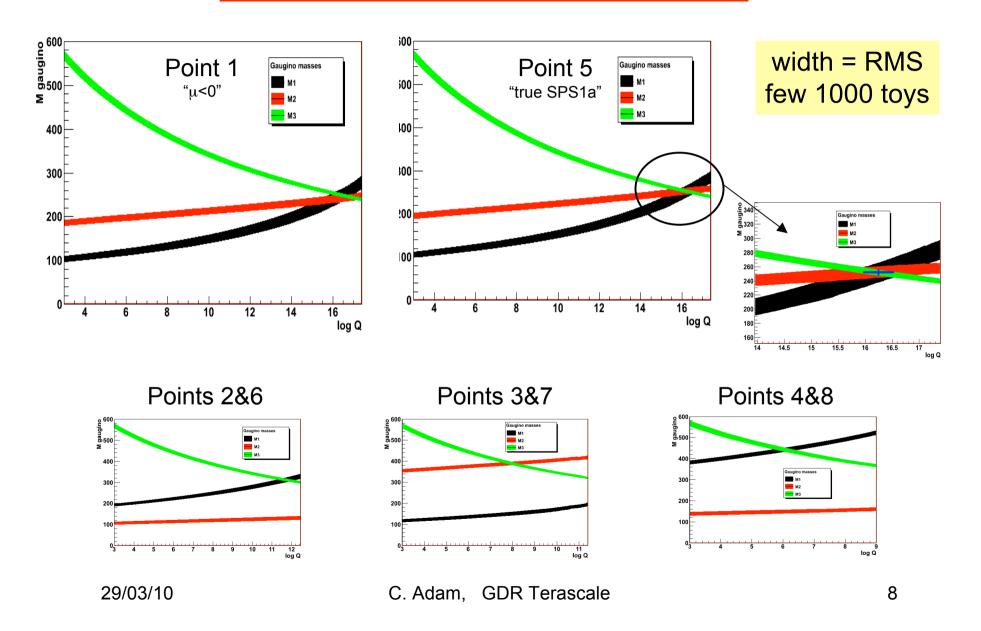
Table 3. The result of the parameter determination in the gaugino-higgsino sector is shown for the eight fold degenerate solutions at the LHC including theory errors. Point 5 is the true solution (SPS1a). The increase of the χ^2 when adding the ILC measurements is shown together with the dominant source of the increase. The last line is the Ωh^2 prediction from the LHC measurements

Swaps : M2<M1< μ , M1< μ <M2, M2< μ <M1

- Adding ILC : allows to lift the degeneracy. M-Stau1 very important to distinguish point 1 / 5
- Relic density (calculated using Micromegas) : is not sensitive to a swap between M2 and μ , but allows to see if M1 is correct.

Model definition ? MSSM, but ...

Some parameters are fixed and harmless ("standard stuff"):

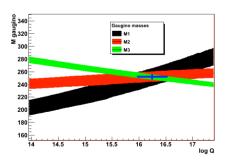

- Trilinear couplings are set to zero for the 1^{rst} generation
- Use an average mass for Left and Right light squarks (u,d,s,c)
- α_{S} and M_{top} are included in the fit

A close look at the fit result for the "true point 5" shows that the values are "off" compared to SPS1a values (by 1/6th to 1/3rd of the RMS)

 \Rightarrow This is understood, and due to several sources :

- Atau and Ab are unknown, we chose to fix then at zero : effect non negligible
- the stau and stop sector are not well measured @LHC : we let them free in the fit, and this introduces a shift.

Next step : extrapolation using suspect

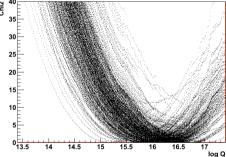


Measuring unification ?

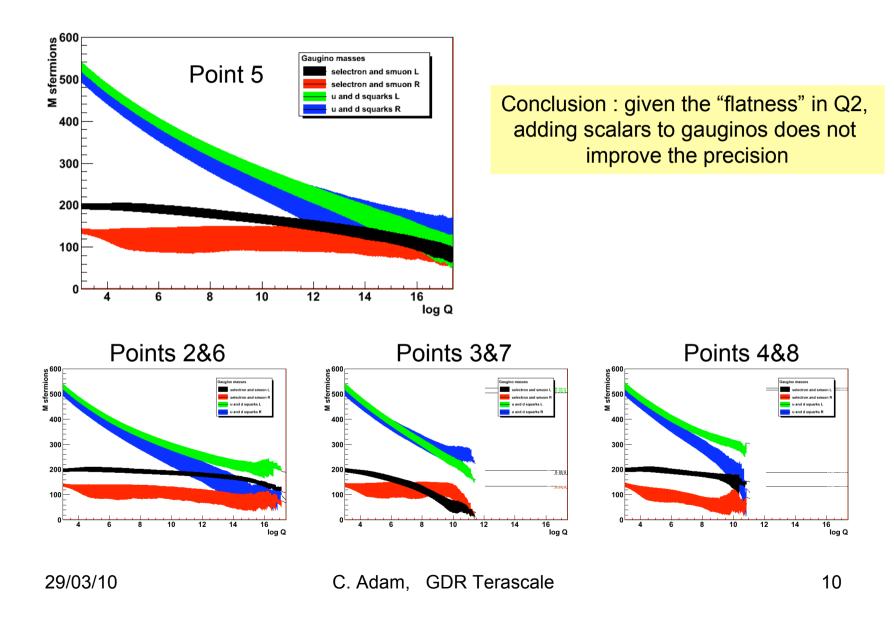
- 1. For any set of parameters (e.g 3 gaugino masses Mi), and each Q2 step, build : $\chi^2(Q^2) = \sum_{i,j}^N (M_i - \langle M_i \rangle) (C_p^{-1})_{ij} (M_j - \langle M_j \rangle) \implies \text{can build a } \chi^2_{95}$
- 2. If we assume unification, with a mass m_U : we can build a χ^2_{ave}

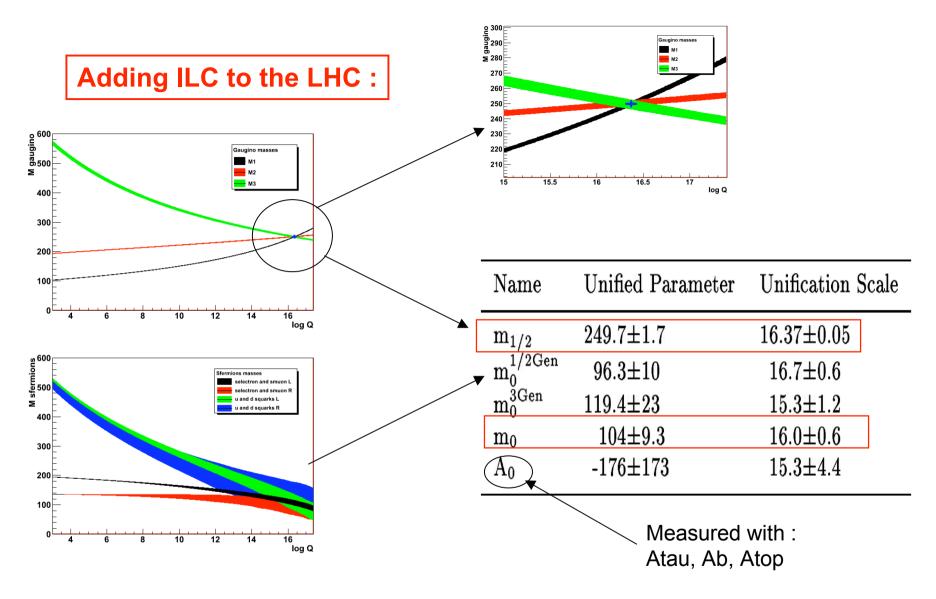
$$\chi^2_{ave}(Q^2) = \sum_{i,j}^N (M_i - m_U)(C_p^{-1})_{ij}(M_j - m_U) \qquad m_U(Q^2) = \left(\sum_{i,j} (C_p^{-1})_{ij}\right)^{-1} \left(\sum_{i,j} (C_p^{-1})_{ij}M_j\right)$$

- 3. The Q² for which the χ^2_{ave} is minimal is the "unification scale candidate" and the corresponding m_U is the unified mass candidate : (for gauginos it will be $m_{1/2}$).
- 4. We "declare unification" if $\chi^2_{ave} < \chi^2_{95}$



29/03/10


 $M_{1/2} = 251.5 \pm 5.8$ Q = 16.2 ± 0.27


And unification is "declared" for : 95.5 % of the "point 5" toys 83% of the "point 1" toys

C. Adam, GDR Terascale

Same procedure with the Sfermions (1rst generation)

Can even play with fermions of the 3rd generation, but it does not really improve : generations 1 and 2 are leading the game

29/03/10C. Adam, GDR Terascale11

Conclusion

At the LHC :

- the sign of $\boldsymbol{\mu}$ is not measurable
- the 4 degenerated solutions correspond to swaps of M1,M2, μ
- out of the 2x4 combinations, 2x1 "unify" and they are hardly distinguishable

Thus, we will not be able to "prove" unification @LHC, but asking for unification will lift the ambiguity.

Adding ILC to the LHC :

- no more ambiguity, unification can be "proven"
- m0, m1/2, Q can me measured.